Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь обратная механическая

    Биотехнологическая система. БТС характеризуется большим разнообразием технологических процессов и их аппаратурным оформлением, наличием прямых и обратных связей между элементами. Конкретное аппаратурное оформление БТС зависит от особенностей подготовки питательных сред и сырья для культивирования микроорганизмов и получаемого целевого продукта микробиологического синтеза [7, 8]. В биотехнологической системе реализуются различные процессы обработки материалов механические, химические, тепловые, гидродинамические, диффузионные и биохимические. Рассмотрим в качестве примера технологическую схему производства белковой биомассы дрожжей из н-парафинов нефти (рис. 1.8). Схема включает ряд основных стадий производства, в которых происходит последовательная переработка исходного сырья в целевой продукт. [c.14]


    Итак, некоторые особенности эмульгирования битумов связаны прежде всего именно с их структурно-механическими (реологическими) свойствами, а также наличием в их составе олеофильных ПАВ. Вследствие этого, прямые эмульсии М/В будут получаться лишь после того, как будет преодолено стремление олеофильных эмульгаторов к эмульгированию воды с образованием обратных эмульсий воды в масле. Эмульгирующее действие производит лишь относительный избыток гидрофильного или олеофильного эмульгатора. При размешивании постепенно добавляемого битума к водному раствору гидрофильного эмульгатора (например, диамина) возникает прямая эмульсия и концентрация в ней битума может быть доведена до высоких значений вплоть до образования предельно концентрированных эмульсий. При размешивании битума с постепенно вводимым водным раствором того же гидрофильного эмульгатора сначала образуется обратная эмульсия, т.к. действие олеофильных эмульгаторов самого битума на начальной стадии преобладает. По достижении некоторой критической концентрации вводимого гидрофильного эмульгатора Ск, его действие [c.58]

    Для проведения расчетов интенсивностей полос поглощения в ИКС многоатомных молекул необходимо знать численные значения электрооптических параметров. Эти параметры должны быть найдены на основании экспериментальных данных об интенсивностях и поляризациях полос поглощения в ИКС с помощью систем линейных уравнений, которые получаются при подстановке в общие формулы экспериментальных значений первых и вторых производных от дипольного момента молекулы по нормальным координатам, матрицы первых производных от направляющих векторов связей по колебательным координатам и форм колебаний. При этом, в отличие от задачи определения силовых постоянных, число уравнений резко уменьшается с ростом симметрии молекулы. Решение обратной электрооптической задачи имеет много общего с решением обратной механической задачи. Сейчас работа по определению электрооптических параметров находится в начальной стадии. Автором совместно с Е. М. Поповым были определены электрооптические параметры для молекул цианистоводородной кислоты. [c.180]

    Простота конструкции рассмотренного следящего гидропривода обусловлена механическим управлением без входного рычажного механизма == 1) и внутренней единичной обратной связью (ко — 1). При этом функцию сравнения входного и выходного сигналов выполняет дросселирующий распределитель. Струк- [c.163]


    На основании сказанного представляется естественной наблюдающаяся в последние годы тенденция к переходу на автоматизацию системы изменения температуры раствора. Известны два рода соответствующих устройств а) основанные на измерении физикохимических свойств растворов с обратной связью, б) механические без обратной связи. [c.168]

    Тиксотропия—изотермический процесс перехода геля в золь при механическом на него воздействии и обратный переход золя в гель при спокойном состоянии. Явление тиксотропии связано с механическим разрушением внутреннего молекулярного каркаса студней и с восстановлением его при спокойном стоянии. Тиксотропии подвержены не только студнеобразные коллоидные системы, характеризующиеся наличием в них сравнительно непрочных мицеллярных структур. Тиксотропия консистентных смазок иногда наблюдается при запуске двигателей зимой. [c.324]

    Следящее устройство необходимо рассматривать как случай программного автоматического регулирования линейных или угловых перемещений с обратной связью, осуществляемой механическим, гидравлическим или каким-либо другим путем. [c.186]

    В отличие от разбавленных растворов ВМС вязкость концентрированных растворов полимеров определяется в основном возникновением структурной сетки связей и релаксационными явлениями. Образование пространственной сетки в растворе происходит за счет возникновения между молекулами линейного полимера небольшого числа сильных связей или большого числа слабых связей или комбинации тех и других. Характер образующихся связей определяет механические свойства системы и поведение при наложении внешней силы. Вязкость концентрированных растворов ВМС обнаруживает ряд особенностей 1) зависимость величины вязкости от скорости течения, которая связана с появлением упругих и пластических свойств в системе эти свойства- иногда называют структурной вязкостью 2) аномальные изменения вязкости с изменением температуры и в зависимости от времени. В некоторых растворах ВМС эти особенности проявляются уже при относительно небольших концентрациях, например, для каучука — в 1 % растворах и даже ниже. Для изучения вязкости разбавленных растворов ВМС применяют методы, основанные на измерении скорости протекания растворов через капиллярные трубки в зависимости от приложенного давления, а также другие методы. По закону Ньютона, объем жидкости V, протекающий через капиллярную трубку за единицу времени, пропорционален приложенному давлению Р и, обратно пропорционален коэффициенту вязкости Т1 [c.293]

    Следовательно, если принять, что продольное перемешивание в. основном осуществляется турбулентными пульсациями, то его интенсивность практически не должна зависеть от величины основного потока. В связи с этим в аппаратах с интенсивным механическим перемешиванием потоков степень обратного перемешивания или величины рециркуляционных потоков практически не зависят от расхода и могут быть определены при отсутствии протока жидкости через аппарат. Очевидное достоинство такого определения параметров продольного перемешивания состоит в том, что нет необходимости в больших объемах технологических жидкостей, газов или сыпучих. материалов. [c.62]

    Исходный принцип системного подхода к анализу отдельного процесса химической технологии состоит в том, что объект исследования рассматривается как сложная кибернетическая система, так называемая физико-химическая система (ФХС). Основу любой ФХС составляют явления переноса субстанций — массы, энергии, импульса, момента импульса, заряда. Механизм этого переноса, его внутренние причинно-следственные отношения проявляются во взаимосвязи диссипативных потоков и движущих сил ФХС. Как показано в первой книге авторов по системному анализу, для широкого класса ФХС характерна многоуровневая структура взаимосвязей физико-химических эффектов при весьма сложной и разветвленной сети прямых и обратных связей между ними. Различные виды неравновесности ФХС порождают движущие силы, которые приводят к появлению соответствующих потоков субстанций потоки субстанций влияют на степень удаления системы от химического, теплового, механического и энергетического равновесия, что, в свою очередь, опять сказывается на движущих силах [1]. [c.6]

    В отличие от низкомолекулярных соединений под действием механической нагрузки полимеры деформируются не сразу, а с течением времени. Это явление, называемое упругим последействием, связано с тем, что упругие свойства полимерного материала проявляются не сразу, а постепенно, во времени. При этом происходит перестройка структуры полимерного образца. Процесс деформации ускоряется при повышении температуры происходит распрямление скрученных линейных макромолекул и перемещение их относительно друг друга. В то же время действие теплового движения вызывает их обратное скручивание. При наступившем равновесии между действием постоянного механического напряжения и действием теплового движения в напряженном полимерном материале начинается процесс стационарного вязкого течения. Он состоит в том, что час- [c.380]


    Флокуляция особенно характерна для обратных эмульсий, в которых силы дальнего электростатического отталкивания обычно иеве-лики из-за малых значений заряда капель. - Однако и для заряженных капель в обратной эмульсии электростатическое отталкивание при достаточной их концентрации может не обеспечивать устойчивости к флокуляции это связано с тем, что 1из-за небольшого содержания электролитов в системе и низкого значения диэлектрической проницаемости среды толщина ионной атмосферы может быть очень велика (микроны и десятки микрон), что соизмеримо с расстоянием между каплями. Напомним, что положение энергетического барьера взаимодействия частиц, определяемого равновесием сил молекулярного притяжения и электростатического отталкивания (см. 4 гл. IX), отвечает толщине зазора, близкой к удвоенной толщине ионной атмосферы поэтому капли в достаточно концентрированных обратных эмульсиях как бы уже с самого начала расположены на расстояниях, соответствующих преодолению энергетического барьера. Устойчивость обратных эмульсий к флокуляции возможна при наличии структурно-механического барьера, обеспечивающего достаточно малую величину энергии взаимодействия капель при этом электростатическое отталкивание может содействовать уменьшению сил притяжения частиц. Проблема стабилизации обратных эмульсий против флокуляции капель приобрела в последнее время большое значение в связи с попытками использования подобных систем в виде водно-топливных эмульсий, содержащих до 30% воды. Введение эмульгированной воды в бензин и другие топлива, помимо более эффективного использования горючего, обеспечивают повышение его октанового числа и улучшение состава выхлопных газов при работе двигателя внутреннего сгорания. [c.290]

    Причины медленного протекания стадии разряда — ионизации связаны с квантово-механической природой перехода заряженных частиц через границу раздела электрод/раствор. В самом деле, согласно принципу Франка — Кондона, безызлучательный процесс перехода электрона с металла на частицу Ох в реакции (А) или обратно с частицы Red на металл возможен лишь при условии, если полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Для реализации этого условия необходимо изменить ориентацию диполей растворителя вблизи реагирующей частицы, что требует затраты определенной энергии активации. Кроме того, вероятность элементарного акта разряда—ионизации при выполнении принципа Франка—Кондона в общем случае не равна единице она зависит от перекрывания волновых функций начального и конечного состояний, а потому резко убывает с удалением реагирующей частицы от поверхности электрода. В результате принимают (или отдают) электроны только адсорбированные на электроде частицы Ох (или Red). [c.215]

    В связи с изучением явлений образования новой фазы С. В. Горбачев (1941 г.) вывел приближенные уравнения для расчета влияния радиуса капелек жидкости на температуру отвердевания и размеров кристаллов на температуру плавления. Уточняя эти соотношения, он разработал также способы расчета влияния давления и температуры на АН, ДУ и дР/дТ, сопровождающие фазовые превращения. Полученные уравнения позволяют осуществить расчет равновесия с помощью непосредственно измеренных физических свойств вещества в равновесных фазах [ с1У/дР)т, (дУ/дТ)р, (дР/дТ)г], а также обратную задачу —найти его механические и термомеханические свойства. [c.222]

    Известны два типа стабилизации коллоидных систем электрическая (электролитная) стабилизация, которая связана с наличием двойного электрического слоя на границе раздела фаз и достигается добавлением электролита, дающего в растворе ионы, обратные по знаку частицам золя, и структурно-механическая стабилизация дисперсных систем, имеющая место не только в водной, но и неводных неполярных средах, в которых частицы дисперсной фазы не имеют электрического заряда. [c.237]

    Следует различать понятия механизация и автоматизация. По терминологии ИЮПАК механизация — это использование механических устройств для замены, повышения качества, расширения или дополнения труда человека. Примеры механизированных операций заполнение поршневых бюреток, транспортировка отобранных проб по пневмопочте, включение и выключение прибора с помощью реле времени и т.п. Автоматизация — это использование комбинации механических устройств и приборов для замены, повышения качества, расширения или дополнения усилий и возможностей человека в выполнении данного анализа, в котором по меньшей мере одна основная операция контролируется с помощью обратной связи без вмешательства человека. [c.234]

    Общий подход при выборе корректирующего устройства вытекает из поставленной задачи снизить колебательность, т. е. увеличить запас устойчивости следящего привода при сохранении допустимой скоростной ошибки слежения. Дополнительная отрицательная обратная связь не должна реагировать на установившуюся скорость следящего привода. Ее отрицательный сигнал должен быть пропорционален второй производной от перемещения выходного звена, т. е. его ускорению. Только в этом случае можно решить поставленную задачу. Методику проектировочного расчета и выбора основных параметров корректирующих устройств рассмотрим на примерах следящих приводов с механическим, гидравлическим и электрическим управлением. При этом для сравнения каждый следящий привод снабжен своим корректирующим устройством и использованы различные методы анализа эффективности этих устройств. [c.248]

    Несколько особняком стоит самостоятельный раздел физикохимической механики, рассматривающий влияние механических воздействий в твердых телах на течение химических и физико-химических процессов. Большой интерес представляют превращения химической энергии в механическую и обратно, например, в процессах мышечной деятельности, химическая сторона которых была изучена в замечательных работах В. А. Энгельгардта и М. Н. Любимовой, а физико-химическая сторона в работах А. Качальского. Эта область получила название механохимии и занимается, в основном, высокомолекулярными соединениями, прежде всего, в связи с их замечательной особенностью — высокоэластическими свойствами. [c.15]

    По аналогии с терминами, применяемыми в электротехнике и радиотехнике, можно ввести так называемую механическую добротность Q системы, которую определим как умноженное на 2л отношение максимальной энергии, запасенной за один период, к энергии, поглощенной за период в том же объеме. Таким образом, механическая добротность С = 2яИ /АИ7. Она обратна величине, стоящей в правой части уравнения (329). В связи с этим большинство исследователей пользуются для обозначения внутреннего трения величиной [c.195]

    Пьезоэлектрики — это кристаллические вещества, в которых при сжатии или растяжении в определенных направлениях возникает электрическая поляризащ даже в отсутствие электрического поля (прямой пьезоэффект). Следствием прямого пьезоэффекта является обратный пьезоэффект — появление механической деформации под действием электрического поля. Связь между механическими и электрическими параметрами (деформацией и электрическим полем) носит в обоих случаях линейный характер. В результате пьезоэлектрики могут принадлежать лишь к 20 точечным группам симметрии (из 32) 1, 2, 3, 4, 6, т, тт2, Зт, 4/и/и, 6/и/и, 222,4, 422, 42/и, 6, 622, 6/и2, 32, 23т, 3. Вещества с хорошо выраженными пьезоэлектрическими свойствами относят к числу пьезоэлектрических материалов. Среди них как монокристаллы, так и поликристаллические твердые растворы, подвергнутые предварительно поляризации в электрическом поле (пьезокерамика). Первое исследование было выполнено на кристаллах кварца. В дальнейшем пьезоэлектрические свойства были обнаружены более чем у 1500 веществ. [c.260]

    В модулированных усилителях постоянного тока при токах, равных или больших 10 а, применяют механические вибропреобразователи. При меньших токах в качестве модулятора применяется динамический конденсатор. Модулятор создает переменный ток, амплитуда которого пропорциональна входному постоянному току. Это переменное напряжение усиливается, а затем выпрямляется. Благодаря сильной отрицательной обратной связи исключается влияние колебаний коэффициента усиления (а следовательно, колебаний рабочего напряжения), влияние старения ламп п т. п. [c.159]

    Задающее воздействие на следящие приводы копировальных станков — механическое управление движением золотника от копира, поэтому дросселирующий распределитель у таких приводов в основном определяет точность слежения. Как было показано в параграфе 3.1, ошибка слежения Ду связана с перемещением х золотника относительно втулки. Так, при единичной обратной [c.183]

    Расчет основных параметров дросселирующих распределителей следящих приводов с механическим управлением начинают с выбора величины перекрытия или Лц и определения рабочего смещения золотника относительно втулки. Исходными величинами при этом служат допустимая ошибка слежения при основном режиме работы привода и принятые передаточные коэффициенты силовой механической передачи k . п и цепи обратной связи /Sq. о- На основании выражения (3.11) [c.185]

    Передаточные коэффициенты входной механической передачи ка. и обратной связи ко. о и силовой рычажной передачи к . п рулевого механизма автомобиля связаны с основными конструктивными параметрами зависимостями  [c.209]

    Структура следящих приводов с электрическим управлением значительно сложнее, чем приводов с механическим, гидравлическим или пневматическим управлением (см. рис. 3.3, г). В связи с электрическим входным сигналом в следящем приводе рассматриваемого типа приходится использовать электрический блок сравнения и усиления сигналов, электромеханический преобразователь в прямой цепи и электрический датчик перемещения в цепи обратной связи. [c.235]

    Для этого в большинстве случаев применяют следящие гидроприводы с механическим управлением и внутренней единичной обратной связью. Упрощенная схема исполнительного механизма такого привода, содержащего гидродвигатель 1, распределитель. 2 и щуп 3, показана на рис. 3.26. [c.249]

    Для выяснения механизма соэкстракции кальция и стронция была изучена более дета.1Гьно экстракция кальция в присутствии скандия. Было показано, что коэффициенты раснределения при прямой экстракции и при обратной практически одинаковы. Таким образом, увеличение экстракции кальция в присутствии скандия не связано с механическим захватом его промывка экстракта не изменяет результатов. [c.178]

    Пьезоэлектрический эффект, открытый Кюри, заключается в том, что некоторые кристаллы при сжатии электризуются. Обратный пьезоэффект состоит в том, что кристалл, помещенный в электрическое поле, деформируется. Теория пьезоэ4>фекта во многом сходна с теорией магнитострикции. Пьезоэлектрический эффект существует только при температуре ниже точки Кюри. Материалы, в которых наблюдают пьезоэффект (кварц, турмалин, сегнетова соль и др.), являются анизотропными кристаллам, поэтому для них электромеханические явления описывают тензорными соотношениями [6]. Связь между механическим напряжением и электрической индукцией при прямом пьезоэффекте выражают уравнением [c.98]

    В работах А. Б. Таубмана и С. А. Никитиной с сотрудниками показано, что возникновение структурно-механического барьера связано с самопроизвольным образованием ультрамикроэмульсии (УМЭ) на границе раздела двух жидких фаз. Возникновение УМЭ можно легко наблюдать, если наслоить углеводород (масляная фаза) на водный раствор эмульгатора. Спустя некоторое время на границе раздела фаз появляется тонкая молочно-белая прослойка, постепенно утолщающаяся в сторону водной фазы. Это явление — следствие гидродинамической неустойчивости межфазной поверхности углеводород—раствор ПАВ, обусловленной I двусторонним массопереносом через границу раздела (переход в водную фазу вследствие внутримицеллярного растворения, перераспределение эмульгатора между фазами благодаря некоторой растворимости его в углеводороде). В результате возникающей поверхностной турбулентности в обеих фазах вблизи поверхности раздела спонтанно развивается процесс эмульгирования с образованием капелек эмульсии как прямого типа (в водной фазе), так и обратного (в углеводороде). Однако обратная эмульсия, как правило, грубодисперсна, малоустойчива и легко разрушается, тогда как прямая имеет коллоидную степень дисперсности (размер капелек соизмерим с размером мицелл, солюбилизировавших углеводород) и обладает высокой агрегативной устойчивостью. Ультрамикрокапельки ее защищены адсорбционными слоями эмульгатора, которые связывают их в сплошную гелеобразную структуру с заметно выраженной прочностью и другими структурно-механическими свойствами. [c.194]

    Подвижность полимерных растворов в пористой среде. Этот иоказа-тель наиболее полно характеризует особенности течения полимерных растворов в пористой среде, так как обычная вязкостная характеристика не всегда отражает реальную картину. Например, более вязкие полимерные растворы при одинаковой концентрации не всегда имеют лучшие фильтрационные свойства. Это связано с тем, что различные полимеры обладают разной адсорбцией и способностью к механическому удерживанию, В работе [23] определены зависимости обратной относительной подвижности ( в х/цв, где А, йв — фазовые проницаемости для полимерного раствора и воды ц, нв—вязкости раствора и воды), полимерных растворов от скорости фильтрации, В частности, на основе изучения полученных [c.118]

    Рассмотрим вначале реакции внутримолекулярной изомеризации алкенильных радикалов, которые могут возникать в результате присоединения атома Н к молекуле пиперилена или из соответствующих алкенов (амиленов) путем отрыва атомов Н из различных положений в молекуле алкенов. Ввиду отсутствия экспериментальных данных невозможно получить решение обратной кинетической задачи и найти свойства активированного комп,декса, которые позволили бы по (2.22) рассчитать Л-факторы, приведенные в табл. 26.1. Поэтому для каждого типа реакций рассмотрены семь моделей активированного комплекса, различающихся геометрическими и механическими свойствами в области рвущейся и образующейся связи [321]. [c.208]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Ценную информацию о процессах, протекающих в полимере при вытяжке, можно получить с помощью метода изометрического нагрева (см. гл. I). По диаграммам изометрического нагрева (ДИН) можно установить условия вытяжки, так как между формой кривых и механическими свойствами полимера существует определенная связь. Метод изометрического нагрева является обратным по отнощению к методу термомеханических кривых. Если при снятии последних поддерживается постоянным напряжение и регистрируется развитие деформации при постоянном повышении температуры, то метод изометрического нагрева предусматривает регистрацию внутренних напряжений, возникающих при постепенном нагреве образца при постоянной деформации растяжения. При этом, если вначале образец не был нагружен, то при некоторой температуре в нем начинает развиваться растягивающее усилие. Оно достигает максимума и затем постепенно падает (рис. VI. 4). Форма диаграмм изометрического нагрева существенно зависит от режима вытяжки (кратности, скорости и температуры). С увеличением кратности вытяжки величина максимальных напряжений на ДИН возрастает (рис. VI.4,a). Для полимеров с достаточно высокой температурой размягчения (таких, как полиметилметакри-лат), кроме того, смещается в сторону низких температур начало роста напряжений (рис. VI. 4, г). Увеличение скорости вытяжки при постоянных кратности и температуре вытяжки приводит к увеличению максимального напряжения (Тмако и к уширению максимума (рис. VI. 4, i). С повышением температуры вытяжки при постоянных кратности и скорости вытяжки максимальное напряжение Стмакс уменьшается, а максимум уширяется. В отдельных случаях возникает даже плато (рис. VI-4,в). Вид этих диаграмм тесно связан с силовым режимом предварител1 ной вытяжки  [c.190]

    Значения квадрупольных моментов ядер обычно известны, и экспериментальные исследования спектров ЯКР проводятся для получения частот переходов, констант квадрупольного взаимодействия, а значит, е ипараметров асимметрии градиента электрического поля Т1 (см. ниже), т. е. структурных данных, информации о распределении зарядов и характере химических связей. Например, чем больше ионный характер связи с данным атомом, тем меньше величина градиента поля и e qQ. Обратно, чем более ковалентной является химическая связь, тем выше соответствующая константа квадрупольного взаимодействия. Данные ЯКР предоставляют возможность экспериментальной проверки результатов квантово-механических расчетов и приближенного рассмотрения ряда проблем, связанных с внутри- и межмолекулярными взаимодействиями. Метод спектроскопии ЯКР важен как аналитический при работе с твердыми веществами, для которых не представляет трудности выращивание больших монокристаллов. [c.91]

    Несколько особняком стоит самостоятельный раздел физико-химической механики, рассматривающий влияние механических воздействий в твердых телах на течение химических и физико-химических процессов. Большой интерес представляют превращения химической энергии в механическую и обратно, например в процессах мышечной деятельности. Эта область, получившая название механохимии, занимается в основном высокомолекулярными соединениями, в связи с их высокоэластическими свойствами, связанными с гибкостью длинноцепочечных маркомолекул. Кроме того, механическое разрушение в полимере всегда связано с местной деструкцией, т. е. химическим разрушением — разрывом цепей главных валентностей, которое энергетически более выгодно вследствие больших размеров макромолекулы [c.211]

    Электрохимическая обработка металлов. Это новый метод формообразования изделий из металлов любой прочности и твердости, трудно поддающихся механической обработке. Процесс иногда называют химическим фрезерованием или электрохимической глубинной обработкой металлов. На рис. 150 изображена схема станка для электрохимической обработки металла. Растворяющимся анодом служит металл изделия, электролитом — раствор Na l, а катодом —медный стержень или полоса определенной формы. Станок подает с заданной скоростью (регулируемой обратной связью по падению потенциала в зазоре) медный катод и через него прогоняет с большой [c.296]

    Световые измерения, как известно, базируются на субъективных зрительных ощущениях. В связи с тем, что люди не обладают одинаковым зрением и человеческий глаз по-разному восприни.мает световые излучения различных длин волн, вводится понятие средний нормальный глаз человека . При этом учитывается отношение светового потока (т. е. мощности, порождающей зрительное ощущение) к полной мощности излучения, так называемая видность. Наибольшей видностью обладает узкий интервал длин волн, соответствующий зеленому цвету (Х = 0,555 мк), где человеческий глаз обладает максимальной чувствительностью к восприятию света. Установлено, что 1 ватт мощности излучения с длиной волны Х.=0,555 мк дает максимум светового потока, равный 683 лм и, обратно, световой поток в люменах в этом интервале соответствует 0,001464 вт (механический эквивалент света). [c.598]

    На устойчивость следящих приводов существенно влияют нелинейные факторы [31 . Сушественный зазор в цепи обратной связи следящего привода с механическим упраВо1ением может привести к автоколебаниям. Зыачигельные силы контактного трения в сравнивающем механизме следящих приводов с гидравлическим или пневматическим управлением также могут привести к длительным колебаниям или автоколебаниям. При конструировании следящих приводов необходимо стремиться к устранению отмеченных факторов. [c.262]


Смотреть страницы где упоминается термин Связь обратная механическая: [c.277]    [c.1478]    [c.1478]    [c.261]    [c.24]    [c.216]    [c.26]    [c.238]    [c.230]    [c.350]    [c.164]    [c.208]   
Теория и проектирование гидро- и пневмоприводов (1991) -- [ c.208 , c.306 ]




ПОИСК





Смотрите так же термины и статьи:

Обратная связь

Связи механическая

Следящий гидропривод с машинным управлением и механической обратной связью



© 2025 chem21.info Реклама на сайте