Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород ионизации

    Энергия ионизации молекул. В прямой зависимости от характера распределения электронов по связывающим и разрыхляющим молекулярным орбиталям находится также значение энергии ионизации молекул. Как мы видели, в двухатомной молекуле связывающие электроны лежат глубже, чем в атоме, а разрыхляющие — наоборот. Таким образом, энергия ионизации молекулы, верхний занятый энергетический уровень которой является связывающим, выше, чем таковая свободного атома. Например, энергия ионизации молекулы N2 (15,58 эВ) больше энергии ионизации атома азота (14,53 эВ). Если же верхний занятый уровень молекулы является разрыхляющим, то энергия ионизации молекулы меньше, чем атома. Так, энергия ионизации молекулы О 2 (12,08 эВ) меньше энергии ионизации атома кислорода (13,62 эВ). [c.56]


    Из данных табл. 5 видно, что общая тенденция к возрастанию энергии ионизации в пределах периода в некоторых случаях нарушается. Так, потенциалы ионизации атомов бериллия и азота выше, чем атомов следующих за ними элементов бора и кислорода аналогичное явление наблюдается и в третьем периоде при [c.102]

    Энергия ионизации атома водорода (13,6 эВ, 1312 кДж/моль) столь велика, что соединения водорода (I) даже с такими сильными окислителями, как фтор и кислород, не могут быть ионными. Если же допустить образование в соединениях ионов их исключительно высокое поляризующее действие все равно привело бы к образованию ковалентной связи. По этим же причинам ионы Н+ не могут существовать в свободном состоянии при обычных химических явлениях. Специфика строения атома водорода обусловливает особый, присущий только соединениям водорода (I) вид химической связи — водородную связь. [c.272]

    Металлы, термодинамически стойкие по отношению к процессу электрохимической коррозии с выделением водорода, могут оказаться нестабильными при наличии кислорода, ионизация которого происходит при более положительных потенциалах. В таком случае говорят о коррозии с кислородной деполяризацией. Область потенциалов, при которых становится возможной ионизация кислорода, расположена выше прямой d. Только совсем немногие металлы — золото, серебро, платина и некоторые другие — обладают стабильностью по отношению к коррозии кислородного типа. [c.243]

    Катодная реакция ионизации кислорода состоит из цепи последовательных элементарных реакций, т. е. протекает стадийно  [c.234]

    В большинстве случаев лимитирующими стадиями являются или диффузия кислорода (неперемешиваемый электролит), или ионизация кислорода. Ионизация кислорода в двойном электрическом слое на границе металл — раствор проходит по схеме в нейтральных щелочных растворах [c.19]

    Выделение водорода является потенциально конкурирующим процессом при катодном осаждении металлов, а выделение кислорода — при их анодном растворении. При рафинировании металлов на процесс растворения основного металла, например меди, накладываются реакции ионизации металлов-примесей Мпр  [c.387]

    Еще более эффективен адсорбционно-электрохимический механизм пассивирования, установленный Эршлером, Б. Н. Кабановым, Я. М. Колотыркиным и др. Справедливость этого механизма подтверждается, напрнмер, данными по растворению платины. Скорость ее растворения в соляной кислоте при постоянном потенциале экспоненциально зависит от поверхностной концентрации кислорода. Чтобы скорость растворения упала в четыре раза, достаточно посадить на электрод количество кислорода, способное покрыть около 4% его видимой поверхности. Следующая такая же порция кислорода уменьшает скорость растворения еще в четыре раза, т. е. в шестнадцать раз по сравнению с первоначальной величиной, новые 4% доводят ее до /б4 от начального значения и т. д. вплоть до практически полного прекращения растворения платины. Подобная экспоненциальная зависимость объясняется Эршлером вытеснением из двойного слоя адсорбированными атомами кислорода (играющими роль отрицательного конца диполя металл — кислород) эквивалентного числа адсорбированных анионов. Уменьшение числа анионов в двойном слое соответственно снижает ионный скачок потенциала при сохранении неизменной общей разности потенциалов между металлом и раствором. Это должно привести, согласно законам электрохимической кинетики, к экспоненциальному снижению скорости ионизации, т. е. к такому же уменьшению скорости растворения металла, что и наблюдается на опыте. [c.484]


    ПЕРЕНАПРЯЖЕНИЕ ИОНИЗАЦИИ КИСЛОРОДА [c.233]

    Как видно из приведенных данных, в ряду О — 3 — Зе — Те — Ро уменьшаются энергии ионизации, увеличиваются размеры атомов и ионов. Это ослабляет неметаллические признаки элементов кислород— элемент-неметалл, полоний — элемент-металл. [c.309]

    С—с. Это и не удивительно, если учесть больший размер атомов Si. Связывающие электроны находятся дальше от каждого из ядер, и поэтому связь оказывается менее прочной. По той же причине Si имеет меньшую энергию ионизации, чем С, и меньшую электроотрицательность (см. табл. 9-1). Но еще более важной причиной различия в свойствах углерода и кремния является аномально высокая прочность связи Si—О. В атоме углерода пустые З -орбитали имеют гораздо более высокую энергию по сравнению с 2р-орбиталями кислорода, занятыми неподеленными электронными парами, поэтому между ними не возникает взаимодейст- [c.279]

    В ИК-диапазоне частот молекула может накапливать энер-гию излучения, поглощая два, три и большее число фотонов (многофотонное, многочастотное поглощение [146]). Молекула таким образом приобретает энергию, достаточную для ее диссоциации на мелкие фрагменты. С помощью лазерной техники установлена также возможность многофотонной ионизации и фрагментации многоатомных молекул под действием видимого и УФ-излучения. Было обнаружено, что кислород также может поглощать излучение в ИК-области установлена возможность, многофотонного поглощения света молекулой азота, приводящего к диссоциации молекулы на атомы в основном состоянии. [c.115]

    На катодном участке в нейтральном, щелочном и слабокислом электролите,, содержащем растворенный кислород, происходит ионизация последнего с образованием гидроксил-ионов  [c.280]

    Первая энергия ионизации для В меньше, чем для Ве, потому что самый внешний электрон бора находится на менее стабильной (энергетически более высокой) орбитали. В атоме углерода. С, на двух из трех 2р-орбиталей находится по одному электрону. В согласии с правилом Гунда, в атоме азота. К, три р-электрона расселены по трем 2р-орбиталям, вместо того чтобы два из них оказались спарены на одной орбитали. Четвертый 2р-электрон в атоме кислорода, О, удерживается менее прочно, чем первые три, из-за отталкивания с другим электроном, спаренным с ним на 2р-ор-битали. Поэтому первая энергия ионизации О сравнительно мала. [c.393]

    Потенциалы некоторых металлов в водных растворах (Hg, Ag, Си, С(1 и др.) в довольно широком диапазоне концентраций их ионов достаточно хорошо подчиняются уравнению (277). Если же наряду с разрядом ионов данного металла протекает необратимо какой-либо другой катодный процесс (например, разряд водородных ионов, ионизация кислорода и др.), то начинает идти растворение металла (Дт 0) и потенциал последнего перестает быть обратимым. [c.157]

    Перенапряжение ионизации кислорода на различных металлах, измеренное Н. Д. Томашовым, приведено на рис. 160. С по- [c.234]

    Очевидно, что в однотипных молекулах гипервалент-ная связь будет прочнее, если центральный атом (донор) имеет меньший потенциал ионизации Отсюда ясно, почему, например, для серы известен тетрафторид 8р4 и даже гексафторид 5Рв, тогдя как для кислорода подобные соединения не известны. Энергия ионизации атома кислорода столь велика (13,6 эВ), что даже фтор оказывается неэффективным как ли- [c.270]

    AB — перенапряжение ионизации иеталла ВЕ — пассивирование металла ( Oj)o6p — перенапряжение анодного выделения кислорода] [c.196]

    Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок ВЕ на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко обр E>EF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных. [c.197]

    Перенапряжение ионизации кислорода зависит от катодной плотности тока, материала катода, температуры и пр. [c.233]

    Для ряда металлов (Ре, Си, Аи, Р1) при 25° С постоянная = = 0,10-н0,13. Это свидетельствует о том, что причиной перенапряжения ионизации кислорода является замедленность элементарной реакции ассимиляции одного электрона (м = 1). Для кислых растворов такой реакцией является, по-видимому, образование молекулярного иона кислорода (489), а для щелочных сред — образование пергидроксил-иона (491). [c.235]

Рис. 160. Перенапряжение ионизации кислорода на различных металлах в растворе 0,5-н. ЫаС1 + 0,005-м. Ыа СОа- --1- 0,005-м., ЫаНСО, (pH = 9,2) а атмосфере кислорода при 20 С и 2000 об/мин мешалки а — в координатах — б — в координатах Рис. 160. <a href="/info/15270">Перенапряжение ионизации кислорода</a> на <a href="/info/443669">различных металлах</a> в растворе 0,5-н. ЫаС1 + 0,005-м. Ыа СОа- --1- 0,005-м., ЫаНСО, (pH = 9,2) а <a href="/info/16417">атмосфере кислорода</a> при 20 С и 2000 об/мин мешалки а — в координатах — б — в координатах

    Если заторможенности катодной деполяризационной реакции ионизации кислорода и диффузии кислорода к катоду соизмеримы, то суммарная скорость катодного процесса будет зависеть от обоих этих процессов смешанный диффузионно-кинетический контроль). [c.240]

    Из-за все увеличивающегося торможения за счет ограниченной диффузии катодная поляризационная кривая идет вверх более круто (участок кривой АС на рис. 159), чем при наличии только перенапряжения ионизации кислорода (участок АВ на рис. 159), и при приближении к предельной диффузионной плотности тока по кислороду 1д она переходит в вертикальное положение (участок ЛВ на рис. 159). [c.242]

    Ускорение анодного процесса в щелях и зазорах, обусловленное недостатком кислорода, приводит к сдвигу электродного потенциала металла в щели в отрицательную сторону. Кроме того, при недостатке кислорода ионизация железа идет преимущественно с образованием двухвалентных его ионов, не обладающих защитным действием. У Пассивирующихся металлов (алюминия, титана, нержавеющих сталей) недостаток кислорода в щели приводит к полной депассиващш там металла, т. е. к существенному ускорению коррозии. [c.59]

    Несколько по-иному изучали механизмы органических реакций Адкинс и Адамс [284]. Поддержав требование Михаэля[243] о замене термина реактивность понятиями об изменении свободной энергии системы и о скорости реакции, авторы тем не менее выдвинули серьезные доводы против принятой в середине 20-х годов XX в. оценки химического строения кислот по величинам их констант ионизации. Адкинс и Адамс совершенно правильно отметили, что факторы, которые ускоряют отделение положительного электрона (водородного иона) от молекулы, могут иметь малое отношение к тем факторам, которые ослабляют или усиливают связи углерод — углерод и углерод — кислород. Ионизация лк>бого вида, как оказалось, играет незначительную роль в органических реакциях [284, стр. 1369]. Тем самым авторы углубили взгляды Михаэля на причины различного характера изменения степени прохождения реакции (extent) и ее скорости , связав эти величины с энергетическим аспектом превращения и электронным строением реагентов. Так, степень прохождения реакции образования ацеталей определяется относительной стабильностью электронной системы реакционной смеси при равновесии, в то время как скорость этой реакции... частично зависит от легкости, с которой, электронная система данного соединения должна быть смещена катализатором (введенным в нее до реакции.— В. К.) [284, стр. 1381]. [c.82]

    Однако имеются и некоторые различия во взаимодействии этих двух типов частиц с веществом. Во-первых, при данной энергии скорость электрона намного больше скорости а-частицы (см. табл. 6) и, следовательно, удельная ионизация меньше. В табл. 6 приведены значения удельной ионизации в воздухе для электронов с различными энергиями. Наибольшая удельная ионизация, равная 5950 нар ионов на мг1см , наблюдается при энергии 146 эв и = 0,024 с), т. е. при значительно меньшей энергии, но несколько большей скорости, чем в максимуме кривой Брэгга для а-частиц. При энергии электрона ниже 12,5 эв (ионизационный потенциал молекул кислорода) ионизация воздуха прекращается. Если двигаться от максимума в сторону больших энергий, то вблизи 1,4 Мэе кривая удельной ионизации проходит через плоский минимум. Последующее увеличение удельной ионизации связано с релятивистскими эффектами, которые обсу- [c.107]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]

    Первым обширным исследованием, проведенным с помощью масс-спектрометра, была работа Лейфера и Ури [23], которые изучали пиролиз диметилового эфира и ацетальдегида.Хотя им и не удалось обнаружить радикалы, но они смогли показать, что промежуточным продуктом разложения димети лового эфира является формальдегид, и проследить его концептрацию. Более успешной была попытка Эльтентона [24, 25], которому удалось сконструировать установку, способную обнаружить свободные радикалы при пиролитических реакциях и в пламенах даже нри высоких давлениях (около 160 мм рт. ст.). Он также смог обнаружить присутствие радикалов СНз при пиролизе углеводородов, радикалов СНг из СНгКг, а также СНО и СНз при горении СН в кислороде. Метод определения основан в принципе на том, что энергия электронов, необходимая для ионизации радикалов, меньше энергии электронов, необходимой для образования ионизированных частиц из самих исходных молекул. Это дает возможность определять малые количества радикалов в присутствии больших количеств соединений, собственные спектры которых затмевают спектры радикалов. [c.97]

    Сила кислородсодержащих кислот зависит от строения молекулы. Формулу кислородсодержащих кислот в общем виде можно записать Ю,- (ОН) , имея в виду, что в их молекулах имеются связи Н—О—Э и Э= 0. Как показывают исследования, сила кислот практически не швисит от п (числа ОН-групп), но заметно возрастает с увеличением т (числа несвязанных в ОН-группы атомов кислорода, т. е. со связями Э=0). По первой ступени ионизации кислоты типа Э(0Н)г1 0Т1ЮСЯТСЯ к очень слабым (/< 1= — 10" , = [c.184]

    Гексафтороплатинат (V) диоксигенила 02[PtFe] — парамагнитное вещество красного цвета, плавится с разложением при 219°С. Синтез этого соединения канадским ученым Н. Бартлетом в 1962 г. послужил толчком к синтезу соединений ксенона, энергия ионизации которого близка к таковой молекулы кислорода (см. с. 494). [c.319]

    Собственная ионизация жидкого HNO3 незначительна. С водой HNOg смешивается в любых отношениях. Его растворы — сильная кислота, называемая азотной. В лаборатории азотную кислоту получают действием концентрированной серной кислоты на нитрат натрия. Промышленное производство HNOg осуществляется по стадиям скисление HgN в N0 кислородом воздуха на платиновом катализаторе  [c.356]

    Имеются случаи, когда роль свободного радикала играет ион, например ион N2 —бнрадикал. Тогда уже первичный процесс ионизации электронным ударом ведет к возникновению радикала. Согласно упоминавшейся теории энергетического катализа, значительную роль в реакциях, протекающих в разрядах, играют так называемые удары второго рода, в результате которых энергия электронного возбуждения одного из партнеров в соударении превращается в иной вид энергии другого партнера. Примером удара второго рода в разряде может служить процесс, наблюдающийся при разряде в смеси аргона и кислорода [c.254]

    Изложенные выше рассуждения и оценки позволяют однозначно понять, почему углеводороды окисляются по цепному радикальному механизму. Геометрия и прочность С—С- и С—Н-связей в углеводородах с одной стороны и триплетное состояние кислорода с другой препятствуют молекулярной реакции КН с О2. Высокий потенциал ионизации углеводородов, низкое сродство кислорода к электрону, ковалентный характер С—Н-связей и неполярный характер углеводородов как среды препятствуют ионному протеканию реакции окисления. Единственно возможной оказывается гомолитическая реакция КН с кислородом с образованием радикалов К. Несмотря на то что эта реакция эндотермична и протекает очень медленно (см. раздел Кинетика автоокисления углеводородов ), образующиеся радикалы К вызывают цепную реакцию окисления, которая протекает как последовательность многократно повторяющихся актов. Первичным молекулярным продуктом такой цепной реакции является гидропероксид, сравнительно легко распадающийся на свободные радикалы. Таким образом, причиной цепного автоинициированного механизма окисления углеводородов является ковалентный характер их С—Н-связей, высокая активность радикалов К по отношению к кислороду и КОг по отношению к КН, цикличность последовательных радикальных реакций [c.28]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]


Смотреть страницы где упоминается термин Кислород ионизации: [c.388]    [c.500]    [c.28]    [c.59]    [c.344]    [c.47]    [c.232]    [c.233]    [c.233]    [c.233]    [c.234]    [c.234]    [c.234]    [c.236]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.84 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.84 ]




ПОИСК







© 2025 chem21.info Реклама на сайте