Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрегация степень

    Рнс. 10.3. Зависимость степени агрегации т (1) и -потенциала (2) частиц кварца от концентрации ЦТАБ при pH 6. [c.178]

    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]


    Наблюдения за устойчивостью и коагуляцией дисперсии алмаза в щелочной области (pH = 9) проводились непрерывно в течение 6—7 ч и далее через 24 ч. Исходная дисперсия алмаза при pH = 9 без добавления K I и при его концентрации 5-10 моль/л является агрегативно устойчивой. Из расчета энергии взаимодействия по теории ДЛФО следует, что устойчивость дисперсии алмаза при концентрации K l lO М обусловлена наличием высокого энергетического барьера ( 160 кТ) и очень малой глубиной дальнего минимума. При концентрации КС1 I-IO моль/л в системе уже наблюдается заметная агрегация степень агрегации составляет 2,7. При дальнейшем росте концентрации КС1 увеличивается скорость и степень агрегации, достигнутая к определенному времени наблюдения. Это связано с постепенным уменьшением вклада ионно-электростатической составляющей и реализацией более глубокой потенциальной ямы . Обратимый характер агрегации в случае средних концентраций (10 , 10 моль/л), возможно, связан с влиянием структурной составляющей энергии взаимодействия, что приводит к ограниченности глубины ямы . Однако в целом агрегативная устойчивость и коагуляция дисперсии алмаза при pH = 9, в отличие от рассмотренных выше случаев, может быть объяснена теорией ДЛФО в ее классическом варианте. [c.184]

    Находясь во взвешенном состоянии в растворе электролита при разделении суспензии или взмучивании осадка, твердые частицы подвергаются агрегации, степень которой уменьшается с понижением концентрации электролита. Это приводит к соответствующему изменению удельного сопротивления осадка и скорости фильтрования. [c.200]

    Добавление в белковый раствор соли вызывает частичное изменение третичной и четвертичной структуры молекул вследствие изменения электрокинетического потенциала и уменьшения степени гидратации белковых молекул, что приводит к их агрегации, степень которой различна для разных белков. На этом принципе, как указывалось выше, основывается фракционирование биополимеров. [c.139]

    Поскольку в растворах белков могут происходить процессы агрегации, степень которой зависит от концентрации белка, постольку желательно устранить влияние концентрации на скорость седиментации. Это достигается путем измерения константы седиментации при различных концентрациях белка и графической экстраполяцией приведенных величин 52о, ш к нулевой концентрации. В результате получают величину константы седиментации, которую обозначают как 5 , к . [c.148]

    Как и для любого процесса агрегации, степень обратимой ассоциации фермента на поверхности растет или падает вместе с 9 — концентрацией фермента на поверхности. Если изолированные глобулы более активны, чем ассоциаты, то кривая, выражающая зависимость [c.287]


    На основе одновременного рассмотрения экспериментальных данных зависимости степени агрегации частиц от концентрации добавленного электролита с результатами расчетов ио теории ДЛФО нами была предпринята попытка оценки толщины ГС у поверхности ЗЮг. Выло показано, что в зависимости от pH [c.175]

    Рнс. 10.4. Зависимость степени агрегации частиц ЗЮг от концентрации [c.178]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ Ю М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при [c.179]

    На рис. 10.4 (кривая /) приведены данные, характеризующие агрегацию золя кварца в присутствии ЦТАБ при рН = 3, когда исходный золь кварца уже агрегировал (степень агрегации т = 2,2). Видно, что при рН = 3, как и при рН = 6 наблюдается скачкообразное изменение устойчивости золя, однако полной стабилизации системы не происходит. Расчет энергии взаимодействия частиц 5102 по теории ДЛФО показывает, что наблюдаемая агрегация связана с первичным минимумом на кривой энергии взаимодействия частиц. Наличие структурной составляющей энергии взаимодействия, возникающей при перекрытии ГС воды, а также, возможно, адсорбционных слоев ЦТАБ на кварце, препятствует непосредственному сближению частиц и достижению высоких степеней агрегации. [c.179]

    Данные по агрегации частиц 5102 при pH = 6 под действием ЦТАБ в присутствии 0,1 М КВг показаны на рис. 10.4 (кривая 2). Наблюдаемый характер изменения степени агрегации частиц кварца от концентрации ЦТАБ в условиях сильно сжатого ДЭС также свидетельствует о значительной роли структурной составляющей расклинивающего давления в устойчивости данной системы. [c.179]

    Интересен обнаруженный факт резкого изменения устойчивости системы при дальнейшем небольшом (от 1,8 до 2-10 М) повышении концентрации КС1. При этом значительно увеличивается скорость коагуляции и образуются более крупные агрегаты. Уже через 1 ч после начала наблюдения степень агрегации системы составляет 1,9, через 3 ч — 2,7, а через 5 ч — 3,6. При дальнейшем повышении концентрации КС1 до 5-10 М полученные кривые практически полностью совпадают с зависимостью, найденной для k i = 2-10 М. Резкое изменение поведения системы при данной концентрации КС1 позволяет считать эту концентрацию в определенном смысле пороговой. Вполне вероятно, что именно при этой концентрации (при pH = 6) происходят резкие структурные изменения в ГС, приводящие к частичному или полному их разрушению. Резкое [c.183]

    Форма частиц мало влияет на сжимаемость осадков косвенно форма частиц может иметь значительное влияние на сжимаемость осадков в связи с повышением способности к агрегации частиц неправильной формы. Так, например, степень агрегации частиц сферической формы не достигает заметной величины до тех пор, пока диаметр частиц не станет меньше 1—2 мкм степень агрегации частиц очень неправильной формы в большинстве случаев становится значительной даже при условии, если один или два размера частиц превышают 20 мкм. В соответствии с этим отношение поверхности частицы неправильной формы к поверхности равновеликой по объему частицы сферической формы является лучшим критерием способности частиц к агрегации по сравнению с другими данными о размерах частиц. [c.197]

    Сказанное выше относится и к объяснению данных, полученных при коагуляции дисперсии алмаза в растворе ВаСЬ, когда с ростом pH происходит значительное изменение устойчивости системы, несмотря на то, что электростатическая составляющая энергии парного взаимодействия должна изменяться незначительно. По всей вероятности, такой разный характер зависимости устойчивости и электрокинетического потенциала от pH связан не только с присутствием ГС, но и с тем, что их структура и протяженность меняются с изменением pH и концентрации электролита. Последнее предположение подтверждается, в частности, при изучении агрегативной устойчивости дисперсии алмаза при рН = 9. При концентрациях ВаСЬ 5-10 и 1-10 2 моль/л степень агрегации т=1,8. Вклад ионно-электростатической составляющей при этих концентрациях крайне мал, частицы агрегируют в первичной яме ограниченной глубины. Наблюдаемый рост степени агрегации до /и = 2,3 при повышении концентрации ВаСЬ до 5-10 моль/л свидетельствует о росте глубины этой ямы, что может быть объяснено уменьшением вклада структурной составляющей вследствие перестройки ГС с ростом концентрации электролита. [c.185]

Рис. 10.9. Зависимость степени агрегации т частиц алмаза от времени в Рис. 10.9. <a href="/info/677108">Зависимость степени</a> агрегации т <a href="/info/766773">частиц алмаза</a> от времени в

    Закономерности процесса при разделении суспензии твердых частиц в растворе электролита с постепенным, образованием слоя осадка на фильтровальной перегородке могут сильно отличаться от закономерностей процесса фильтрования раствора электролита через слой осадка, заранее полученного на фильтровальной перегородке. При этом первый из указанных процессов более сложен, чем второй, поскольку структура постепенно образующегося осадка зависит не только от свойств жидкой фазы суспензии, но и от степени дисперсности взвещенных в ней твердых частиц. В свою очередь степень дисперсности твердых частиц зависит от свойств жидкой фазы суспензии, которые обусловливают процессы агрегации или пептизации этих частиц. [c.199]

    Все приведенные выше данные о температурной зависимости устойчивости дисперсии ПА свидетельствуют о том, что повышение температуры при постоянной концентрации электролита приводит к частичному разрущению и утончению ГС. При этом появляется возможность сближения частиц, реализации более глубокого энергетического минимума и, следовательно, роста степени агрегации. Тип и концентрация электролита, как обсуждалось выше, в известной мере определяют структуру и протяженность ГС и, следовательно, оказывают влияние на характер изменения степени агрегации частиц ПА с ростом температуры. [c.187]

    При необходимости сохранить высокую степень дисперсности твердых частиц в получаемом продукте образование прочных агрегатов их недопустимо. В таком случае требуется временная агрегация частиц с образованием непрочных агрегатов, которые в. дальнейшем можно разрушить. Это достигается добавлением к суспензии небольшого количества электролита, например нитрата алюминия, снижающего дзета-потенциал до порога агрегации, и соответствующего количества полиэлектролита, например полиакриламида, адсорбирующегося на поверхности твердых частиц и объединяющего их в достаточно непрочные агрегаты. [c.195]

    В ЭТОМ случае латекс замораживали при —14 °С и снимали дифференциальную термограмму нагревания. Тепловой эффект плавления оценивали по площади пика. Сравнивали тепловой эффект плавления латекса и диализата с тем же содержанием электролита и эмульгатора, что и в латексе. По разности площадей пиков дифференциальных термограмм при одинаковом в обоих опытах общем количестве воды определяли содержание незамерзающей воды в латексе [528]. Измерения мутности латексов после оттаивания показали, что замораживание их сопровождается агрегацией частиц, степень которой возрастает с увеличением концентрации электролита. [c.193]

    При относительно малой концентрации электролита для затормаживания коагуляции и перехода ее в промежуточный индукционный период достаточно сравнительно небольшого увеличения степени агрегации частиц, а также насыщенности и гидратации адсорбционных слоев. Об этом свидетельствует наименьший, по сравнению с другими, подъем кривой 1 в промежутке между участками айв (рис. 11.3). [c.196]

    При возрастании концентрации электролита дегидратация протекает быстрее, начальный индукционный период сокращается и исчезает. Затормаживание первой стадии коагуляции происходит при все более высокой степени агрегации и уплотнения адсорбционных слоев (кривые 2—4 на рис. 11.3). Но и при концентрациях электролита, превышающих ПБК латекса, наблюдается торможение процесса и сохраняется промежуточный индукционный период. Судя по практическому совпадению кинетических кривых 5—7 на рис. 11.3, лишь при концентрациях электролита С ПБК достигается полное адсорбционное насыщение и предельная степень гидратации агрегатов, образовавшихся на первой стадии. [c.196]

    По этому вопросу имеются до некоторой степени противоречивые данные, в соответствии с которыми удельное сопротивление осадка может уменьшаться или увеличиваться при повышении концентрации суспензии. Рассматриваемая зависимость достаточно сложна, так как она определяется рядом факторов, к числу которых можно отнести скорость фильтрования и степень агрегации первичных частиц суспензии. Повышение скорости фильтрования, обусловленное уменьшением концентрации суспензии, в зависимости от свойств суспензии может быть причиной более плотной укладки частиц в осадке вследствие возрастания их кинетической энергии или может вызвать менее плотную укладку частиц в связи с тем, что осадок не успевает уплотниться. В первом случае уменьшение концентрации суспензии приведет к увеличению удельного сопротивления осадка, а во втором — к уменьшению. Повышение степени агрегации частиц суспензии в результате их соударений, чему способствует увеличение концентрации суспензии, обусловливает получение осадка с порами большего размера и меньшим удельным сопротивлением. [c.187]

    Сжимаемость, т. е. интенсивность увеличения сопротивления осадка при повыщении разности давлений, в больщинстве случаев в значительной мере зависит от степени агрегации твердых частиц суспензии под действием электролитов при этом, чем больше степень агрегации твердых частиц, тем меньше удельное сопротивление осадка. [c.197]

    Уравнение Козени — Кармана нельзя применить в обычном виде для значительно сжимаемых осадков. В этом практически важном случае эффективная удельная поверхность твердых частиц в образовавшемся осадке зависит как от степени агрегации частиц суспензии, так и от разности давлений при фильтровании. [c.197]

    При последовательном фильтровании растворов электролита, концентрация которых увеличивается, через слой осадка без его взмучивания частицы осадка не могут агрегироваться, так как этому препятствуют силы трения между поверхностями отдельных частиц. Поэтому, несмотря на изменение величины дзета-потенциала, значения удельного сопротивления осадка и скорости фильтрования остаются постоянными. Эти значения равны соответствующим значениям Го и при фильтровании раствора электролита с наименьшей концентрацией, когда степень агрегации была минимальной. [c.200]

    Таким образом, найденные закономерности объяснены тем, что изменения удельного сопротивления осадка и скорости фильтрования обусловлены степенью агрегации или пептизации твердых частиц в зависимости от концентрации раствора электролита или соответствующей этой концентрации величины дзета-потенциала. [c.200]

    На основании опытов по разделению водных суспензий глины [53] было предложено рассматривать удельное сопротивление осадка как сумму двух сопротивлений. Одно из них зависит от степени агрегации частиц, обусловленной концентрацией суспензии, а другое учитывает влияние разрушения агрегатов при движении фильтрата. [c.202]

    Всякие изменения условий приготовления суспензии, вызывающие различие в размере и форме твердых частиц, степени их агрегации, вязкости жидкой фазы, содержании коллоидных, смолистых и слизистых примесей, могут резко изменять величину удельного сопротивления осадка. Условия приготовления малоконцентрирован ной суспензии, которая разделяется с закупориванием пор фильтровальной перегородки без образования на ней слоя осадка, также в значительной мере влияют на закономерности изменения сопротивления этой перегородки в процессе фильтрования. Это относится, в частности, к условиям процесса ксантогенирования в производстве вискозы, которые влияют на процесс последующего фильтрования. [c.207]

    Рассматривая зависимость компонентов движущей силы от к, замечаем, что для работы силы отталкивания она имеет экспоненциальный характер, для работы силы притяжения — степенной, третий член вовсе не зависит от к. При к->-0 работа силы отталкивания стремится к постоянной величине, тогда как работа силы притяжения стремится к бесконечности. Следовательно, на малых расстояниях преобладает притяжение. На больших расстояниях также преобладает притяжение, поскольку степенная функция убывает значительно медленнее, чем экспонента. Только на средних расстояниях может преобладать отталкивание при малых значениях параметра Дебая (при больших в сильных растворах электролитов силы отталкивания малы) [27]. На этих средних расстояниях, где из энергий взаимодействия преобладает работа силы отталкивания, вопрос об агрегации решает связь с третьим слагаемым. Если оно меньше по величине работы силы отталкивания на этих расстояниях, то система становится агрегативно устойчивой (т. е. частицы сближаются до расстояния к, но не могут преодолеть сил отталкивания и расходятся без взаимодействия), если больше, то агрегация возможна. [c.86]

    Многие основные красители, в том числе и трифенилметановые, способны к агрегации, степень которой зависит от их концентрации [31, 203, 358, 415]. На агрегацию красителей оказывают существенное влияШ1е строение самого красителя, природа растворителя и температура [413, 414]. Наиболее сильно красители агрегируются в водных растворах с уменьшением диэлектрической проницаемости растворителя агрегация ослабевает, и для спиртовых растворов она уже мало характерна [31, 32, 203, 358, 413—415]. [c.46]

    В этом уравнении а,- ,Сл1/и,с — степень агрегации (степень мицеллизации) иона сорта .индекс / во втором члене можно отнести к любому из ионов. Дробные величины V, (1 — /) и , а,7п/ играют роль стехиометрических коэффициентов реакции , но в отличие от истинных стехиометрических коэффициентов в уравнении (14.9) они зависят (через величины а,) от концентрации. Если для всех ионов а, = О, то (14.12) сводится к [c.69]

    Обычно пептизируемость коагулятов уменьшается со временем результате развития точечных контактов между первичными 1стицамн происходит упрочнение коагуляционных структур. По-)бное самопроизвольное изменение свойств коллоидных раство-)8, коагулятов, студней и гелей называют старением колой д о в. Оно проявляется в агрегации частиц дисперсной фазы, уменьшении их числа и степени их сольватации (в случае вод-ых растворов — гидратации), а также в уменьшении поверхности вздела между фазами и адсорбционной способности. [c.339]

    Однако в границах указанных выше концентраций, несмотря на значительные изменения в степени агрегации (особенно в бензоле), линейная зависимость скорости реакции от концентрации катализатора сохраняется. Кроме того, необходи- [c.49]

    Исследованию ассоциации ониевых солей уделялось внимание и в последующих работах [66, 67]. Показано, что степень ассоциации возрастает при уменьшении полярности растворителя. Так, при концентрации 0,5—5-10 М степень агрегации хлорида и бромида гексадецилтрибутиламмония изменяется от 1—2 в хлорбензоле до 4—6 в циклогексане [67]. [c.50]

    Для анализа полученных данных в свете теории ДЛФО нами были проведены расчеты энергии взаимодействия частиц Si02 в приближении взаимодействия двух сфер, а также двух плоских поверхностей [509]. Поскольку концентрация ЦТАБ была сравнительно небольшой, в расчетах допускалось, что различием между потенциалом и -потенциалом можно пренебречь. Агрегативно устойчивый в воде золь Si02 при введении в систему ЦТАБ (концентрация 1-10 моль/л) начинает агрегировать. При концентрации ЦТАБ 1-10 моль/л -потенциал частиц Si02 резко изменяется (до —5,3 мВ по сравнению с —62 мВ в воде), а степень агрегации частиц возрастает до 2,2, Из расчета энергии взаимодействия следует, что при данной т концентрации ЦТАБ высота энергетического барьера составляет около 6 кТ, а вторичный минимум крайне мал (доли кТ). Кроме того, его положению отвечает расстояние 800 нм, что также делает практически не-  [c.177]

Рис. 10.2. Зависимость степени агрегации золя Si02 при рН=3 (а) и рН=6 (б) от концентрации электролита Рис. 10.2. <a href="/info/677108">Зависимость степени</a> <a href="/info/171926">агрегации золя</a> Si02 при рН=3 (а) и рН=6 (б) от концентрации электролита
    Принимая, что посадочная площадка иона ЦТА+ составляет 0,2 нм [510] и учитывая развитые в работе [511] представления, можно найти степень покрытия поверхности частиц кварца ионами ПАВ вблизи изоэлектрической точки. Как показал расчет, она составляет около 0,1%. Учитывая этот факт, низкую степень агрегации и ее обратимый характер можтто объяснить на основе концепции ГС. При нейтрализации поверхностного заряда ионами ЦТАБ вблизи изоэлектрической точки образуются, вероятно, более прочные и протяженные ГС, что может быть связано с возникновением более благоприятных условий для развития водородных связей на силанольных группах теперь уже незаряженной поверхности SIO2. Это некоторым образом аналогично случаю увеличения протяженности ГС при снижении степени диссоциации силанольных групп на поверхности кварца при приближении к изоэлектрической точке [24]. [c.178]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Для подтверждения развиваемых представлений о значительной роли ГС воды в агрегативной устойчивости дисперсий гидрофильных частиц было исследовано влияние температуры на коагуляцию дисперсии алмаза. На основании литературных данных [30, 87, 477, 517] можно было ожидать, что с ростом температуры должен уменьшаться вклад положительной структурной составляющей в общую энергию взаимодействия частиц. Это, в свою очередь, должно снижать агрегативную устойчивость гидрофильных или гидрофилизированных дисперсий. Подтверждающее это положение экспериментальные данные, полученные для дисперсии алмаза в 5-10 М в растворе Ь1С1 при рН = 2 в интервале температур 20—50 °С приведены на рис. 10.9. Незначительная степень агрегации, наблюдаемая при 20°С (т=1,5), заметно увеличивается при возрастании температуры до 40 °С (т=1,8). Дальнейший рост температуры (50 °С) приводит к изменению самого характера процесса агрегации значительно увеличивается скорость коагуляции, образуются более крупные агрегаты, отсутствует выход на плато, наблюдавшийся при более низких температурах. При меньших концентрациях электролита (1-10 М Ь1С1) влияние повышения температуры становится менее заметным при 50°С в дисперсии алмаза наблюдается лишь незначительная степень агрегации. [c.187]

    Граничные условия (3.65)—(3.68) определяют концентрацию радикалов с в- в водной фазе, концентрацию радикалов в центре частицы с в-, концентрации мономера в центре частицы и на границе раздела фаз капля мономера—водная фаза. Условия сопряжения (3.67) на границе раздела фаз водная фаза—частица дают связь концентраций радикалов в водной фазе и в частице через коэффициент распределения и для концентрации мономера через коэффициент распределения р. Уравнения (3.68) являются условиями равенства диффузионных потоков на границе раздела фаз водная фаза—полимер-мономерная частица. Приведем обозначения задачи (3.47)—(3.68), которые не указывались выше С/ — концентрация инициатора тпр- — число растущих макрорадикалов в 1 см эмульсии Шр — число нерастущих макрорадикалов в 1 см эмульсии — вес капли с — концентрация мицелл М — молекулярный вес мономера р — плотность мономера р — плотность полимера Рз — площадь поверхности, занимаемая одним киломолем эмульгатора на поверхности адсорбированных слоев — степень агрегации мицелл — константа скорости распада инициатора k — константа скорости инициирования /Ср — константа скорости роста цепи k — константа скорости обрыва цепи / — эффективность инициирования — среднее значение концентрации мономера внутри частиц. [c.156]


Смотреть страницы где упоминается термин Агрегация степень: [c.184]    [c.332]    [c.176]    [c.177]    [c.178]    [c.188]   
Физико-химия коллоидов (1948) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегация



© 2025 chem21.info Реклама на сайте