Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вытяжка при экструзии

    Полиметилметакрилат при нагревании выше 125°С хорошо поддается формованию и вытяжке, а при 190—280 °С— экструзии и литью под давлением. Изделия из него сохраняют свою форму при нагревании до 60—80 С, при более высокой температуре изделия начинают деформироваться. При 300 °С и выше он деполимеризуется с выделением ММА. Полиметилметакрилат обладает хорошими оптическими свойствами, сохраняющимися и при большой толщине стекла. Он пропускает до 92% лучей видимой области спектра и 75% УФ-лучей. [c.45]


    Перерабатывают полиамиды обычными методами литьем под давлением, экструзией. Волокно и пленку получают из расплава с последующей одно- и двухосной вытяжкой. [c.130]

    ПИЯ мономерных звеньев пе проявляется макроскопически у неориентированных полимеров вследствие неупорядоченного статистического распределения макромолекул или надмолекулярных структур. При таких процессах переработки полимеров в изделия, как ориентационная вытяжка, экструзия, а также в некоторой степени и прессование, возникает преимущественная ориентация макромолекул. Это должно привести к анизотропии диэлектрических свойств ориентированных полимеров, которая зависит как от электрической анизотропии мономерного звена, так й от степени ориентации макромолекул. Поскольку степень ориентации макромолекул у кристаллических полимеров может быть значительно выше, чем у аморфных полимеров, то, естественно, можно ожидать большего влияния ориентации на диэлектрические свойства у кристаллизующихся полимеров. [c.139]

    Штриховая линия — расчет по формуле (1.20) при хФ = — 0.77 сплошная линия — то же при хФ — 0,6 О — холодная вытяжка % — экструзия. [c.55]

    Экструзия, впрыскивание, вытяжка [c.415]

    Экструзия свободно висящих заготовок неприменима для формования крупных заготовок из-за вытяжки их под действием собственного веса и коробления вследствие скручивания. [c.27]

    На практике очень трудно избежать формирования структур при любых процессах переработки, за исключением таких сравнительно медленных процессов, как формование разливом и компрессионное прессование. Часто, однако, формирование структур в процессах переработки носит случайный характер, плохо поддающийся объяснению, и кажется неизбежным злом (особенно в тех случаях, когда оно проявляется в потере стабильности размеров). С другой стороны, в переработке полимеров существуют классические примеры целенаправленного формирования структур при производстве ориентированного волокна (экструзия с последующей вытяжкой) и при получении пленок с одно- и двухосной ориентацией методом экструзии или при изготовлении пленок методом полива на барабан с целью формирования структур, придающих пленке необходимые механические и оптические свойства. [c.45]

    Формование волокна представляет собой процесс экструзии расплава или раствора полимеров через металлическую пластину, имеющую ряд симметрично расположенных отверстий малого диаметра, в результате чего образуются жидкие полимерные струи. Последующая обработка струй включает вытяжку расплава, охлаждение и холодную вытяжку. Диаметр полученных волокон значительно меньше диаметра струй. Волокна анизотропны, механически очень прочны и практически полностью кристалличны. Таким образом, в процессе производства волокон происходит не только их формование, но и создание структуры [52] (см. гл. 3). [c.479]


    Ввиду того, что охлаждение обдувкой воздухом менее эффективно по сравнению с охлаждением на валках или в водяной бане, при экструзии пленки с последующим раздуванием практически невозможно регулировать скорость кристаллизации, а тем самым и размер сферолитов, т. е. затруднено изготовление пленки с нужными свойствами. Сравнительные показатели свойств пленок, полученных экструзией с раздуванием и экструзией через плоскую щель с последующей вытяжкой, приведены в табл. 10.5 [77]. [c.263]

    Как схематически показано на рис. 10.1, при экструзии с раздувом расплав полимера выдавливают через кольцевую головку 2 и вытягивают вверх вытяжным устройством 5. В головку подают воздух, раздувающий рукавную (трубчатую) заготовку. Для быстрого охлаждения горячего рукава и отверждения его на некоторой высоте применяют так называемое воздушное кольцо 3. Затем раздутый отвержденный рукав сплющивают, пропуская его через прижимные валки вытяжного устройства 5. Последние приводятся во вращение от двигателя с переменной частотой вращения, что позволяет получать необходимое осевое усилие для вытягивания пленки вверх, а также способствует поддержанию внутри раздутого рукава постоянного давления, намного превышающего атмосферное. Давление внутри рукава регулируют, изменяя количество воздуха, подаваемого в головку. При экструзии пленок ориентация макромолекул полимера определяется двумя технологическими параметрами скоростью вытяжки и скоростью охлаждения. Однако при экструзии с раздувом важен еще один параметр, который может сильно влиять на ориентацию макро- [c.243]

    Монокристаллические С. получают выращиванием (кристаллизация) из р-ров, расплавов, газовой или паровой фазы по методам выращивания монокристаллов, керамические С.-по технологии керамики, пленочные С.-вакуумным напылением, шликерным литьем, а также по полярной технологии-экструзией с послед, ориентационной вытяжкой. [c.308]

    Характерную фибриллярную структуру имеют растянутые образцы ПЭВД. Существуют различные способы вытяжки, в частности, вытяжка на холоду, вытяжка при повышенной температуре (выше температуры плавления), например методом экструзии с последующим раздувом, которая применяется при промышленном получении пленок из полиэтилена. Исследование структуры таких растянутых пленок, а также волокон методами двойного лучепреломления и рентгеновской дифракции позволило получить ряд важных результатов и сопоставить их с механическими свойствами. Результаты этих исследований показали, что в образцах, растянутых на холоду, как в пленках, так и в волокнах, ось с и, следовательно, оси макромолекул ориентированы преимущественно вдоль направления вытяжки. Оси Ь и д ориентированы равномерно в перпендикулярной плоскости. [c.146]

    Поликарбонаты, полученные в данном процессе, характеризуются хорошей воспроизводимостью по молекулярному весу, легко перерабатываются прессованием, литьем под давлением, экструзией или горячим распылением. Также легко получаются пленки и нити, которые могут быть ориентированы вытяжкой. [c.69]

    Процесс экструзии с раздувом рассмотрен с позиций механики жидкостей в [174] и теории продольных течений - в [131]. Расплав полимера, выходящий из головки, течет под действием механического напряжения в направлении вытяжки. Но в процессе экструзии с раздувом трубчатая заготовка полимера вытягивается в двух направлениях - продольном и поперечном, поэтому экструзию с раздувом следует рассматривать как двухосное продольное течение, [c.243]

    При рассмотрении баланса сил и энергии принимаются следующие допущения толщина пленки достаточно мала, так что неоднородностью профиля скорости течения в поперечном направлении можно пренебречь градиенты скорости деформации в выбранной (текущей) точке рукава можно вычислять так же, как двухосного (биаксиально-го) растяжения плоской пленки силами поверхностного натяжения, инерции и трения пленочного рукава с воздуха можно пренебречь ввиду их малости по сравнению с напряжением, действующим на материал в продольном направлении при вытяжке пленки теплопередачей между внутренней поверхностью рукава и находящимся в нем, воздухом можно также пренебречь охлаждение рукава происходит в основном за счет излучения и конвекции тепловыделением от трения рукава о воздух можно пренебречь. Таким образом, можно сделать вывод о том, что из материалов, имеющих меньшую эффективную продольную вязкость, получаются рукава, диаметр которых меньше, чем при экструзии полимеров с более высокой эффективной продольной вязкостью [87]. [c.244]

    Технологический процесс производства мано волокна из дисперсии включает экструзию, удаление замасливателя, опекание, закалку и холодную вытяжку. Экструзию осуществляют через фильеру с отверстиями круглого сечения диаметром 1—2 мм. Скорость прядения при давлении 140 ат составляет 1,5—3 м1мин. Непрерывные нити из политетрафторэтилена формуют из концентрированных водных диаперсий, С одер-ж ащих - 75% полимера, сухим или мокрым способами. При формовании по мокрому способу дисперсию полимера продавливают через круглые отверстия фильеры диаметром 0,25—0,50 мм в осадительную ванну, заполненную 1—25%-ным водным раствор ом любой органической [c.375]


    ПВХ композиции для производства тонких пленок должны обладать высокой гомогенностью и иметь достаточно высокие значения коэффициента продольной вязкости. Технологический процесс производства пленки толщиной 0,01-0,03 мм имеет следующие основные отличия от процесса экструзии традиционных пленок более тонкая фильтрация расплава высокие скорости деформирования расплава Полимера в формующем зазоре головки и в зоне раздува рукава повышение диспропорции степеней вытяжки в продольном и поперечном направлениях необходимость укладки в рулон значительного количества эластичного полотна повышенная склонность тонкого пленочного полотна образовывать складки при транспортировании повышенные требования к точности поддержания заданных технологических параметров (производительности, скорости вытяжки, температуры, однородности свойств). Эти особенности требуют точного определения и регулирования таких технологических параметров процесса (дополнительно к традиционным), как минимальные колебания температуры расплава на входе в головку степень раздува и вытяжки пленочного рукава для каждой рецептуры, точность поддержания заданных температур в зоне начала и конца складывания пленочного рукава, а также при намотке. [c.247]

    Большое количество полипропилена перерабатывается в моноволокно методам экструзии. При этом используется головка с распределительным каналом. Число отверстий в головке и их размеры определяют число и размер получаемых моноволокон. Моноволокна, выходящие из головки, подвергаются закалке в водяной бане, затем поступают на первые вытяжные валки, в камеру для ориентации и далее на вторые вытяжные валки. Чем больше степень вытяжки, тем выше прочность и жесткость волокна. Затем моноволокна охлаждаются и подаются на намоточное устройство. Наиболее прочные волокна получаются из полипропилена с высоким молекулярным весом и высокой степенью изотактичности. При этом переработку следует вести при относительно низких температурах расплава (204—218 °С) и высоких температурах ориентации (149—176 °С). Температура закалочной ванны должна быть - 49°С. [c.39]

    При рассмотрении теории процесса переработки эластомеров (термоэластопластов, каучуков и резиновых смесей) в червячных машинах используется термин экструзия , а для описания технологии— шприцевание . Термин профилирование включает в себя кроме собственно шприцевания с помощью червячной машины дальнейшую обработку на последующих агрегатах вытяжку, усадку, шероховку, маркировку, дублирование, промазку клеем, охлаждение, мерный рез и ряд других технологических операций, влияющих на окончательные размеры шприцованных заготовок. [c.241]

    Сополимеры ТФЭ — ГФП и ТФЭ — ПФ(АВ)Эф вызывают наибольшие трудности при переработке из-за низких значений критической скорости сдвига (3—5 с для ТФЭ — ГФП). Для исключения явления дробления расплава сополимеры должны перерабатываться при низких скоростях впрыска при литье под давлением. Оборудование должно обеспечивать точность регулирования напряжения сдвига (давления впрыска) 0,3—0,4 МПа (3—4 кгс/см ), скорости сдвига (скорости впрыска) 0,05—2 с и температуры цилиндра и формы 1—2°С [18, 23]. Литье под давлением сополимера ТФЭ — ПФ(АВ)Эф проводят при температуре расплава 340—430 °С и формы 200°С, Экструзию этих сополимеров рекомендуют проводить при низком числе оборотов червяка [23], через широкую профилирующую щель с последующей вытяжкой до необходимых размеров экструдата. Для исключения дробления расплава можно дополнительно снижать вязкость расплава непосредственно в головке, повышая температуру в этой зоне для сополимера ТФЭ — ГФП до 405 °С. [c.202]

    Вследствие высокой текучести полистирола при повышенных температурах удобнее всего перерабатывать его методом литья-под давлением, хотя пригодны также прессование, экструзия и выдувание. Известное применение нашла механическая обработка блоков и пластин из полистирола в производстве линз и электротехнических деталей. Пленки, полученные путем выдувания, непрочны, но если этот процесс сопровождается продольной вытяжкой (ориентация), прочность негибкость их резко возрастают. Полистирольные волокна, уступая полиолефиновым, например по-эластичности, обладают другими ценными свойствами (упругость, прозрачность), что позволило применять их в волоконной оптике, электротехнике и производстве армированных пластиков. [c.287]

    Процесс изготовления изделий из полимерных материалов включает, как правило, получение полимера, его переработку и создание конструкции с использованием различных материалов или различных комбинаций одного и того же материала. На прочность готового изделия влияет технология получения полимера (режим полимеризации или поликонденсации, природа катализатора, состав реакционной смеси, т. е. соотношение мономеров, инициатора, ингибитора, регулятора, растворителя, отвердителя) и технология переработки полимера (например, режимы экструзии, прессования, вытяжки, кручения, режимы термообработки и т. п.). [c.8]

    Температура в цилиндре повышается по зонам по мере прохождения по ним материала от 220—250 до 370—400 °С. Рекомендуется использовать шнек дозировочного типа с быстрым сжатием. Экструзию пленок (рукавной и плоскощелевой), наложение изоляции на провод, а также получение волокна производят с применением вытяжки в состоянии расплава. При этом температура расплава и величина вытяжки (ориентации) устанавливаются в зависимости от вида изделия, Частота вращения шнека при экструзии тонкостенных изделий 10 об/мин, листов — до 70 об/мин. [c.153]

    По выходе из головки в результате упругого восстановления экструдат расширяется, или разбухает . Поэтому вытяжка зависит не только от поперечных размеров головки, но и от величины разбухания. Увеличение длины оформляющей части, снижение скорости экструзии и повышение температуры расплава снижают относительное разбухание экструдата. [c.131]

    При экструзии любых изделий, и в частности труб, происходит ориентация текущих структурных единиц. Эта ориентация фиксируется при охлаждении трубы. Высокая степень вытяжки способствует повышению продольной ориентации. Уменьшение вытяжки и разбухание трубы снижают ориентацию. [c.177]

    Х10 г/моль) получена жесткость 2—3 ГПа, прочность 33— 39 МПа и сопротивление удару 300—600 кДж/м [39]. Способами холодной вытяжки и гидростатической экструзии Капац-цио и Уорд [93—98] изготовили высокоориентированиые полимеры (ПЭ, ПП, ПОМ). По-видимому, в этих образцах сохранилась фибриллярная структура. Если увеличить коэффициент вытяжки, то морфология будет характеризоваться в основном непрерывным ориентированием материала, в котором разрывы будут обусловлены только статистическим распределением концов цепей. Таким образом, у все меньшей доли материала будут наблюдаться кристаллы с известной морфологией и ориентированные аморфные цепи, включая проходные молекулы. [c.35]

    Керамические детали оборудования изготовляют следующими технологическими методами литьем (наливным и сливным методами) в гипсовые формы из водного шликера горячим литьем под давлением в металлические формы из шликера, приготовленного путем смешивания измельченного керамического обожженного порошка с разжижн-телем — парафином, воском и др. ручным или машинным формованием из пластичной керамической массы точением из пластичных заготовок точением из сухих заготовок вытяжкой (экструзией) на вакуум-прессе из пластичной массы прессованием из пластичной массы гидростатическим прес- [c.8]

Рис. 3.19. Степень ориентации кристаллической фазы в зависимости от скорости вытяжки при экструзионном формовании волокна из ПЭВП. Массовый расход 1,93 0,02 г/мин температура экструзии 207 3 °С. Рис. 3.19. <a href="/info/128028">Степень ориентации</a> <a href="/info/334664">кристаллической фазы</a> в зависимости от скорости вытяжки при <a href="/info/1128022">экструзионном формовании волокна</a> из ПЭВП. <a href="/info/21953">Массовый расход</a> 1,93 0,02 г/мин температура экструзии 207 3 °С.
    Пленки из полипропилена лучше всего изготовлять на экструдерах с широкощелевым мундштуком, так как при выдувании получаются менее блестящие и более мутные пленки. Свойства полипропиленовой пленки можно значительно улучшить вытяжкой при 10—20 Т, т. е. ниже точки плавления кристаллитов особенно большое значение приобрела биаксиально вытянутая пленка. Ниже приведены свойства полипропиленовых пленок, полученных методом экструзии рукава с раздувом (I) и экструзией (П)  [c.303]

    В последние годы в работах [38—44] изучалась экструзия твердых термопластов, требующая очень высокого давления (до 0,5 ГПа), температур 30—250°С и приспособления для вытяжки при продавливании. В случае ПЭ такая переработка давала высокопрочный, теплостойкий материал с гексагональной симметрией, обладающий высоким значением вытяжки цепи. Как и в случае кристаллов с выпрямленными цепями, наблюдавшимися, например, Андерсоном [45] в разрушенных поверхностях ПЭ с низкой молекулярной массой, этот термин в настоящее время также используют применительно к ПЭ, кристаллизующемуся под давлением. Уикс и Портер нашли, что высокоориентированные нити подобного материала (ТИ , = = 58 ООО) имеют при комнатной температуре необычно высокую жесткость (70 ГПа), сравнимую с жесткостью минеральных стекол [40]. Кроме того о хорошей прочности при растяжении (500 МПа) дополнительно сообщается в работе [41]. Для ПЭВП с очень большой молекулярной массой (Ai = (2—3) X [c.34]

    Портер с сотр. воспользовались сочетанием сверхвысоких гидростатических давлений и продольной вытяжки при течении для управления процессом кристаллизации ПЭВП [34]. Полимеры экструдировали при 134 °С через коническую фильеру, обеспечивающую 46-кратную продольную вытяжку. В связи с тем что при этой температуре ориентационная кристаллизация начиналась уже в фильере, для экструзии полимера приходилось применять давление около 200—250 МПа. [c.62]

    Свойства попипропипеновых ппенок, изготовленных экструзией через плоскую щель с вытяжкой (А] и экструзией [c.264]

    Получение. В пром-сти для получения П. п. (монопленок) используют след, методы 1) экструзия расплава полимера-наиб. экономически выгодный и технологически рациональный способ произ-ва пленок. Этим методом перерабатывают термопластичные полимеры в вязкотекучем состояиии. Полимер в экструдере расплавляется, гомогенизируется, и расплав продавливается через формующую головку. При экструзии через кольцевую головку П.п. получают в виде рукава. Пленочный рукав в вязкотекучем состоянии после выхода из формующей головки подвергают пневматич. раздуву сжатым воздухом и продольной вытяжке тянущими валками (слабоориентированные П. п.). По др. варианту, пленочный рукав предварительно резко охлаждают водой с виутр. и виеш. сторон, после чего осуществляют одновременную двухосную (в продольном и поперечном направлениях) ориентацию в высокоэластич. состоянии (ориентированные П.п.). Через плоскощелевую головку расплав экструдируется на приемный (поливной) барабан, на к-ром охлаждается (неориентированные П.п.), а затем может подвергаться двухосной ориентации-раздельной (сначала вытяжка в продольном, а затем в поперечном направлении) или одновременной. В случае раздельной ориентации продольную вытяжку проводят на валковых установках, поперечную вытяжку, а также одноврем. ориентацию-на спец. раме (клуппной). [c.572]

    Сочетание разл. методов. Напр., экструзией и ка-ландрованием получают толстые П. п. (0,2-2,5 мм) из ударопрочного полистирола, АБС-пластика, полипропилена, к-рые подвергают глубокой вытяжке, и П.п. из нек-рых термостойких термопластов. [c.572]

    Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультрамелкозернистых структур, имеющих преимущественно большеугловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрушений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода песочных часов [19]. [c.9]

    Для поливинилового спирта и его производЕ1ых характерен широчайший диапазон технических свойств. Поливиниловый спирт и его производные могут перерабатываться в изделия всеми методами, применяемыми в технике пластиков и эластомеров, — прессованием, экструзией, экструзией с вытяжкой, коагуляцией золей, литьем под давлением [1]. Применяются они в виде клеев, лаков, красок, слоистых пластиков, синтетических волокон, эмульгаторов, каучукообразных изделий, защитных пленок. [c.177]

    Полимерные пленки из ПВДФ, полученные экструзией или ориентационной вытяжкой при высокой температуре (423 К), имеют преимущественно кристаллы а-формы, неполярные из-за того, что у каждой пары соседних макромолекул дипольные моменты, перпендикулярные оси макромолекулы, расположены под углом 180 , т. е. антипараллельно. Под воздействием электрического поля постоянного тока с п = 60-ь150 МВ/м [151, 154] за счет поворота макромолекул в кристаллах вокруг оси с (ось с — ось макромолекулы) при сохранении конформации макромолекул и размеров кристаллической ячейки дипольные моменты, перпендикулярные оси с, у соседних молекул становятся параллельными, т. е. кристаллическая ячейка из неполярной а-формы переходит в полярную п-форму. Таким образом, пленки с кристаллами а-формы также могут быть поляризованы [151]. [c.181]

    Как видно из схемы, наиболее устойчива а-форма. Отжиг при атмосферном давлении приводит к переходу всех кристаллических форм в а-форму. Пленки, получаемые промышленным методом, состоят из смеси кристаллических а- и Р-форм. В экструзионных и двухосно-ориентированных пленках (последние изготавливают методом экструзии с раздувом) превалирует а-форма кристаллов в одноосно-ориентированных пленках, получаемых вытяжкой в направлении экструзии при 323—373 К, преобладает Р-форма. Пленки с кристаллами у-формы можно приготовить выпариванием раствора ПВДФ в ди-метилсульфоксиде или охлаждением расплава при высоких давлениях (порядка 400 МПа). [c.184]

    Величину калибрующего зазора головок можно регулировать. В пленочных головках регулируемые губки позволяют контролировать толщину пленки. В трубной головке подвижной деталью является дорн, что позволяет отцентровывать трубу в процессе экструзии. Толщину пленок, труб, прутков п листов можно регулировать за счет вытяжки экструдата. Чрезмерная вытяжка вызывает ориентацию в изделиях, что может быть желательно или нежелательно. Ориентация увеличивает прочность в направлении вытяжки, но иногда одновременно снижает прочность в поперечном направлении. Когда желательна минимальная ориентация, поперечные размеры оформляющей части головки выполняют меньще соответствующих размеров изделия. [c.131]


Смотреть страницы где упоминается термин Вытяжка при экструзии: [c.309]    [c.93]    [c.69]    [c.184]    [c.29]    [c.610]    [c.142]    [c.150]    [c.46]    [c.101]   
Технология пластических масс в изделия (1966) -- [ c.186 , c.201 , c.212 , c.213 ]

Основы переработки пластмасс (1985) -- [ c.65 , c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Вытяжка

Вытяжка отличие от экструзии

Степень вытяжки при экструзии кабеля

Степень вытяжки при экструзии кабеля диспергирования, методы оценк

Степень вытяжки при экструзии кабеля измельчения

Степень вытяжки при экструзии кабеля кристалличности

Экструзия вытяжка экструдата



© 2025 chem21.info Реклама на сайте