Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтроны малоугловое

    Для полисилоксанового ЖК полимера в смектической фазе методой нейтронного малоуглового рассеяния найдено [164—165] отношение R IR = = 1.6 [c.252]

    С этих позиций следует подходить и к продолжающимся спорам о структуре полимерных расплавов илй о конформациях отдельных макромолекул в окружении себе подобных. В последние два года появилась серия работ, посвященных решению второго предмета спора методом малоуглового рассеяния нейтронов. Опыты, были выполнены только на гибкоцепных полимерах атактических (т. е. некристаллизующихся) — полистироле и полиметилметакри-лате —и на расплавах полиэтилена (поскольку это кристаллизующийся полимер). В первых двух случаях, как и следовало ожидать, среднеквадратичный радиус инерции меченых (т. е. обычных, [c.48]


    Разборка рибосомных частиц происходит при их инкубации в условиях повышенной ионной силы и высокой концентрации Вначале процесс сводится лишь к диссоциации рибосомных белков в порядке, обратном наблюдаемому при сборке. Исследования пространственной структуры малой частицы рибосомной РНК с различным содержанием белков методами электронной микроскопии и малоуглового рентгеновского и нейтронного рассеяния убеждают в том, что всего шесть белков из 21, а именно те, которые первыми присоединяются к 16S РНК при сборке, удерживают плотность упаковки и форму полинуклеотидной цепи, свойственные функ- [c.54]

    Малоугловое рассеяние рентгеновских лучей и нейтронов используется для анализа гетерогенности полимерных смесей и блоксополимеров, а совместно с ТЭМ дает возможность определить размеры доменов дисперсной фазы, например бутадиена (5 % мае.) в хлоро-преновой матрице. Однако наличие наполнителей в смесях может вызвать определенные трудности в получении результатов. [c.578]

    Анализ нейтронного рассеяния позволяет получить ценную информацию о нормальных и межцепных колебаниях в полимерах. Нейтроны с низкой энергией могут рассеиваться полимерным образцом и терять ча сть своей энергии, которая эквивалентна характеристическим молекулярным колебательным частотам образца. Возбуждающие нейтроны должны иметь узкое распределение по энергиям и среднюю энергию, близкую к энергии низкочастотных движений молекул рассеивающего вещества. При этих энергиях длины волн нейтронов сравнимы с атомными расстояниями. Рассматриваемый метод анализа позволяет оценить также сечения нейтронного рассеяния полимеров, конформации полимеров в стеклах, каучуках и растворах (особенно при малоугловом рассеянии нейтронов), структуру полимерных сеток. [c.303]

    Исследование растворов фуллерен-содержащих полимеров методом малоуглового нейтронного рассеяния [c.212]

    Для изучения конформации полимерных цепей в массе наиболее эффективным оказался метод малоуглового рассеяния нейтронов. Основное уравнение для структурной амплитуды 5 (з) молекулы в растворе имеет вид [c.25]

    Однако исследования ближнего порядка методами дифракции электронов и рентгеновских лучей, изучение ориентационного порядка методами светорассеяния и магнитного двойного лучепреломления, исследования морфологии методами светорассеяния и малоуглового рассеяния рентгеновских лучей, а также изучение конформации цепи в аморфной фазе методом малоуглового рассеяния нейтронов показали, что клубкообразная модель согласуется со всеми экспериментальными данными. В случае пачечной модели это не так [39]. В соответствии с этим конформация цепи, очевидно, тождественна конформации цепи в 0-растворителе Ориентационный порядок определяется только корреляцией между последовательно повторяющимися звеньями цепи. Такая упорядоченность может быть объяснена с помощью теории вращательной изомерии [40]. В остальном аморфная фаза однородна и сходна с обычной жидкостью. Таким образом, эти результаты показывают, что гибкоцепные полимеры в некристаллическом состоя- [c.30]


    В последние годы для определения параметров взаимодействия применяется метод малоуглового рассеяния медленных (тепловых) нейтронов, позволяющий оценить второй вириальный коэффициент А и его температурные производные [c.279]

    Однако последующие исследования функций радиального распределения, полученных методами электронографии и рентгенографии /125/, поставили под сомнение выводы авторов /123, 124/ и выявили лишь локальную упорядоченность в расположении участков молекул, по сути дела ничем не отличающуюся от ближнего порядка в структуре простых низкомолекулярных жидкостей. Аналогичные выводы получены методами ИК-спектроскопии /106/ и методом малоуглового рассеяния нейтронов /107/. [c.159]

    Такое различие могло бы быть следствием различного распределения конформеров в жидкой и газовой фазах. Однако многочисленные исследования, выполненные методами ИК-сйектроскопии /106/, малоуглового рассеяния нейтронов /107/, методами машинного моделирования /108, 109/, показали, что распределение конформеров н-алка-нов в жидкой и газовой фазах идентично. Причина этого, возможно, состоит в том, что межмолекулярные взаимодействия в жидких алканах слабые энергия межмолекулярных связей составляет 4- [c.152]

    Так, в работах /123, 124/ на основе данных электронной и /125/ рентгеновской дифракции бып сделан вывод, что для структуры углеводородных цепей в жидкой фазе характерна высокая упорядоченность. Упорядочшные области, образованные параллельными участками цепей в транс-конформациях, могут в случае н-алканов и полиэтилена простираться на расстояния 10 нм и занимать до 60% объема расплава. Однако последующие исследования функций радиального распределения, полученных методами электронографии и рентгенографии /125/, поставили под сомнение выводы авторов /123, 124/ и выявили лишь локальную упорядоченность в располож ии участков молекул, по сути дела ничем не отличающуюся от ближнего порядка в структуре простых низкомолекулярных жидкостей. Аналогичные выводы получены методами ИК-спектроскопии /106/ и методом малоуглового рассеяния нейтронов /107/. [c.159]

    В работе [36] французские ученые провели сершо экспериментов с исследованием растворов асфальтенов при помощи малоуглового рентгеновского (МУРР) рассеяния и малоуглового нейтронного рассеяния (МУНР). Системный анализ данных рассеяния показал, что асфальтено-вые агрегаты - не твердые объекты (диски или сферы). Скорее, они проницаемы и являются фрактачьными коллоидными обьектат. [c.39]

    Информацию о структуре М., состоянии межфазных пленок, межчастичных взаимод. и др. получают по данным светорассеяния, фотон-корреляц. спектроскопии, малоуглового рассеяния рентгеновских лучей и нейтронов, ЭПР, ЯМР и др. [c.86]

    Нейтронографич. методы все шире используют при исследовании текстуры в-ва, т. к. высокая проникающая способность нейтронов позволяет получить более полные сведения об анизотропии св-в образцов, чем рентгенография. Надмолекулярную структуру белков и полимерных материалов исследуют по малоугловому рассеянию нейтронов при этом устанавливают момент инерции, форму и размеры частиц. [c.206]

    Впервые этот принцип организации рибосомы был выведен И. Н. Сердюком и др. из экспериментов по измерению радиусов инерции (Rg) рибосомных субчастиц. Прежде всего, радиус инерции, измеренный методом диффузного малоуглового рассеяния рентгеновских лучей, оказался существенно меньше, чем можно было ожидать из размеров (объема) субчастицы, если бы она была однородно плотным телом. Отсюда следовал вывод, что электронно более плотный компонент частицы (РНК) локализуется преимущественно ближе к центру тяжести частицы, в то время как менее плотный компонент (белок) имеет тенденцию располагаться в среднем ближе к периферии. Далее, измерение радиусов инерции рибосомных субчастиц с помощью разных типов излучения (рентгеновские лучи, нейтроны, свет) показало, что чем больше вклад белкового компонента, по сравнению с РНК, в рассеяние (относительная рассеивающая доля белка растет в вышеуказанном ряду типов излучения), тем больше значение радиуса инерции частицы (рис. 62). Наконец, применение нейтронного рассеяния частиц в растворителях с разной рассеивающей способностью для нейтронов (разным соотношением НаО и DaO) позволило прямо измерить радиус инерции РНК и белкового компонента in situ в отдельности. Дело в том, что Н2О и D2O сильно различаются по рассеивающей способности для нейтронов, а рассеивающие способности биологических макромолекул занимают проме- [c.104]

    Если задача ограничивается только анализом ММР, наиболее употребительным методом становится сейчас хроматография, в силу ряда присущих ей специфических удобств [22, 24]. Сведения о размерах и конформациях макромолекул дают другие транспортные и гидродинамические методы, но их обычно приходится градуировать по таким абсолютным методам, как рассеяние света, малоугловое рассеяние рентгеновых лучей или медленных нейтронов и др. Эти методы, в конечном счете, позволяют определить или (Р) или характеристи- [c.52]

    Формализм при обработке результатов таких экспериментов такой же, что и при малоугловом рассеянии рентгеновых лучей, только в последнем случае рассеяние происходит на электронах и для повышения эффективности метода нужно стремиться, к максимальной разности электронных плотностей регистрируемых объектов и матрицы или элементов структуры одного объекта. При нейтронном рассеянии, как в прямом, так и обратном варианте, это требование должно касаться протонных плотностей. [c.74]


    Поэтому более корректным считается метод приготовления образцов посредством растворения дейтеро-полимера в протомономере, с последующей медленной полимеризацией последнего. При этом еще надо так отрегулировать ММР образующегося прото-полимера, чтобы не возникло недоразумений из-за несоответствия размеров меченых макромолекул этому ММР. Бенуа с сотр. [34], впервые реализовавшие малоугловое рассеяние нейтронов от полимеров на опыте, указывали на опасность таких несоответствий, приводящих к прямым искажениям гра- фиков Гинье. [c.75]

    У оксида алюминия, как уже отмечалось выше, плотность изменяется с 3,05 г/см в расплавленном состоянии до 3,97 г/см в твердом. Это означает, что компенсацга разницы объемов может происходить за счет образования вакансий в количествах, превышающих равновесную. Рассматриваемый процесс усиливается за счет избыточных компонентов и примесей. Об этом свидетельствуют, например, кластеры в монокристаллах лейкосапфира (рис. 53), обнаруженные методами нейтронного и рентгеновского малоуглового рассеяния [74]. [c.75]

Рис. 53. Объемное распределение кластеров в монокристаллах лейкосапфира по радиусам в сферическом приближении. Сплошная линия — по данным рентгеновского малоуглового рассеяния пунктир — по данным нейтронного рассеяния. Распределения Оу даны в относительных единицах и отнормированы по максимуму фракции мелких кластеров X, N — изменение интенсивности малоуглового рассеяния Рис. 53. <a href="/info/189901">Объемное распределение</a> кластеров в монокристаллах лейкосапфира по радиусам в <a href="/info/1285249">сферическом приближении</a>. Сплошная линия — по данным <a href="/info/128569">рентгеновского малоуглового рассеяния</a> пунктир — по данным <a href="/info/128659">нейтронного рассеяния</a>. Распределения Оу даны в <a href="/info/780140">относительных единицах</a> и отнормированы по максимуму <a href="/info/145116">фракции мелких</a> кластеров X, N — <a href="/info/9980">изменение интенсивности</a> малоуглового рассеяния
Рис. 9.4. Малоугловое рассеяние нейтронов расплавом триблочных сополимеров полистирол Н — полистирол О — полистирол Н (где О обозначает "дейтерированный ). Молекулярный вес каждого блока равен 13000. q = (4тг/Л)5шв/2 — вектор рассеяния. Точки дают интенсивность рассеяния l(q) в произвольных единицах. Сплошная кривая — предсказание уравнений (9.69) и (9.70), вычисленное для этого случая Коттоном. Единственным подгоночным параметром был невозмущенный размер цепи или, что то же, ее радиус инерции эта кривая соответствует = 56 А. Значение Я, получаемое в независимых нейтронных исследованиях распл авов ПС, содержащих несколько помеченных цепей, составляет 60 А. Рис. 9.4. <a href="/info/128569">Малоугловое рассеяние</a> нейтронов расплавом триблочных <a href="/info/370118">сополимеров полистирол</a> Н — полистирол О — полистирол Н (где О обозначает "дейтерированный ). Молекулярный вес каждого блока равен 13000. q = (4тг/Л)5шв/2 — <a href="/info/1387676">вектор рассеяния</a>. Точки дают <a href="/info/80140">интенсивность рассеяния</a> l(q) в <a href="/info/1321871">произвольных единицах</a>. Сплошная кривая — предсказание уравнений (9.69) и (9.70), вычисленное для этого случая Коттоном. Единственным <a href="/info/779737">подгоночным параметром</a> был <a href="/info/1054887">невозмущенный размер</a> цепи или, что то же, ее <a href="/info/177019">радиус инерции</a> эта <a href="/info/1573666">кривая соответствует</a> = 56 А. Значение Я, получаемое в независимых <a href="/info/1653411">нейтронных исследованиях</a> распл авов ПС, содержащих несколько помеченных цепей, составляет 60 А.
    Робертсон [31] дал подробный анализ результатов ис-следованпя надмолекулярной организации полимеров, находящихся в аморфном состоянии, методами измерения плотности, дифракции рентгеновских лучей и нейтронов под малыми и большими углами, электронной микроскопии и электронографии, изучения термоупругости, двойного лучепреломления под нагрузкой, рэлеев-ского рассеяния и т. д. На основании такого анализа был сделан вывод о том, что в аморфных полимерах существует локальная упорядоченность, которая приводит к сохранению анизотропии на расстоянии порядка нескольких десятков ангстрем. Результаты малоуглового рассеяния рентгеновских лучей показывают, что упорядоченные области не имеют четких границ. Робертсон полагает, что отсутствуют экспериментальные доказательства, подтверждающие наличие в аморфных полимерах доменов размером около 100 А с регулярными равновесными структурами. По его мнению, доменные структуры, которые наблюдались с помощью электронных микроскопов и малоуглового рассеяния рентгеновских лучей, обусловлены существованием загрязнений или неравновесных структур. [c.67]

    Так, строение поверхности и пористость угля определяют его поведение в любых технологических процессах (адсорбция, испарение, набухание, массоперенос, диффузия, горение). Они зависят от внешних условий, определяют многие реологические свойства угля. Длительное время для измерения внутренней поверхности и объема пор угольных объектов использовали методы волюмометрии (например, ртутная или гелиевая поро-метрия). Эти методы обладают двумя существенными недостатками — оказывают необратимое воздействие на образец н меют низкую точность, так как не характеризуют внутренние недоступные поры образца. Этих недостатков лишены методы малоуглового рассеяния рентгеновских лучей и нейтронов, в основе которых лежит измерение интенсивности рентгеновского или нейтронного излучения при различном угле рассеяния [79]. Эти методы не связаны с разрушением исследуемой пробы, позволяют оценить распределение пор по размерам, учитывают как открытые, так и внутренние поры. [c.81]

    Известно, что в растворах фуллеренов возможно структурооб-разование. В работах [77, 78] было исследовано поведение Сбо в растворах методом малоуглового рассеяния нейтронов. Данные нейтронной дифракции обнаружили явления самоорганизации фуллеренов - рост специфических фрактальных структур в течение длительного времени наблюдения t - 10 -10 8 при 20 "С в условиях различного молекулярного окружения. В зависимости от природы растворителей было установлено радикальное изменение структуры растворов. В бензоле молекулы Сео ассоциациируются в малые группы (-5 молекул, радиус инерции гд- 3 пш), которые в свою очередь связаны в более крупные цепные структуры (радиус инерции 30 пт). Напротив, в толуоле на начальной стадии упорядочения раствора (-10 в) фуллерены агрегировали в довольно массивные кластеры ( 200 молекул, г - 7 пт). Перекрываясь в растворе, кластеры в течение 10 -10 8 формировали протяженные структуры (> 100 пт) типа поверхностных фракталов (размерность поверхности Од = 2.2). [c.212]

    В экспериментах по малоугловому рассеянию нейтронов (SANS) и спин-эхо-измерениях (NSE) были изучены звезды (Р8)цСбо [84, 85] в растворах в сравнении с линейными PS-молекулами с массой, равной массе луча. Данные дифракции нейтронов на протонированных молекулах PS и звездах в D-бензоле ( fiDg) (концентрация полимера С = 1% мае.) и на дейтерированных полимерах в протонированной матрице (концентрация D-полимеров С = 1% и 1 % мае.) при 20 °С удовлетворительно описываются функцией Зимма (1) при подгоночных параметрах, приведенных в таблице 1. [c.214]

    По указанным причинам в последние годы были проведены разнообразные исследования полимеров, которые могут образовывать упорядоченные расплавы или растворы. Были изучены полимеры, в которых упорядоченная структура создавалась боковыми группами. В этом случае структура основной цепи играет лишь второстепенную роль. В настоящей главе сделан обзор структур низкомолекулярных жидкокристалличеоких систем, а также методов, используемых для их анализа, и результатов структурного анализа полимеров, образующих частично упорядоченные расплавы. Значительная часть главы посвящена описанию и исследованиям молекулярной структуры этих фаз. Автор полагает, что такой общий обзор представляет интерес как вследствие последних достижений в области структурного анализа полимерных и жидкокристаллических систем (например, малоугловое нейтронное рассеяние частично дейтерированных образцов), так и потому, что. число проведенных детальных структурных исследований полимеров, образующих частично упорядоченные расплавы, еще недостаточно велико. [c.15]

    Сообщений о конформационных исследованиях канцентриро-ванных растворов методом малоуглового рассеяния нейтронов до [c.39]

    Персистентаую длину цепи вычисляют, подставляя экспериментальные значения или в уравнения (1.5) и (1.6).Размеры макромолекул можно определить по рассеянию света, малоугловому рассеянию рентгеновских лучей и медленных (тепловых) нейтронов, седиментационным, диффузионным и другими методами. [c.112]

    Достоинство описанных методов — возможность определения молекулярных масс и размеров молекул низкомолекулярных полимеров и олигомеров.Кроме того, с их помощью можно определить невозмущенные размеры полимеров в блочном состоянии, если в качестве растворенного вещества используются дейтерированные образцы или полимеры, в которых атомы водорода замещены атомами галогенов, а в качестве растворителя — недейтерированный или негалогенированный образец. Методом малоуглового рассеяния рентгеновских лучей или тепловых нейтронов можно также непосредственно определить персистентную длину цепи а. [c.114]

    Определение в-температуры по второму вириальному коэффициенту. При 0-температуре = О, следовательно, угол наклона графика зависимости л/с (или Нс/Яд) от с равен нулю. Для определения Лз, помимо измерений осмотического давления, могут использоваться такие методы определения молекулярных масс и размеров макромолекул, как светорассеяние, малоугловое рассеяние рентгеновских лучей и малоугловсе рассеяние тепловых нейтронов. Для определения 0 температуры находят А при разных температурах и строят зависимость от Г, которая линейна лишь вблизи 0-температуры. С другой стороны, Лд можно определять при одной температуре, варьируя состав смеси растворитель — осадитель. Состав, при котором А, = О, называется 0-составом. [c.161]

    Квалифицированный анализ состояния знаний о структуре жидкой воды, полученных на основании исследования малоуглового рассеяния рентгеновских лучей и медленных нейтронов, спектроскопических, диффузионных и диэлектрических измерений, выполненных до 1970 г., содержится в монографии Эйзен-берга и Кауцмана [1]. Более поздние работы были критически рассмотрены Шахпароновым в 1982 г. [2]. [c.8]

    Все предложенные различными исследователями модели структуры воды в жидком состоянии должны отвечать результатам измерений малоуглового рассеяния рентгеновских лучей и медленных нейтронов в воде, согласовываться с результатами, полученными другими методами исследования, и объяснять не только физические свойства воды (плотность, вязкость, диэлектрическую проницаемость и др.), но и ее растворяющую способность. К таким моделям относятся различные варианты кластерных структур, предложенные Немети и Шерага [3], Френком И Веном [4] и другими, модель льдоподобных пустот Самойлову [5], а также модели, учитывающие аналогию между составом тазогидратов и клатратов ряда органических молекул в вод-/йых растворах. [c.9]

    О возможных изменениях в распределении молекул в твердых растворах дают представление данные, полученные Шелтеном и др. [ 206]. Эти авторы проследили при помощи малоуглового рассеяния нейтронов [c.311]


Библиография для Нейтроны малоугловое: [c.222]    [c.157]   
Смотреть страницы где упоминается термин Нейтроны малоугловое: [c.444]    [c.30]    [c.14]    [c.95]    [c.577]    [c.25]    [c.26]    [c.143]    [c.8]    [c.114]   
Вода в полимерах (1984) -- [ c.463 , c.467 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон



© 2025 chem21.info Реклама на сайте