Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метанол Метиловый спирт как растворитель

    МЕТИЛОВЫЙ СПИРТ (метанол, карбинол, древесный спирт) — простейший представитель предельных одноатомных спиртов, бесцветная подвижная жидкость с характерным запахом, т. кип. 64,5 С смешивается с водой во всех отношениях, а также со спиртами, бензолом, ацетоном и другими органически-ии растворителями. Впервые М. с. выделен в 1834 г. Ж. Дюма и Э. Пелиго из продуктов сухой перегонки древесины. Основной современный способ производства М. с.— синтез его из водорода и оксида углерода. Сырьем служат природный, коксовый и другие газы, содержащие углеводороды (напр1шер, синтез-газ), а также кокс, бурый уголь, из которых получают смесь На и СО2 в соотношении 1 2. М. с. синтезируют при 300—375° С и 39 10 Па на катализаторе 2пО СГ2О3. Небольшие количества М. с. выделяют из подсмольной воды при сухой перегонке древесины. М. с. перерабатывают в формальдегид, добавляют к моторным топливам для повышения октанового числа, используют для приготовления растворителей, метакрилатов, диметилтерефталата (производство синтетического волокна лавсан) применяют в качестве антифриза, а также в производстве галогеналкилов. М. с. сильно ядовит, 5—10 мл М. с. приводят к тяжелому отравлению, 30 мл и более — смертельная доза. Поражает сетчатку глаз. [c.161]


    Метиловый спирт (метанол) в течение длительного времени получали из водного дистиллата, выделяющегося при сухой перегонке древесины (отсюда и название — древесный спирт). Выход спирта при этом зависит от породы древесины и колеблется в пределах от 3 до 6 кг на каждый кубометр сухой древесины. В 1933 г. в СССР была пущена первая установка по получению метилового спирта из синтез-газа, и в настоящее время более 90% его получают таким образом. Метиловый спирт является важным видом сырья для получения формальдегида, диметил-сульфата, антидетонационных смесей, ингибиторов, антифризов, метиламина, метилового эфира акриловой кислоты, лаков, красителей и других продуктов. В чистом виде применяется как добавка к моторному топливу и в качестве растворителя. [c.487]

    Метанол (метиловый спирт) СН ОН — бесцветная жидкость, по запаху напоминающая этанол, легче воды (плотность 0,79), легко воспламеняется. Растворим в воде и полярных органических растворителях. Очень ядовит. В организме окисляется в муравьиный альдегид и муравьиную кислоту. [c.176]

    Метиловый спирт (метанол, древесный спирт) СНзОН — бесцветная жидкость с характерным запахом, смешивается с водой в любых соотношениях, хороши растворитель многих органических веществ, горит бледным пламенем. М. с. очень ядовит, вызывая в малых дозах слепоту, в больших — смерть. В промышленности метиловый спирт получают двумя способами присухой перегонке дерева (поэтому его называют древесным спиртом) и синтетически из СО и Нг в присутствии катализатора (напр., оксид цинка ZnO), при 300—600 °С и давлении 5-10 Па (СО + Ц- 2Нг = СНзОН). М. с. применяют как сырье для получения муравьиного альдегида (формальдегида) и для синтеза других органических веществ, в производстве красителей и лаков. [c.82]

    Теплота растворения двуокиси углерода в метиловом спирте составляет 16,55 кДж/моль (4050 кал/моль). Данные о теплотах растворения в других растворителях, а также о влиянии содержания воды в метаноле на растворимость двуокиси углерода приведены в работе [257]. Из этих данных следует, что растворимость двуокиси углерода в растворителях при низких температурах велика. Так, растворимость СОд в этилацетате, метилэтилкетоне и метиловом спирте при —60,3 °С и 1,013-10 Па соответственно равна 102,6 96,40 и 74,9 см /г. С увеличением парциального давления СО2 до 5,07-10 —10,13-10 Па (5—10 кгс/см2) растворимость СО2 в метаноле растет примерно пропорционально давлению, а затем гораздо быстрее [314]. Данные о растворимости СО2 в метаноле нод давлением приведены на рис. 1У-87. [c.271]


    Синтез метилового спирта (метанола). Метиловый спирт СН3ОН представляет собой бесцветную прозрачную ядовитую жидкость со слабым запахом, смешивающуюся с водой в любых соотношениях. Температура кипения метилового спирта 64,7° С, плавления — 95° С, плотность 0,796 г/сл . Раньше метиловый спирт получали только путем сухой перегонки древесины (древесный спирт). С развитием химической технологии (главным обраюм органической) потребление метилового спирта сильно возросло. Его применяют в качестве растворителя, добавки к моторному топливу и как сырье для получения химических продуктов — формальдегида и метилового эфира, акриловой кислоты, необходимых для производства пластических масс, антидето-национных смесей, лаков, красителей. [c.202]

    Простота получения, чистота и низкая себестоимость способствовали тому, что размеры производства синтетического метанола давно превзошли производство лесохимического метилового спирта. Основное количество метанола перерабатывают в формальдегид. Кроме того, его применяют как антифриз для автомобильных радиаторов, в качестве добавок к бензинам, как растворитель и т. д. О получении метанола окислением метана см. стр. 194. [c.715]

    Влияние среды на реакционную способность было исследовано на о-нитрофеноле в гексане, бензоле, ацетоне, метиловом спирте, а также на лг-нитрофеноле в бензоле, ацетоне и метаноле. На рис. 48 показана зависимость lg к от 1/7" для о-нитрофенола в различных растворителях. Все точки укладываются на одну прямоте, т. е. константа скорости к не зависит от свойств среды. В случае ж-нитро-фенола соответствующие зависимости для различных растворителей приведены на рис. 49, причем здесь обнаруживается сильное влияние среды не только на константы скорости, но и на энергии активации. Кинетические параметры (к и е) для ти-нитрофенола даны в табл. 43. [c.157]

    В системе вода — метанол (рис. 50) минимум экзотермичности растворения четко виден изотермы, отвечающие содержанию спирта 5 и 17 мол. %, расположены ниже изотермы для водного раствора и только кривая, соответствующая 63 мол. % спирта, лежит в более экзотермичной зоне. В водно-диоксановых растворах Nal (рис. 54, а) все изотермы смещены в сторону повышения экзотермичности растворения, и уже кривая, отвечающая 8 мол. % диоксана, приближается к виду, характерному для зоны перехода от водного к неводному типу изотерм. Фактически кривые 14,8 10,5 и 30,4 мол. % диоксана начиная от концентрации Nal 0,2, идут горизонтально,т. е. практически перестает зависеть от концентрации. Ограниченная растворимость соли не позволяет установить, существует ли при избытке электролита тенденция к сближению изотерм, наблюдаемая для растворов в водно-метанольных смесях. По своему виду изотермы 14,8—30,4% весьма похожи на аналогичные кривые, установленные, например, для растворов пикриновой кислоты в метиловом спирте [28], где горизонтальный ход может быть объяснен малой диссоциацией электролита и возникновением молекулярных, термодинамически эквивалентных, структур замещения (см. раздел Х.З). Такой вывод подтверждается результатами работы [29] по определению констант диссоциации сильных (в воде) электролитов в диоксан-водных растворителях с содержанием диоксана от 20 мол. % и выше. [c.255]

    Из рис. 1 видно, что при 268 и 273 К и Хг = 0,10 наблюдается максимум растворимости аргона, а прп Т > 278 К растворимость газа с увеличением добавок метилового спирта постоянно растет. Появление максимума растворимости можно объяснить конкурирующим влиянием эффекта гидрофобной и гидрофильной гидратации молекул метилового спирта [13—15] до Х2 =0,10 преобладает первый эффект, при Х2 > 0,10 — второй. С повышением температуры вследствие увеличения трансляционного движения молекул гидрофобная гидратация ослабевает, что приводит к уменьшению высоты максимума С , при переходе от 268 к 273 Кик исчезновению его при более высоких температурах. При Х2 = 0,18 на зависимостях С , = = /№) при 268 и 273 К имеет место минимум С ,, появление которого, по-видимому, обусловлено максимальной стабилизацией структуры воды добавками неэлектролита [15]. При более высоких температурах минимум растворимости аргона отсутствует, что можно связать с преобладанием разрушающего действия температуры на структуру воды над стабилизирующим действием добавок метилового спирта. При Х2 >0,18 при всех температурах растворимость газа с добавками метилового спирта растет вследствие большей растворяющей способности метанола. Следует также отметить, что максимальное (по абсолютной величине) значение избыточной растворимости аргона соответствует составу растворителя 1 1 [16]. [c.36]

    Для системы метиловый снирт-этиловый спирт на кривых s, =/№) при Х2 = 0,2 наблюдается минимум растворимости аргона. Данный факт можно объяснить усилением сольвофобного взаимодействия в растворителе с увеличением добавок этилового спирта, приводящего к уменьшению подвижности молекул метанола и к общему росту межмолекулярного взаимодействия в смеси по сравнению с чистым метиловым спиртом. При Х2 > 0,2 характер зависимости С , =/№) определяется большей растворяющей способностью этилового спирта по сравнению с метиловым, в связи с чем растворимость аргона растет. Подобные явления наблюдались и в системе метанол—ацетонитрил [23]. [c.44]


    Следовательно, при сочетании метилового спирта и фенолов как бы нейтрализуются слабые стороны отдельно взятых растворителей — метапол понижает растворяющую способность фенолов, а фенолы увеличивают селективность метанола. [c.164]

    Наиболее важным фактором пз всех остальных является концентрация метанола. Для установления оптимальной концентрации метанола, при которой растворитель работает с наибольшей эффективностью, были проведены опыты с концентрациями метилового спирта 70, 90, 95 и 99,5%. Соотношение растворителя к фракции в этих опытах было 1 1. [c.168]

    Такая обработка обеспечивает извлечение 91 % всех нейтральных кислородных соединений, содержащихся в исходной фракции. Полученный при этом экстракт Эз содержит 27 — 28% фенолов, что соответствует содержанию фенолов в исходной фракции, 64—65% нейтральных кислородных соединений и 7—8% углеводородов. Экстракт представляет собой раствор всех этих соединений в метиловом спирте. Если понизить растворяющую способность растворителя (метанола), понизив его концентрацию введением в экстракт воды, образуются два слоя, один из которых будет в главной своей массе состоять из углеводо- [c.51]

    Метиловый спирт — один из важных продуктов химической промышленности, широко применяемый в качестве растворителя п полупродукта при получении многих органических соединений. Основные пути промышленного использования метанола приведены на схеме 6. Особенно большие количества метанола расходуются для получения формальдегида и в реакциях метилирования. Метанол один из исходных продуктов в синтезе метионина — важной аминокислоты (стр. 180), применяемой для стимулирования роста птицы. [c.99]

    Стеклянные двух- и трехступенчатые колонки высотой в 150 и 250 см заполнялись измельченным силикагелем марки ШСМ, крупностью 0,056—0,315 мм, которым адсорбировалась неподвижная фаза — метиловый спирт. Применяемый силикагель не требовал особой подготовки и был готов к работе после промывки его метанолом, вытеснявшим воду и окрашенные, адсорбированные силикагелем, загрязнения. В качестве вымывающего растворителя применяли бензол или петролейный эфир. Порядок работы был следующим. [c.261]

    Растворитель для карбамида подбирают с таким расчетом, чтобы ои не образовывал твердых гелей, делающих невозможной прокачку комплекса по трубопроводам и отделение рафината декантацией. В качестве растворителей могут быть применены этиловый или метиловый спирт. По зарубежным данным [44] растворитель, отвечающий требованиям прп депарафинизации газойля, состоит из 56 частей метанола, 25 частей моноэтиленгликоля и 19 частей воды. [c.38]

    Метиловый спирт (метанол)—важное соединение для получения главным образом формальдегида, а также диметилсульфата, диметилтерефталата, метилацетата, диметилформамида, антидето-пационных смесей (тетраметилсвинец), ингибиторов, антифризов, метиламина, метилового эфира акриловой кислоты, лаков, красителей и других продуктов. В чистом виде применяется в качестве растворителя и может быть использован как моторное топливо или как высокооктановая добавка к нему. Применение метанола в двигателях внутреннего сгорания решает как энергетическую, так и экологическую проблемы, так как при сгорании метанола образуются только водяной пар и СОг, тогда как при сгорании бензина— оксиды азота, СО и другие токсические соединения. [c.164]

    Синтез метилового спирта (метанола). Метиловый спирт СН3ОН представляет собой бесцветную прозрачную ядовитую жидкость со слабым запахом, смешивающуюся с водой в любых соотношениях. Температура кипения метилового спирта 64,7°С, плавления — 95°С, плотность 0,796 г/см . Раньше метиловый спирт получали только путем сухой перегонки древесины (древесный спирт). С развитием химической технологии (главным образом органической) потребление метилового спирта сильно возросло. Его применяют в качестве растворителя, добавки к моторному топливу и как сырье для [c.209]

    Метанол (метиловый спирт). Получается сухой перегонкой древесины или синтетическим путем. Чистый метанол представляет собой подвижную бесцветную воспламеняющуюся жидкость с характерным запахом используется в органическом синтезе, в качестве растворителя, в производстве красителей, взрывчатых веществ, фармацевтических продуктов и др. Метанол (сырой метиловый спирт) (шоод парЬ1а), получаемый сухой перегонкой дерева, (неочищенный метиловый спирт) из данной товарной позиции исключается (товарная познпия 3807). [c.161]

    Эти данные свидетельствуют о том, что метанол в процессе комплексообразования является не только хорошим активатором процесса, но и эффе стивным растворителем ароматических углеводородов, предотвращая адсорбцию их на кристаллах карбамида. Ацетон и МЭК неодинаково растворяют различные ароматические углеводороды. Ксли-ацетон растворяет антрацен на 58 . а 0 -метилнафталин на 29%, то НВК растворяет лучше о( -метилнафталин. чем антрацен. Этанол растворяет в равной степени исследуемые углеводороды, но он слабее метилового спирта. [c.52]

    Простейшие спирты - метанол СН3ОН и этанол С2Н5ОН - широко применяются в промышленности и в органическом синтезе. Метанол, или метиловый спирт, - бесцветная, подвижная, легко кипящая (64 °С) жидкость. Долгое время метанол получали из продуктов сухой перегонки древесины, поэтому его еще называют древесным спиртом. Метанол - сильный яд, но несмотря на это, он широко используется для производства формальдегида, многих красителей, душистых веществ, лекарственных препаратов. В лакокрасочной промышленности он применяется как хороший растворитель. [c.414]

    Своеобразно иодометрическое определение воды в органических растворителях и других материалах с помощью реактива Фишера, состоящего из иода, диоксида серы и пиридина в метаноле. Анализируемую пробу помещают в метиловый спирт и определяют воду титрованием указанным реактивом. Реакция титрования пр0 (0дит в две стадии. Упрощенно она может быть представлена схемой [c.281]

    Метиловый спирт (метанол, или карбинол) СН3ОН. Представляет собой бесцветную жидкость со слабым характерным запахом (табл. И), с водой смешивается в любых отношениях. Ядовит, при приеме внутрь вызывает слепоту, а в больших дозах — смерть. Применяется в качестве растворителя, как горючее, для денатурации этилового спирта (стр. 115) в химической промышленности из метилового спирта получают формальдегид (стр. 150), кроме того, его используют во многих других синтезах. [c.114]

    В промышленность внедряются различн].те методы химической переработки метана и его производных (рис. 101). Наиболее перспективны процессы окисления метана с образованием формальдегида и метилового спирта — метанола. Первый продукт используется для получения фенолформальдейидных пластиков. Метиловый спирт является хорошим растворителем, антифризом, а также сырьем для дальнейшей химической переработки. Важным продуктом для производства таких кремнийорганических соединений, как силикон и бутилкаучук, является хлористый метил. Хлороформ используется как растворитель и анестезирующее средство. Из четыреххлористого углерода получаются высокоэффективные хладагенты. Нитрометан применяется для приготовления различных лаков. [c.210]

    Первоначально для реакции Кольбе использовались водные растворы исходных веществ в последнее время стали широко применять метанольные растворы. Явное преимущество метанола заключается в том, что он является превосходным растворителем для большинства органических кислот. Более того, экспериментальные условия, обеспечивающие оптимальные выходы (большая концентрация кислот, высокая плотность тока на аноде, низкая температура, небольшая величина pH электролита), легче создать в метанольной, чем в водной среде [59, 63, 119, 149]. Недостатком при использовании метанола в качестве растворителя являются значительное возрастание сопротивления электролизера и, следовательно, выделение большего количества тепла в процессе электролиза. Другой недостаток состоит в превращении незначительных количеств исходных кислот КСООН в их метиловые эфиры [17, 26, 96]. С другой стороны, побочные реакции, приводящие к образованию спиртов КОН [41, 45, 47, 51, 53, 58, 70, 86], сложных эфиров КСООК [83, 113], а также смесей предельных углеводородов КН и соответствующих этиленовых соединений [63, 85, 91, 126], в метаноле протекают в значительно меньшей степени, чем в водной среде [59, 63, 119]. [c.10]

    Этилендиамин-С , дву солянокислая соль. Полученный этиловый эфир этилен-С2 -ликарбаминовой кислоты (0,104 г) нагревают с обратным холодильником в течение 2 час. в присутствии 5 мл 48%-ной бромистоводородной кислоты (примечание 15). Смесь испаряют в вакууме и затем обрабатывают избытком метанольного раствора едкого кали. Испаряют растворитель, перегоняют в вакууме этилендиамин-Сг и при добавлении раствора хлористого водорода в метиловом спирте получают двусслянокислую соль. Выход 0,052 г (76%). Продукт перекристаллизовывают из водного метанола. [c.569]

    Растворители участвуют в электрохимической реакции только в тех случаях, когда их молекулы способны к диссоциации или образуют водородные связи (пиридин, метанол). К растворителям промежуточной группы, влияющим на реакцию нейтрализации в некоторой степени, относятся ацетон, ацетонитрил, нитрометан и др. Для определения кислот пригодны растворители инертные (бензол, толуол, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), основные и про-тофильные (этилендиамин, н-бутиламин, пиридин, диметилацетамид, диметилформамид, 1,4-диоксан, трет.-бутанол, изопропиловый, этиловый, метиловый спирты, пропиленгликоль). Для определения оснований применяют растворители инертные (н-гексан, циклогексан, диок-сан, четыреххлористый углерод, бензол, толуол, хлороформ, хлорбензол, метилэтилкетон, ацетон, ацетонитрил), кислотные и протогенные (муравьиную, уксусную и пропионовую кислоты, уксусный ангидрид, нитробензол, этиленгликоль, изопропиловый спирт). Растворители, участвующие в неводном титровании, не должны содержать примесей кислот и оснований и воды. [c.302]

    Принцип извлечения каротиноидов из растительных или животных источников основан на экстракции сухого измельченного сырья органическим растворителем с последующей отгонкой избытка растворителя из экстракта остаток подвергают обработке едкой щелочью с целью омыления липоидных веществ и каротиноиды извлекают петролейным эфиром или гек-саном. Экстракт смешивают с метиловым спиртом и после расслаивания получают два слоя углеводородный, содержащий каротиноидные углеводороды, в том числе а-, - и -каротины, и метанольный, в котором заключаются кислородсодержащие каротиноиды. Дальнейшее разделение каротиноидов производят хроматографически по методу Цвета [Щ] на окиси алюминия [368] или других адсорбентах с последующим избирательным вымыванием смесью бензола и метанола или другими растворителями (см. с. 191). [c.200]

    Применяемый реактив готовят в виде двух сохраняемых порознь растворов — сернистого ангидрида в пиридине (раствор А) и иода в метаноле (раствор В). При этом методе не надо предварительно обезвоживать растворители, но лучше все же применять реагенты, содержащие не более нескольких десятых долей процента воды. Раствор А готовят пропусканием сернисто1 о ангидрида в пиридин. В колбу Вюрца загружают 240 г мелко нарезанных медных стружек, наливают туда же 100 мл концентрированной Н280 4 и нагревают на газовой горелке до начала бурного выделения газа. По прекращении выделения газа в колбу Вюрца с помощью капельной воронки вводят еще 100 мл концентрированной НзЗО , затем колбу слегка подогревают. Выделяющийся сернистый ангидрид пропускают через склянку Дрекселя с концентрированной серной кислотой в предварительно взвешенную колбу, содержащую 150 мл пиридина. Пропускание газа прекращают по достижении 40—60 г привеса, после чего в полученный раствор добавляют еще 100 мл пиридина. Склянки с приготовленным таким образом раствором плотно закрывают резиновой пробкой. Раствор В готовят растворением 76 г иода в 610 мл метилового спирта. [c.56]

    Метиловый спирт, метанол, древесный спирт. Бесцветная жидкость, т. кип, 64,5°, хорошо растворяется в воде. Широко применяется в лабораторной работе как растворитель, а также в ряде органических синтезов (получение формальдегида, реакция метилирования и др.). Обладает высокой токсичностью и вызывает тяжелые отравления. При постоянной работе с метиловым спиртом опасно постепенное (комулятивное) нарастание его действия. Помимо наркотического действия метиловый спирт вызывает органическое поражение зрительного нерва и сетчатки глаз, в связи с чем при отравлении метиловым спиртом может наступить полная или частичная потеря зрения. Смертельная доза при приеме внутрь метилового спирта 30 г тяжелые отравления могут наступить при приеме 5—10 г [2]. [c.109]

    Полученная смесь метиловых эфиров и метилового спирта, по всей вероятности, не найдет промышленного применения и поэтому ее необходимо переработать на технические продукты, имеющие промышленное значение. Из смеси метиловых эфиров методами ректификации можно получить чистый метилформиат метилацетатную фракцию, представляющую собой азеотропную смесь метанола и метилацетата, и смесь метанола и метиловых эфиров С3—С4. Из этих продуктов техническое значение может иметь только лишь метилформиат, который может быть использован при получении витамина В1 и для получения диметилформамида, растворителя, широко применяемого при формовании полиакрилонитрильных волокон. Некоторые зарубежные ( )ирмы получают метилформиат из окиси углерода и метилового спир- [c.132]

    Метанол является растворителем ароматических углеводородов, сернистых и кислортдных соединений, входящих в состав нефти и ее фракций менее растворимы в метиловом спирте парафиновые и нафтеновые углеводороды. Растворимость углеводородов в метиловом спирте в значительной степени уменьшается с увеличением. их молекулярного веса. [c.77]

    Метиловый спирт СН3ОН (метанол) применяется как растворитель в лакокрасочной промышленности, для производства формальдегида, как горючее. Химически чистый метанол по вкусу и запаху весьма схож с этиловым спиртом, но в отличие от него чрезвычайно ядовит. [c.299]

    Метиловый спирт применяется в качестве растворителя в произшдстве нитроцеллюлозных, ацетилцеллюлозных и других лаков и политур, в промышленности красителей и промежуточных продуктов, фармацевтической и др., для денатурирования этилового спирта, идущего на технические цели смесь метанола с водой применяется в качестве незамерзающей жидкости для наполнения радиаторов автомобилей. [c.86]

    На рисунке 1 представлены кинетические и потенциометрические кривые гидрирования этого изомера при 50° в различных растворителях. Ход кинетических кривых определяется природой растворителя. С наибольшей скоростью реакция протекает в воде далее в ряду располагаются этиловый, метиловый спирты и диметилформамид. В воде реакция идет с заметным тормон<е-нием процесса в метаноле порядок реакции близок к нулевому по гидрируемому соединению. [c.265]

    Рассматрнвая табл. 6, видно, что фенолы в очищаемой фракции пкязьтватот большое влияние на выходы и качество рафината II экстракта иными словами, фенолы резко повышают растворяющую способность первичного растворителя — метанола. Это влияние прямо пропорционально концентрации фенолов во фракции. Для метилового спирта 95%-пой концентрации при соотношении [c.171]

    Поскольку константы kz [(моль/л) -с ] -а (с" ) имеют различные размерности, а ki в действительности характеризует реакцию бимолекулярной атаки растворителя, метилового спирта, 10 ki всегда стремятся превратить в константу второго порядка с помощью выражения/г /[СНзОН] = = k- ° [(моль/л) -с ]. В результате получаем безразмерную константу При определяемую как пр( = kjkx — = 2[СНзОН Mki- Концентрация метанола в чистом метаноле при 30° С равна 24,9 моль/л, следовательно, n°pi — = rtPf + 1,40 (1,40 = log 24,9). В табл. 5-2 приведены значения и. [c.79]

    Проблема особенностей полярографического поведения органических соединений в смешанных водно-органических и неводных средах возникла одновременно с возникновением полярографии органических веществ. Ограниченная растворимость в воде подавляющего большинства органических соединений, не позволяющая достичь даже полярографических концентраций, вызвала необходимость поисков новых сред с высокой растворяющей способностью и обладающих к тому же достаточной электропроводностью. В ряде работ обзорного характера [1—9, 13, 14) освещены основные достижения в решении рассматриваемой проблемы. Уже давно в качестве сред для полярографирования были испытаны смеси воды со спиртами, гликолями, диоксаном, уксусной кислотой, смесь метанола с бензолом, а также неводные среды — этиловый и метиловый спирты, уксусная кислота, глицерин, этиленгликоль и др. Новые возможности для полярографического изучения органических веществ открыло применение высокополярных апротонных растворителей — К, К-диметилформамида, ацетонитрила и диметилсульфоксида, уже прочно вошедших в практику электрохимических исследований. В качестве возможных сред для полярографирования органических веществ за последние годы были изучены также пиридин, тетраметилмочевина, метила-цетамид, 1,2-диметоксиэтап, тетрагидрофуран, сжиженная двуокись серы, нитрометан и др. [c.210]


Смотреть страницы где упоминается термин Метанол Метиловый спирт как растворитель: [c.191]    [c.305]    [c.9]    [c.81]    [c.130]    [c.164]    [c.190]    [c.464]    [c.164]    [c.470]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.44 , c.105 , c.116 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Метиловый спирт

Метиловый спирт метанол

Растворитель спирты,



© 2024 chem21.info Реклама на сайте