Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции стерические факторы

    Физический смысл (2.70) ясен — скорость реакции в общем случае определяется не только теплотой активации, но и изменением свободной энергии при переходе в активированное состояние, причем эти факторы противоположны по своему действию. Если переход в активированное состояние ведет к сильному увеличению энтропии, то реакция будет идти с большой скоростью несмотря на высокие значения энергии активации. И напротив, если возрастание энтропии невелико, то даже при низких значениях ДН (или ди) реакция будет протекать медленно. Поскольку величина ДН (или Ди) связана с энергией активации, то величину ДЗ формально можно связать со стерическим фактором из (2.20). По этой причине стерический фактор иногда называют энтропийным множителем. [c.78]


    С физической точки зрения появление стерического фактора в формуле для расчета константы скорости означает, " 1Т0 для реакции частицы должны находиться не только в определенном энергетическом состоянии, но и в определенном благоприятном пространственном расположении. Стерический фактор отражает то обстоятельство, что на пути химической реакции существуют не только энергетические, но и геометрические препятствия, зависящие от геометрического строения частиц, их пространственной конфигурации при реакции, получившие название пространственных, или стерических, затруднений. [c.164]

    Это второй важный вывод теории абсолютных скоростей реакций стерический фактор отражает влияние изменения энтропии в процессе активации. [c.21]

    С другой стороны, был произведен расчет констант равновесия радикальных реакций кинетическим методом, по отношению вычисленных констант скоростей прямой и обратной реакций. В свою очередь константы скорости прямой и обратной радикальных реакций были вычислены по значениям стерических факторов и энергий активации радикальных реакций. Энергии активации радикальных реакций были оценены на основании полуэмпирического уравнения Пола-ни-Семенова, которое позволяет вычислить энергию активации по величинам тепловых эффектов радикальных реакций. [c.11]

    При этом сильные акцепторы электрона ЫОз-группы чрезвычайно облегчают стадию передачи заряда на, которая лимитирует скорость реакции. Стерические факторы реакции отходят в этом случае на второй план и уступают место электронным факторам. [c.426]

    Вычисление абсолютных скоростей реакции , стерических факторов и т. и. по теории переходного состояния базируется на экспериментальных спектроскопических данных. На этом основании можно построить более или менее близкую к объективной реальности модель химической структуры исходных и промежуточных реагирующих веществ. Спектроскопия является весьма чувствительным методом, позволяющим изучать кинетику и механизм химической реакции, не нарушая и не прерывая ее. Особенно большое значение спектроскопический метод имеет при изучении сложных газовых реакций, сопровождающихся очень быстрым возникновением промежуточных реагирующих веществ. [c.91]

    Соединение трех молекул сопровождается уменьшением энтропии системы. Поэтому для таких реакций стерический фактор Я < 1, они с заметной скоростью протекают при невысокой эндотермичности, например  [c.158]


    Сопоставление формул (30) и (П, 12) показывает, что в случае простейших бимолекулярных реакций теория переходного состояния приводит к тем же результатам, что и теория бинарных столкновений. Для подобных реакций стерический фактор Р равен единице, а константа скорости реакции равна [c.63]

    Иногда в течение той или иной реакции наряду с активацией оказывают влияние и другие факторы, со своей стороны ускоряя или замедляя ее. Например, особая форма молекул и необходимость определенного их расположения в пространстве для реакции (стерический фактор) в известных случаях может оказывать значительное препятствие течению реакции. К числу подобных случаев, в частности, относится уменьшение скорости этерификации при переходе от первичных спиртов к третичным .  [c.187]

    Однако и в этой области давлений нельзя исключить влияния на величину константы скорости реакции других факторов, причем это влияние также зависит от давления. Сюда относится влияние среды реакции, особенно сильно сказывающееся, в частности, па протекании ионных реакций и реакций полимеризации при высоких давлениях. К числу факторов, до настоящего времени не исследованных, но весьма существенных для кинетики реакций при высоких давлениях, относится и изменение характера стерических препятствий при увеличении давления. Таким образом, следует полагать, что изменение объема при образовании переходного состояния не может исчерпывающим образом характеризовать влияние давления на величину константы скорости химических реакций. [c.87]

    Для реакций радикала СНз были получены лишь отношения скоростей этих реакций к скорости рекомбинации СН3. Абсолютные значения констант вычислены из данных Гомера и Кистяковского (см. табл. XI 1.8) для скорости рекомбинации метильных радикалов . Как можно видеть, большинство стерических множителей для реакции обмена метильных радикалов равно по порядку величины 10" . Это значение немногим отличается от величины стерического фактора для реакции между двумя многоатомными молекулами [c.263]

    Оценим значение предэкспонента А. Пусть относительная скорость V см/с, значение ст (10-1 4-10-1 ) м тогда г (10-1 - -10-11) смЗ/с. В предположении Р 1, величина А также должна быть порядка (10- 11-1-10-1 ) см с. Однако для многих реакций значения А на 3—5 порядков ниже приведенной оценки. Эти отклонения обусловлены именно стерическим фактором Р, величина которого произвольно принята 1,4X0 с физической точки зрения означает пренебрежение распределением энергии по внутренним степеням свободы взаимодействующих частиц. Поэтому дальнейшее продвижение теории связано с попытками учета распределения энергии по внутренним степеням свободы [21, 30-38]. [c.56]

    Доля распадающихся этильных радикалов э = W l wp- -w ), где Wp ъ г з — скорости распада и замещения. Для реакции распада составляет — 10 Е — 170 кДж/моль для реакции замещения q = 1-10 , Е — 46 к Дж/моль. Разные авторы, как уже отмечалось, дают сильно различающиеся оценки стерического фактора Р для реакции замещения. Так, Семенов [61 считает, что он близок к 1, а Степухович [81 оценивает его в 1 X X 10" —1-10 . Поэтому J [c.234]

    Аналогия с механизмом 5, 2 налагает определенные требования на пространственное расположение реакционных центров при 1,2-перегруппировках насыщенных углеводородов, причем кинетика и механизм перегруппировок цикланов оказываются тесно связанными конформационными особенностями молекул. Существует два типа влияний, оказываемых конформацией на направление и скорость реакций. Первое из них обусловлено доступностью реакционного центра (стерические факторы) и не нуждается в особых пояснениях. Более сложным является второе, связанное со специфическим пространственным расположением образующихся и разрушающихся связей (стерео-электронные требования) [34]. [c.163]

    Различие в кинетическом поведении газообразных алканов при крекинге, на которое указывает опыт, сводится к количественному различию констант скорости валового распада этих алканов. В свою очередь это различие обусловлено количественным различием энергий активации и стерических факторов реакций зарождения и развития цепей и в меньшей степени реакций обрыва цепе , так как во всех случаях [c.155]

    Кроме методов оценки стерических факторов и энергий активации радикальных реакций, т. е. методов вычисления констант скорости этих реакций, принципиальное значение для суждения о правильности того или иного механизма приобретает вопрос о равновесии в реакциях с участием радикалов, поскольку кинетика радикальных реакций неотделима от термодинамических факторов, на фоне которых течет сложный радикальный процесс. [c.159]

    Выражение стерического фактора через энтропию процесса активации является общим и лишь показывает, что этот множитель всегда связан с организующими или дезорганизующими химический процесс факторами (в смысле упорядочения и разупорядочения), выражаемыми изменением энтропии. Несмотря на общность такой интерпретации стерического фактора, в ней отсутствует явный учет влияния квантовых эффектов на скорость реакций или квантовая эффективность столкновений, хотя энтропия активации должна вычисляться на основе квантовой статистики. До появления метода переходного состояния, являющегося естественным результатом развития квантовой химии, не было воз- можности вычислить фактор, содержащий изменение энтропии конфигурации в общем виде , и изложенная теория по-прежнему обладала точностью, определяемой энергетическим [c.167]


    Количественной мерой для реакционной способности радикалов является величина константы скорости радикальней реакции, которая изменяется для данной реакции с изменением условий или с переходом к другим реакциям. Изменения константы скорости определяют изменения реакционной способности. Следовательно, для количественной характеристики реакционной способности радикалов в данной реакции должна быть вычислена константа скорости этой реакции. Вычисление константы скорости реакции с участием радикалов, как и расчет константы скорости молекулярной реакции, сводится в случае реакции второго порядка к определению энергии активации (Е) и стерического фактора (х) данной радикальной реакции. Стерический фактор входит в величину иредэкопон енциального множителя (.4) в формулу для константы скорости  [c.162]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Константы скоростей и стерические факторы реакций омыления сложных эфиров щелочами H3 OOR + 0Н -> H3 OO + rh ROH  [c.206]

    Исследование температурной зависимости разложения -комплекса (I) позволило установить активационные параметры реакции. Как видно из таблицы 3, энергия активации процесса мало изменяется в зависимости от природы спирта. Это свидетельствует о том, что разложение контролируется энтропийным фактором. Последнее позволяет ожидать существенного вклада в скорость реакции стерических эффектов. Действительно, анализ дает превосходную корреляцию между и величинами Е° елкильньос радикалов спиртов ( г = [c.206]

    В области концентраций, где скорости реакций имеют третий порядок. Поэтому частотные факторы и стерические множители в табл. XII.8, вероятно, аанижены.  [c.270]

    Химическая кинетика и катализ. Формальная кинетика. Вывод кинетических уравнений и определение основных кшетических характеристик химических реакций. Теории химической кинетики. Лимитирующая ст адия п]10цесса. Зависимость скорости реакции от смнсрату-ры. Энергия активации и стерический фактор. Кш етика цепных реакций. [c.9]

    Из всех трех тримолекулярных реакций, представленных в табл. XII.9, только реакция N0 с Ог была изучена при и1ироком варьировании условий. Все три реакции, однако, имеют примерно одинаковые по величине иредэксио-ненциальные множители, отвечающие стерическому фактору около 10 . Гершинович и Эйринг Ц20] показали, что теория переходного состояния может привести к такой величине частотного фактора при разумном выборе молекулярных параметров для переходного KOMUjreK a. С другой стороны, любой из двух механизмов, включающих промежуточные комплексы (N0) или NO-Оз, приводит к удовлетворительному объяснению величины скорости реакции NO+Oa, в то время как для реакций N0 с I2 и Вга можно лишь предполагать образование комплексов N0 l2 и NO-Bra- В этих случаях для наблюдаемой константы скорости [см. уравнение (XII.15.5)] справедливо соотношение /Снабл == Ккг, где К есть константа равновесия образования промежуточного бимолекулярного комплекса, а к — бимолекулярная константа скорости последующей реакции этого комплекса. [c.274]

    Шварц и др. [118] при экстраполяции к бесконечному замедлителю получили значение kJk2= 0,04 ехр (4500/Л7 ). Эта величина, вероятно, отвечает константе скорости реакции тепловых частпц. Однако нет теоретических предпосылок для обоснования такого низкого отношения стерических факторов (0,04), полученного авторами. Наоборот, теория переходного состояния показывает, что отношение стерических факторов примерно равно единице. Если бы данные авторов были верны, то они говорили бы о том, что факторы частот для обратных реакций, т. е. I Из Н1 - - Н, I Н1 А- 1з- - Н, относились бы друг к другу как 1 200. Это было бы много меньше любого отношения, предсказанного теорией. [c.345]

    Однако такой расчет скорости реакции часто дает завышенные результаты, особенно для реакций в растворах. Для согласования расчетных датшых с опытными в уравнение вводят доиолиительньи множгттель Я, называемым стерическим или вероятностным фактором  [c.340]

    Определите энергию активации реакции, для которой по опытным данным при 7,К и парциальном давлении 1,01 10 Па известна константа скорости реакции к. Стерический фактор принять равнам 1. Полученную энергию активации и диаметр молекул сравните со значениями, приведенными в справочниках. (Считайте диаметр атом()в равным диаметру молекулы, диаметр молекул считайте исходя из кзитических или кинетических данных.) [c.384]

    Основным направлением в реакциях изомеризации насыщенных циклических углеводородов является консекутивная многостадийная схема, приводящая к получению термодинамически наиболее устойчивых углеводородов. При этом промежуточные продукты накапливаются в продуктах реакции в количествах, определяемых соотношением скоростей их возникновения и дальнейшего превращения в соответствии с хорошо известными закономерностями для консекутивных реакций. Все это дает возможность выделить и исследовать промежуточные углеводороды и таким образом доказать предполагаемую схему реакции. Однако иногда схема изомеризации усложняется тем, что реакция протекает без образования промежуточных углеводородов или последние образуются только частично. Такое направление реакции связано с тем, что промежуточно возникающие ионы карбония имеют тенденцию к дальнейшим перегруппировкам без стабилизации в виде углеводородов. Такое затруднение в стабилизации обычно бывает вызвано стерическими факторами, препятствующими присоединению гидрид-иона, как, например, в мостиковом атоме углерода среди норборнанов. В этих случаях реакции протекают или сразу до образования конечных термодинамически устойчивых углеводородов (согласованный механизм) или в процессе реакции происходит стабилизация ионов в углеводороды на какой-то одной из промежуточных стадий. [c.247]

    Для концентрации Н-атомов, согласно измерениям по методу орто-водородной конверсии [41], имеем величину 10- атм. Приняв для энергий активации первой и второй реакций величины 69800 и 10000 кал., для стерических факторов этих реакций значения—1 и 2-10- и для предэкспо-неитов в мономолекулярных и бимолекулярных реакциях 10 10 ° соответственно для отношения скоростей получим [c.128]

    Примем, что константы скорости и к равны между собой. Это приблизительно будет верно для радикалов Н и <2 в том случае, когда различия в стеричес <их факторах (которые могут быть существенными) компенсируются соответственным различием в энергиях активации (низким значениям стерических факторов в реакции радикала соответствуют и низкие значения энергий активации). Скорость крекинга алкана (62) представится более простым выражением  [c.133]

    Можно расширить понятие стерического фактора, дополнив его представлением о пространственных содействиях, которые проявляются при реакциях, когда функциональные труппы реагирующих частиц расположены геометрически близко и удачно ориентированы относительно реакции. Стерический множитель таких реакций будет больше единицы, а число эффективных столкновений, вычисляемое по значениям энергии активации и кинетическим параметрам, да- V ваемым кинетической теорией молекул, будет меньше опытной зеличины константы скорости. Это представление может иметь значение для реакций, происходящих в некоторой сложной молекуле (распад, изомеризация, замыкание в кольцо, образование мостика при превращении Оксимасляной кислоты в лактон и т. д.). [c.164]

    Но только в химической кинетике, как подчеркивалось, понятие о стерическом факторе получило свое количественное выражение в величине 5. Здесь под стерическим фактором, входящим в формулу (100), следует разуметь некоторую величину, собирательно оценивающую влияние пространственных особенностей строения реагируюих частиц при химических реакциях, которые в качестве постоянно действующих обстоятельств могут отразиться на величине скорости реакции, препятствуя или содействуя последней. [c.166]

    К представлению о стерическом факторе можно придт формально и при помошл уравнения Вант-Гоффа. Это уравнение имеет тот смысл, что константа скорости отдельных, реакций, составляюших данную обратимую реакцию, изменяется с температурой согласно тому же закону, что и константа равновесия, но только вместо теплового эффекта реакции в него входит теплота активации прямой или обратной реакции. Запишем уравнение Вант-Гоффа в следующем-виде  [c.168]


Смотреть страницы где упоминается термин Скорость реакции стерические факторы: [c.148]    [c.142]    [c.117]    [c.117]    [c.267]    [c.315]    [c.149]    [c.341]    [c.109]    [c.355]    [c.187]    [c.193]    [c.62]    [c.32]    [c.164]   
История органической химии (1976) -- [ c.156 ]

История органической химии (1976) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Стерический фактор



© 2025 chem21.info Реклама на сайте