Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород изотопов разделение

    В настоящее время для промышленного производства тяжелой воды применяют крупномасштабные установки [471. Значительные трудности аппаратурного характера возникают при разделении газовых изотопных смесей. Поэтому лабораторное получение изотопов при температуре кипения жидкого азота и жидкого воздуха пока еще слишком дорого. Однако если ректификационную установку присоединить к промышленной установке для получения кислорода из жидкого воздуха, то концентрирование изотопов Аг, 0 и N может оказаться очень экономичным [48, 491. По-видимому, очень выгодна низкотемпературная ректификация N0 при одновременном получении и 0 [50], а также ректификация СО при концентрировании [511. [c.222]


    Фтор р2 используют при получении фторида урана (VI) ирб, который необходим для разделения изотопов урана. Он применяется как фторирующий агент многих органических и неорганических соединений. Фтор и его соединения с кислородом и галогенами, например Ор2, 1F, вводят в ракетное топливо в качестве окислителя. [c.125]

Рис. 1-4. Результаты измерения коэффициента разделения при различной интенсивности перемешивания (па примере определения коэффициента разделения изотопов кислорода). Рис. 1-4. <a href="/info/1474800">Результаты измерения коэффициента</a> разделения при <a href="/info/749369">различной интенсивности</a> перемешивания (па примере <a href="/info/1531281">определения коэффициента разделения</a> изотопов кислорода).
    Существует ряд методов увеличения эффективности работы колонок, позволяющих снизить высоту фактической тарелки. Однако, несмотря на многие конструктивные усовершенствования, метод фракционной перегонки дает низкие выходы обогащенного изотопом продукта. Этот метод может применяться тогда, когда исходная смесь доступна в больших количествах. Например, фракционная перегонка применяется для разделения изотопов водорода и кислорода в таких соединениях, как вода, метиловый и этиловый спирты и т. п. Фракционной перегонкой разделяются изотопы хлора в хлороформе и четыреххлористом углероде, аргона I— в жидком аргоне, углерода >— в бензоле и другие. [c.40]

    Вот почему с помощью этого метода осуществляют разделение стабильных изотопов средних и тяжелых элементов периодической системы. Этим методом достигнуто полное разделение изотопов углерода, азота, кислорода, хлора, инертных газов и урана. [c.43]

    Полное разделение изотопов кислорода является весьма трудной задачей. Во всяком случае, разделение это достигается с гораздо большим трудом, чем разделение изотопов водорода — соответственно уменьшению изотопного эффекта. Вот почему физические константы соединений О изучены гораздо хуже, чем соединений дейтерия, и получены [c.49]

    Для разделения смесей газов применяют обычно пористые мембраны или сплошные мембраны из полимеров, стекол или металлокерамических сплавов. Движущей силой процесса в этом случае является перепад давлений на мембране. Используют процесс для отделения водорода от примесей (метана, диоксида углерода и др.), обогащения воздуха кислородом, разделения изотопов и т. д. [c.205]


    Представляется также перспективным применение низкотемпературной ректификации молекулярного кислорода для начального концентрирования изотопа При осуществлении этого процесса в дополнительной колонне промышленных установок для разделения воздуха энергетические затраты сводятся к минимуму. [c.202]

    Термическую диффузию применяют главным образом при разделении смеси изотопов (хлора, водорода, углерода, кислорода и благородных газов) на небольших установках, так как в этом случае термодиффузионные [c.337]

    Основные научные работы относятся к химии изотопов, гео- и космохимии. Используя метод спектроскопии, открыл (1932) дейтерий. В годы второй мировой войны занимался разработкой методов разделения урана-235 и урана-238, развитием производства тяжелой воды. Основываясь на данных о содержании различных изотопов кислорода в морских раковинах, показал, как изменялась температура древних океанов в различные геологические периоды. В его лаборатории был проведен (1950) классический опыт, в котором при пропускании электрического разряда через смесь аммиака с метаном, парами воды и водородом образовывались аминокислоты, что доказывало возможность их синтеза в атмосфере. Предложил теорию возникновения планет, которые рассматривались как аккумулятивные образования из более мелких фрагментов. [c.600]

    Обмен изотопов кислорода между двуокисью углерода и кислородом [202] происходит в течение нескольких минут, причем редкий изотоп О накапливается в молекулах СОг. Опытное значение коэффициента разделения 293= 1,060 превышает вычисленное ранее значение равновесного коэффициента разделения 293= 1,033 [206]. Расхождение может быть объяснено наложением других реакций, сопровождающих данную реакцию обмена изотопами кислорода, между двуокисью углерода и кислородом. Это в первую очередь образование озона, обогащенного изотопами 0 , происходящее в разряде в смеси СОа и О2 [121]. Обмен изотопами кислорода между СО2 и Оз может привести к увеличению содержания О в молекулах СО2. С другой стороны, атомарный кислород, образующийся при разложении озона, также может спо- [c.141]

    Многие колебания распространенностей изотопов в природе являются следствием химического обмена, а также различной скорости химических реакций для различных изотопов. Известны химические реакции, при которых может происходить изотопное обогащение водорода, бора, лития, углерода, азота, кислорода, серы и некоторых других элементов. Так же как и в двух предыдущих процессах, для получения большого коэффициента разделения необходимо использовать противоток. В случае обмена лития использовали две несмешивающиеся жидкости различной плотности амальгама лития и спиртовый раствор хлористого лития но обычно для получения противотока газ пропускают через жидкость. Примером получения высокообогащенных изотопов является выделение изотопа с чистотой 99,8% [914[  [c.460]

    Наиболее удобное для процесса окисления соединение-— сульфидная сера. Элементарная сера при горении частично сублимирует, что приводит к загрязнению аппаратуры и разделению изотопов. Окисление сульфидов осуществляют или газообразным кислородом из баллонов, или кислородом твердых окислов. [c.7]

    В первых работах по изучению изотопии серы ЗОг получали при непосредственном сжигании любого сульфида в токе кислорода [1, 2]. Однако дальнейщие исследования показали, что при этом методе происходит заметное разделение изотопов серы. [c.7]

    Пробы образцов, полученные сжиганием сульфида серебра в токе кислорода при высокой температуре (1100—1350°), дают хорошую воспроизводимость результатов. Многие авторы [6, 8, 9] отмечают, что разделение изотопов в течение приготовления образцов вносит ошибку в отношение менее 0,01, что соответствует воспроизводимости бЗ " в пределах 0,1%. [c.10]

    Однако отсутствие обмена изотопом кислорода между перекисью водорода и водой доказывает, что ион ОН" как независимый ион не существует. Таким образом, значительным различием между обоими ионными механизмами является то, что в одном случае (ОН") оба кислородных атома молекулы перекиси водорода оказываются разделенными в самом начале. Если реакция протекает [c.313]

    С помощью Э. удается осуществлять р-ции окисления и восстановления с большим выходом и высокой селективностью, к-рые в обычных хим. процессах трудно достижимы. Это позволяет использ. Э. для пром. получения и очистки многих в-в. Так, Э. водных р-ров получают и очищают Си, 2н, Мн, Сё, № и др. металлы (см. Гидроэлектрометаллургия). Э. расплавов получают А1, Mg, Ма, Ы, Са, Ве, Тт и др. металлы, потенциалы выделения к-рых из водных р-ров более отрицательны, чем потенциал выделения водорода (см. Электрохимический ряд напряжений). Произ-во фтора основано на Э. расплавл. смеси КР и НР, хлора — на 3. водных р-ров или расплавов хлоридов. Водород и кислород высокой чистоты получают Э. водных р-ров щелочей. О других применениях Э. см. Электросинтез, Гальванотехника, Анодное оксидирование. Изотопов разделение, Вольтамперометрия, Кулонометрия. [c.699]


    Если концентрации и давления в напорном и дренажном каналах практически постоянны (рис. 5.2), на практике такой вариант реализуется при небольших значениях коэффициента деления потока (отношение мольных расходов пермеата и исходного потока), невысоких значениях селективности к целевому компоненту, для каналов, в которых длина и ширина соразмерны, причем длина невелика [1, 2]. Например, при разделении воздуха с получением в качестве целевого продукта обогащенного кислородом потока на модулях с плоскопарал яельными и иногда — с рулонными мембранными элементами при разделении изотопов водорода, радиоактивных газов и т.д. [c.160]

    Эти газы, а также криптон и ксенон получают из воздуха путем его разделения при глубоком охлаждении. Аргон, в связи с его сравнительно высоким содержанием в воздухе, получают в значительных количествах, остальные газы — в меньших. Аргон в природе образуется в результате ядерной реакции из изотопа jgK. Неон и аргон имеют широкое применение. Как тот, так и другой применяются для заполнения ламп накаливания. Кроме того, ими заполняют газосветные трубки для неона характерно красное свечение, для аргона — синеголубое. Аргон как наиболее доступный из благородных газов применяется также в металлургических и химических процессах, требующих инертной среды. Так металлы Li, Be, Ti, Та в процессе их получения реагируют со всеми газами, кроме благородных. Используя аргон в качестве защитной атмосферы от вредного вляния кислорода, азота и других газов проводят аргонно-дуговую сварку нержавеющих сталей, титана, алюминиевых и алюн <ниево-магниевых сплавов. Сварной шов при этом получается исключительно чистый и прочный. [c.493]

    Скандий S (лат. S andium). С.— элемент П1 группы 4-го периода периодич. системы Д. И. Менделеева, п. н. 21, атомная масса 44,956. Имеет один стабильный изотоп S . С. был предсказан Д. И. Менделеевым в 1870 г. и условно назван им эка-бором. В 1879 г. С. был открыт Л. Нильсоном при разделении редкоземельных элементов, полученных из минерала гадолинита, впервые найденного в Скандинавии (отсюда и название элемента). С. содержится в виде примеси во многих минералах. С,—серебристый металл с характерным желтым отливом. Проявляет достаточно высокую химическую активность, при обычной температуре взаимодействует с кислородом. Растворяется в кислотах (НС1, H2SO4, ННОз). В соединениях С.,проявля-ет степень окисления +3. С. извлекают попутно при переработке уранового, вольфрамового и оловянного сырья, получают его из отходов производства чугуна. Применяют С. в основном в виде сплавов с различными металлами для изготовления ферритов с малой индукцией (для быстродействующих вычислительных машин), в ядерной технике, металлургии, медицине, стекольной и химической промышленности. [c.122]

    С ростом промышленного производства ректификация получала все белее широкое распространение, особенно в технологии органических продуктов. Мощное развитие процесса ректификации связано с нефтеперерабатывающей промышленностыр. Постепенно ректификация завоевывала новые области применения. Она явилась основным промышленным методой разделения воздуха на кислород, азот и инертные газы,а также разделения и очистки других сжиженных газев. В последнее время ректификация успешно используется при разделении некоторых стабильных изотопов, для аналитических целей и в ряде других специальных областей. [c.62]

    В первых работах по изучению изотопии серы ЗОа получали непосредственным сжиганием любого сульфида в токе кислорода. Однако дальнейшие исследования показали, что в этом случае происходит заметное разделение изотопов серы. Это объясняется тем, что такие сульфиды, как галенит, пирит, сульфиды меди и другие, окисляются в токе кислорода не только до ЗОг, но и до сульфатов. Для разложения последних требуется очень высокая температура. Наибольший выход ЗОа при сжигании в токе кислорода получен для сульфида серебра, поэтому при изучении изотопного состава серы некоторые исследователи переводят даже серу сульфидов в Ag2S. [c.154]

    Сообщения об успешных экспериментах продолжают регулярно появляться в печати. Недавние работы ио разделению изотопов кислорода с помощью отфильтрованного излучения АгР-лазсра [6,18] и изотопов тяжелого металла — молибдена путем интенсивного фотолиза с помощью ИК-лазера [().19] — не единственные тому примеры. [c.258]

    Вопрос о отруктурр термпд1инам1ических потерь и термодинамического к. п. д. обсуждался в ряде работ В кислород-1ГЫХ установках, например, минимальная работа разделение составляет 18% от общих затрат энергии , внутренние потери— 20%, потери в компрессоре — 42%, при теплообмене — 9%. потери холода в окружающую среду — 7%. При разделении изотопов основное значение имеют внешние потери, главным образом в теплообменниках . [c.158]

    Дальнейшие пути развития радиоактивационного анализа заключаются в повышении чувствительности, экспрессности и точности определения. Повышение чувствительности возможно путем использования более интенсивных потоков в ядерных реакторах большой мощности до 10 яе /пр/сж -сек,, использования работы реакторов в импульсном режиме с потоками до 10 — 10 нейт.р см сек в импульсе для определения по короткоживущим изотопам, создания ускорителей заряженных частиц с большой силой тока (порядка нескольких миллиампер) для целей активационного анализа, электронных ускорителей сэнергией до30Мэвя мощностью 10 рентг/м-мин для определения кислорода, азота и углерода. Повышения чувствительности и быстроты анализа можно достичь также путем разработки экспрессных химических методов разделения с почти количественным химическим выходом носителей. Чувствительность, быстрота и точность анализа зависят также от совершенства измерительной аппаратуры, в частности от создания полупроводниковых детекторов излучения с высокой разрешающей способностью и многоканальных спектрометров с вычитанием комптонов-ского фона. Большую роль в повышении точности определения должно сыграть применение методов статистической обработки результатов определений, а также разработка быстродействующих анализаторов с элементами электронно-вычислительной техники, позволяющих полностью автоматизировать обработку спектров и результатов измерений [36]. [c.14]

    Анбар и Таубе [320] изучали разделение изотопов кислорода на окисных электродах (РЬ02, МПО2 и Ag0). В этом случае кислород из анодного окисла выделяется электролитически как 0 , но при использовании окисла в качестве электрода происходит быстрый обмен между анодным окислом и водой. Следовательно, разделение изотопов кислорода определяется равновесным процессом [c.513]

    Для проведения онытов с мечеными молекулами, содержащими но разработанной ранее методике, были синтезированы этилен [6], аце-тальдегрщ [7], окись этилена. Радиоактивность исходных соединений и продуктов реакции после их разделения определялась посредством промера препаратов углекислого бария на торцовом счетчике со слюдяным окошком. Стабильный изотоп кислорода 0 вводился в газовую фазу и изотопный состав иродуктов реакции определялся масс-спектрометрически. [c.109]

    Наблюдавшееся значительное разделение изотопов кислорода при синтезе озона с коэффициентом однократного разделения =1,08—1,10 определяется не равновесными, как показали расчеты [195], а кинетическими изотопными эффектами [203]. Определяющей стадией оказываются стадии разложения озона при столкновепии с электронами или с атомами кислорода, для которых расчет приводит к высоким значениям кинетических изотопных эффектов. Из трех модификаций озона Од , О О и 0 0 0 медленнее всего по расчетам распадается симметричная молекула О О О , особенно при отрыве тяжелого атома О . В результате реакции тяжелый изотоп О накапливается в озоне. [c.140]

    При электролизе воды водород и кислород практически всегда получаются влажными. Концентрация дейтерия во влажных газах, отводимых из электролизера, всегда выше, чем в сухих, так как концентрация тяжелого изотопа водорода в парах воды, насыщающих газы, близка к концентрации дейтерия в электролите. В зависимости от содержания паров воды в газах, отходящих из электролизера, эффективная величина эф коэффициента разделения изотопов водорода снижается по сравнению с его величиной, получаемой из выражения (VI- ). [c.239]

    При собирании пучков положительных ионов имеет место отложение нейтральных частиц на коллекторе. Разделение и получение изотопов различных элементов методом масс-спектрометрии служит для получения чистых образцов изотопов для проведения такого разделения был сконструирован специальный прибор [1143, 1517], названный калутроном . К 1955 г. все элементы, имеющие стабильные изотопы, разделяли на калутроне исключение составили осмий и некоторые редкоземельные элементы с высоким атомным весом и инертные газы. По применению калутрона в специальных областях ядерной физики было опубликовано много работ [1090]. Основная проблема состоит в необходимости использования громоздкого оборудования для получения достаточно высокой дисперсии масс, особого ионного источника для получения интенсивных ионных пучков и специальной техники их отбора. На применяемых коллекторах [1516] имеются пазы их число и расстояния между ними выбираются в соответствии с типами ионных пучков разделяемых элементов каждый паз электрически изолирован от средних, что позволяет контролировать поступающий на данный коллектор ионный ток. При попадании сфокусированного ионного пучка на коллектор может выделяться энергия в несколько киловатт в связи с эффектами эрозии и нагрева могут иметь место значительные потери разделенного материала по сравнению с первоначально образовавшимся пучком. Для некоторых элементов лимитирующим фактором получения изотопов является не интенсивность ионного тока, достигаемая в ионном источнике, а невозможность их задерживания на коллекторе. Легколетучие элементы могут собираться на веществах, с которыми они вступают в химическое соединение. Для кислорода, например, может использоваться медный коллектор. Инертные газы в небольших количествах собираются на алюминиевой или серебряной фольге, в которую они проникают в виде атомов [789, 1883]. Особые трудности возникают в случае тяжелых элементов [1659] из-за относительно малого различия в массах их изотопов, что обусловливает необходимость применения коллекторов с тонкими стенками. [c.211]

    Допустим, что масс-спектр органического соединения дает нам отчетливый пик, принадлежащий молекулярному иону, и лишь малые пики ионов, на одну или две массовые единицы меньшие молекулярного, образующиеся вследствие отрыва водорода от молекулярного иона. При этом наложение на молекулярные ионы осколочных, обедненных водородом, содержащих тяжелые изотопы, будет незначительным. Элементарный состав такого иона может бьггь получен путем измерения его массы с достаточной точностью. В приложении 1 собраны массы различных комбинаций атомов углерода, водорода, азота и кислорода. Каждому массовому числу, приведенному в таблице, соответствуют комбинации не только целых молекул, но и осколков, и ниже описан способ, позволяющий различить молекулярный и осколочные ионы. То, что состав ионов может быть получен на основании измерения масс, указывалось выше, но следует рассмотреть точность, необходимую в тех случаях, когда присутствуют только атомы углерода, водорода, азота и кислорода, поскольку эти элементы являются основными в органической химии. Точность, необходимая при измерении масс синглетных ионов, может быть установлена на основании изучения дублетов, поскольку разделение компонентов дублета характеризует требуемую точность измерений. Дублеты, перечисленные в приложении 3, показывают, что пики с одинаковыми массовыми числами, не содержащие тяжелых изотопов, могут отличаться по массам на одну из следующих разностей  [c.308]

    После второй мировой войны американские исследователи занялись изучением гексафторидов, и особенно гексафторида урана, который используется для разделения изотопов и В 1960 г. были синтезированы гексафториды платиновых металлов. Канадский химик Н. Бартлетт, исследуя гексафторид платины Р1Ре, установил в 1961 г., что это вещество обладает более сильными окислительными свойствами, чем элементарный фтор. Оно дает соединение с кислородом 02(Р1Рб), где кислород имеет положительную валентность его молекула ионизировалась — Ог" (РГРе) Возникла мысль, а нельзя ли подействовать таким окислителем на инертные газы, и в частности на ксенон и у кислорода, и у ксенона почти одинаковое сопротивление отрыву электронов. [c.129]

    Наибольший выход ЗОа при сжигании сульфидов в токе кислорода получен для сульфида серебра. Поэтому при изучении изотопного состава серы некоторые исследователи переводят все сульфиды в сульфид серебра [6, 7]. Для этого сульфид сначала окисляют до сульфата, осаждают ВаЗОл, последний сплавляют с железом или углем при 950—1000° для перевода Ва304 в Ва5. Образующийся сплав обрабатывают в токе азота соляной кислотой, а выделяющийся НзЗ улавливают раствором нитрата серебра. В результате этих процедур в АдгЗ переходит около 94% серы сульфидов. Неполный переход серы объясняется неполнотой восстановления сульфата бария, выделением ЗОг во время сплавления из-за протекания побочных реакций и незначительного окисления сульфида бария во время обработки сплава соляной кислотой. При количествах сульфата бария, больших 100 мг, эти потери не приводят к значительному разделению изотопов серы. Однако при навеске сульфата бария порядка 20 мг в АдгЗ переходит только 60%, что совершенно недопустимо. [c.8]

    В более ранней литературе [741, 742] можно найти сведения о частичном разделении изотопов неона 20 и 22 на активированном угле нри —196° С. В последнее время было достигнуто полное разделение их на протравленных стеклянных капиллярных колонках при —250° С [743]. Эксперименты показывают возможность полного разделения изотопов кислорода К) и 18 [744, 745] в длинных капиллярных стеклянных колонках и изотопов азота 14 и 15 [746, 747] на графитированном угле с 1% сквалана. Изотоп фосфора 32 был отделен газохроматографически от продуктов облученной нейтронами серы [214]. Короткоживущие изомеры также изучались газохроматографически [748—750]. Наряду с этим была сделана попытка разделения изотопов углерода и серы в форме F4 и SFg на органических пористых полиэфирах [751]. Удалось добиться обогащения изотопов углерода 12 и 13 при разделении окжси углерода [752] и метана [753]. [c.280]


Смотреть страницы где упоминается термин Кислород изотопов разделение: [c.55]    [c.171]    [c.211]    [c.139]    [c.9]    [c.31]    [c.513]    [c.187]    [c.75]    [c.329]    [c.634]    [c.9]   
Химия в атомной технологии (1967) -- [ c.346 , c.348 , c.349 , c.360 , c.363 , c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород изотопы

Разделение изотопов



© 2025 chem21.info Реклама на сайте