Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение полимеров и набухание

    Рассмотрим факторы, влияющие на набухание и растворение полимеров. Температура и давление влияют на эти процессы в соответствии с принципом Ле Шателье. Если набухание (растворение) сопровождается выделением теплоты, то с повышением температуры степень набухания (растворимость) уменьшатся. Однако скорость набухания (растворения) растет в соответствии с увеличением скорости диффузии. Так как объем системы при набухании уменьшается, то с ростом давления степень набухания повышается. [c.318]


    Неограниченное набухание является характерным для большинства линейных полимеров, процесс набухания которых непосредственно переходит в растворение. После набухания начинается процесс взаимной диффузии макромолекул полимера в растворитель и молекул растворителя в полимер. При этом полимер из твердого (студнеобразного) состояния постепенно переходит в раствор, после растворения полимерная фаза исчезает. Диффузия макромолекул затруднена вследствие их больших размеров и сил межмолекулярного взаимодействия, поэтому процесс протекает так же медленно, как первоначальная диффузия растворителя В полимер. Следовательно, и на втором этапе растворения для установления равновесного состояния раствора требуется длительное время. [c.65]

    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]

    Большое значение в растворении полимеров имеет растворитель, точнее, сродство растворителя и полимера. Если полярности молекул полимера и молекул растворителя близки, то набухание полимера протекает легко и заканчивается растворением. [c.298]


    Различают неограниченное и ограниченное набухание. Неограниченное набухание — это набухание, которое в конечном итоге заканчивается растворением полимера. В качестве примера неограниченного набухания можно назвать растворение белка в воде или каучука в бензине. [c.331]

    На набухании и растворении полимеров сказывается их физическое состояние. Конечно, легче всего набухают и растворяются полимеры в вязкотекучем и высокоэластическом состоянии, молекулы которых связаны друг с другом наименее прочно. Значительно труднее растворяются полимеры, находящиеся в застеклованном состоянии. В этом случае сначала при контакте полимера с растворителем молекулы растворителя проникают в поверхностный слой полимера, что вызывает поверхностное набухание его. Далее набухший полимер растворяется таким же образом, как и высокоэластичный полимер. Граница раздела между твердым полимером, в который еще не проник растворитель, и набухшим его слоем [c.444]

    Ограниченное растворение полимера вследствие наличия в нем пространственной молекулярной сетки можно трактовать и с термодинамической точки зрения. Действительно, при набухании такого полимера гибкие участки макромолекул, лежащие между узлами сетки, растягиваются и распрямляются и, следовательно, энтропийные пружины переходят в менее вероятное состояние. В результате энтропия системы уменьшается, причем это уменьшение может стать равным увеличению энтропии в результате смешения. В этот момент набухание прекратится, т.е. система придет в равновесное состояние. Правильность приведенных рассуждений подтверждается наличием связи между модулем упругости полимеров и их способностью к набуханию (Флори). [c.446]

    Истинному растворению полимеров часто предшествует процесс набухания. Он заключается в увеличении объема и массы полимера за счет поглощения им какого-то количества растворителя. При контакте полимера с растворителем начинается взаимная диффузия молекул растворителя в полимер, а макромолекул полимера — в растворитель. Однако скорость диффузии в одном и другом направлениях будет различаться в той же пропорции, что и размеры, а также подвижности диффундирующих частиц. Резкое различие в подвижностях молекул растворителя и макромолекул ВМВ является причиной набухания. [c.465]

    Самопроизвольное набухание и растворение полимера сопровождаются уменьщением АО (ЛС<0). Это возможно в двух случаях. [c.466]

    Сравнительно небольшие молекулы или молекулы, имеющие глобулярное строение, обеспечивают полимерам растворение без набухания. [c.208]

    Особенности процесса растворения полимеров. Первой стадией растворения любого полимера является его набухание. Набухание— это процесс поглощения полимером низкомолекулярной жидкости, сопровождающийся увеличением объема полимера и изменением конформаций его макромолекул. Большие молекулы полимера характеризуются низкими значениями коэффициентов диффузии. Поэтому смешение осуществляется медленно, и его промежуточные стадии легко фиксируются. При этом благодаря способности макромолекул изменять свою форму растворитель на промежуточных стадиях растворения не только заполняет пустоты между отдельными звеньями (процесс, аналогичный капиллярной конденсации в твердых пористых телах), но и увеличивает эффективные радиусы полимерных клубков и расстояния между их центрами масс, не нарушая при этом сплошности полимерного тела. Последнее приводит к значительному увеличению объема полимерной фазы по сравнению с исходным. Набухший полимер фактически представляет собой раствор низкомолекулярной жидкости в полимере. [c.82]

    В случае линейных полимеров при изменении условий (температуры, концентрации и др.) ограниченное набухание может перейти в неограниченное, т. е. произойти растворение полимера. При этом макромолекулы диффундируют в растворитель вплоть до образования гомогенного раствора. [c.83]

    Поглощение жидкостей эластичными гелями сопровождается значительным увеличением объема студня или его набуханием ( 159). Объем студня может в десятки раз превосходить собственный объем полимера. Набухание может переходить в полное растворение полимера. [c.371]

    Растворение полимеров с линейными гибкими молекулами сопровождается набуханием — процессом, в котором происходит не только диффузия молекул растворяемого вещества в растворителе (как у низкомолекулярных веществ), но, главным образом, диффузия молекул растворителя в высокомолекулярное соединение. Это связано с тем, что макромолекулы в обычных аморфных полимерах упакованы сравнительно неплотно и в результате теплового движения гибких цепей между ними периодически образуются весьма малые пространства, в которые могут проникать молекулы растворителя, обладающие малыми размерами и большой подвижностью. [c.150]


    Перед растворением высокомолекулярные вещества с гибкими линейными молекулами обычно набухают, т. е. поглощают низкомолекулярный растворитель, значительно увеличиваясь в массе и объеме. Таким образом, набухание является первой стадией растворения полимеров и как всякий самопроизвольный процесс может происходить только при уменьшении свободной энергии системы. Однако в отличие от растворения низкомолекулярных веществ, процесс смешения полимера и растворителя на первой стадии протекает односторонне — растворитель проникает в полимер, тогда как макромолекулы не переходят в растворитель. Причина такого одностороннего смешения, т. е. набухания, заключается в том, что скорость диффузии малых молекул растворителя в полимер значительно больше скорости диффузии больших молекул полимера в растворитель. [c.152]

    Молекулярные веса большинства полимеров, за небольшим исключением, находятся в пределах 10 —10 . Подавляющее большинство полимеров линейной и разветвленной структур удается растворить без разрушения химических связей между атомами, поэтому изучение свойств разбавленных растворов является наиболее распространенным методом оценки молекулярных характеристик полимеров. Растворению часто предшествует длительный процесс набухания, который зависит от различия в скоростях диффузии малых молекул растворителя и больших молекул полимера. При растворении полимера молекулы растворителя проникают между отдельными макромолекулами, увеличивая межмолекулярные расстояния и уменьшая силы взаимного притяжения между цепями полимера. Этот процесс обрывается при образовании истинного раствора, т. е. системы, в которой практически отсутствует взаимодействие между молекулами растворенного вещества. Однако для высокомолекулярных соединений достигнуть этого можно только при очень низких концентрациях полимера (порядка 0,1—0,2%). [c.149]

    Растворению полимера предшествует его набухание. Оно характерно для всех высокомолекулярных соединений и никогда не наблюдается в низкомолекулярных веществах. С этим явлением мы часто встречаемся 1з биологии и медицине, а также в некоторых производствах, например при пластификации и получении клеев, в хлебопечении. [c.211]

    Ограниченное набухание обычно заканчивается на стадии Па или Пб, неограниченное — приводит к растворению полимера (рис. 124, ///). Ограниченно набухший полимер называется студнем. Следует отметить, что студень можно получить и путем конденсации отдельных макромолекул в растворе, чаще всего посредством водородных связей. [c.314]

    При контакте полимера с растворителем всегда происходит его набухание. Набухание — это самопроизвольный процесс поглощения низкомолекулярного растворителя высокомолекулярным веществом, сопровождающийся увеличением массы и объема полимера. Набухание часто является начальным этапом растворения высокомолекулярных веществ. Различают ограниченное и неограниченное набу.хание. [c.248]

    На второй стадии набухания может происходить переход некоторого числа макромолекул в низкомолекулярный растворитель. Ограниченное набухание заканчивается на второй стадии, неограниченное набухание приводит к растворению полимера. [c.250]

    Стадии набухания иллюстрирует рис. 102. На пер-вой стадии набухания (рис. 102,6) при увеличении объема полимера объем всей системы несколько уменьшается (контракция). На второй стадии объем набухшего полимера по сравнению с первоначальным объемом увеличивается (рис. 102, е), но при этом возможно и частичное растворение полимера (рис. 102, г). [c.250]

    I Для хорошего набухания и растворения полимера необходима его близость по природе (или полярности) к растворителю. Если Они сильно различаются по этим параметрам, то набухания я растворения не происходит. Например, неполярные полимеры алифатического ряда хорошо смешиваются с неполярными предельными углеводородами (бензином) и не взаимодействуют с силь-рополярными жидкостями (вода, спирты). Полярные полимеры [ [целлюлоза, поливиниловый спирт) не взаимодействуют с углево- цородами и хорошо набухают и растворяются в воде. Ароматиче-. кии полистирол не растворяется в воде, слабо набухает в бензине, 1(0 хорошо растворяется в ароматических растворителях (толуол, [c.318]

    Растворы большинства высокомолекулярных соединений, как было сказано, являются истинными. Однако значительные молекулярные массы и полидисперсность обусловливают нарушение термодинамической обратимости их свойств уже при малых концентрациях. Отличительной особенностью процесса растворения является набухание, предшествующее собственно растворению. В зависимости от первичной структуры полимера (наличия и природы боковых заместителей в звеньях полимерной цепи, регулярности строения макромолекулы) набухание может быть ограниченным и неофаниченным, т.е. завершающимся образованием раствора. [c.90]

    Исиользование высокомолекулярных соединений очень часто саязанос растворением или набуханием их в различных средах. Поэтому растворимость полимеров и возможность получения рас- [c.60]

    Набухание полимеров. Процесс растворения полимеров, как указывалось, проходит через стадию их набухания. Внешне процесс набухания выражается в изменении объема и веса образца вследствие поглощения полимером растворителя. Набухание можно рассматривать как одностороннее смешение, т. е. только как проникание растворителя в полимер. Подвижность макромолекул слишком мала, а силы когезин велики, поэтому вначале макромолекулы полимера пе диь 1фуиднруют в растворитель. Молекулы растворителя, диффундируя в полимер, вначале заполняют в нем межмолекулярные пространства, а затем, по мере увеличения объема растворителя в полимере, начинают раздвигать макромолекулы. Скорость диффузии растворителя в полимер мавпсит от свойств растворителя и структуры полимера, С увеличением количества продиффундировавшего в полимер растворителя расстояние между макромолекулами постепенно возрастает, что приводит к пропорциональному увеличению размеров набухающего образца. Таким образом, набуханием называют проникание молекул растворителя между макромолекулами 1[олимера, вследствие чего увеличиваются расстояния между 01-дельными сегментами, а затем и цепями полимера. [c.63]

    За - вторая стадия 36 - вторая стадия набухания с чаотш-вым растворением полимера  [c.64]

    Различают шда набухания ограничен но ей неограниченное. В пел ом случае набухание прекращается, достигнув определенного предела. Набухшее тело сохраняет свою форму и четкую хфаницу раздела о хидков средой. Ограничен но набухший полимер называетоя студнем (см. о.78). Во втором случае набухание с течением времени завершается полным растворением полимера. [c.64]

    Растворение полимеров проходит через предварительное набухание, которое заканчивается образованием жидкотекучих растворов. Если молекулы полимера имеют пространствеино-развитое строение или сшиты между собой, то процесс растворения полимера затормаживается на стадии набухания — происходит ограниченное набухание. Таковы, например, желатин в холодной воде, различные сорта резины и некоторые пластмассы в углеводородах. Ограниченное набухание полимера характеризуется степенью набухания а, определяемой как отношение приращения [c.218]

    Процесс растворения высокомолекулярных соединений своеобразен и отличается от растворения низкомолекулярных веществ. Растворению полимера предшествует его набухание. Оно характерно для всех высокомолекулярных соединений и никогда не наблюдается у низкомолекулярных веыгеств. В настоящее время благодаря работам В. А. Каргина и С. М. Липатова установлен механизм набухания. Он сводится в основном к двум различным про- [c.330]

    Часто набухание студня переходит в полное его растворение (например, набухание каучука в бензине или гуммиарабика в воде). В этом случае говорят онеограниченном набухании данного полимера. Если студень поглощает определенное количество растворителя, но не образует раствора полимера, то такое набухание называется ограниченным. В качестве примера можно назвать набухание желатина в холодной воде, вулканизированного каучука в органических жидкостях. Иногда ограниченное набухание может переходить в неограниченное при повышении температуры или изменении состава среды. Так, студень желатина хорошо растворяется в воде при нагревании выше 313—315 К или при комнатной температуре при добавлении 2 н. раствора KS N илн KI. [c.390]

    Заметим, что поскольку растворимость связана с движением в растворе не всей макромолекулы, а ее сегментов, то она не должна зависеть от молекулярного веса полимера. Однако он весьма значительно сказывается на скорости растворения. Чем меньше молекулярный вес, тем больше растворение высокополи-мера похоже на растворение низкомолекулярного вещества. Известно, например, что деструктированный каучук растворяется без набухания. Наоборот, с увеличением молекулярного веса растворение полимеров замедляется. При весьма малых скоростях растворения, что наблюдается, когда молекулы полимера очень большие, может даже создаться неправильное представление о нерастворимости вещества. Из сказанного также понятно, что если молекулы полимера жесткие, т. е. если длина сегмента практически равна длине всей цепи, растворимость всегда должна зависеть от степени полимеризации. [c.443]

    Набухание далеко не всегда кончается растворением. Очень часто после достижения известной степени набухания процесс прекращается. Одна из причин такого явления может заключаться в том, что высоком,олекулярное вещество и растворитель способны смешиваться ограниченно. Поэтому в результате набухания в системе образуются две фазы — насыщенный раствор полимера в растворителе (собственно раствор) и насыщенный раствор растворителя в полимере (гель, студень). Такое ограниченное набухание носит равновесный характер, т. е. объем набухшего до предела высокомолекулярного вещестна неограниченно долго остается неизменным, если только в системе не произойдут химические изменения. Примерами набухания, обусловленного ограниченным растворением, являются набухание поливинилхлорида в ацетдне и полихлоропрена в бензоле. Следует отметить, что ограниченное набухание, причина которого кроется в ограниченном растворении, очень часто при изменении условий опыта переходит в неограниченное. Так, желатин и агар, набухающие ограниченно в холодной воде, в теплой воде набухают неограниченно. [c.445]

    В настоящее время еще невозможно точно установить связь между природой растворителя и его способностью растворять данное высокомолекулярное вещество. Обычно ограничиваются эмпирическим правилом подобное растворяется в подобном. Иными словами, неполярные полимеры растворяются в неполярных растворителях, а полярные —в полярных. Джи установил связь между способностью растворителей вызывать набухание и растворение полимера и значениями плотностей когезионных энергий этих растворителей. Удельная плотность когезио 1ной энергии, /Умол (где Е — когезионная энергия или скрытая теплота испарения, Умол — мольный объем) представляет собой энергию, которую необходимо затратить для того, чтобы раздвинуть молекулы, содержащиеся в 1 см полимера, на расстояние, превышающее сферу их действия. На ряде примеров было показано, что максимальное набухание наблюдается, когда удельные плотности когезионной энергии растворителя и полимера равны или близки. [c.445]

    Растворение макромолекулярных коллоидов проходит через стадию набухания, являющуюся характерной качественной особенностью веществ этого типа. При набухании молеку.лы растворителя проникают в твердый полимер и раздвигают макромолекулы. Последние из-за своего большого размера медленно диффундируют в раствор, что внешне нрояв.ляется в увеличении объема полимера. Набухание может быть неограниченным, когда конечным его результатом является переход полимера в раствор, и ограниченным, если набухание не доходит до растворения полимера. Ограниченно набухают обычно полимеры с особой, трехмерной структурой, отличающейся тем, что атомы всего вещества [c.295]

    Растворение высокомолекулярных соединений представляет собой весьма своеобразный процесс, отличающийся от растворения низкомолекулярных веществ. При раствоиеиии низкомолекулярных веш,еств происходит взаимное смешение растворителя и растворенного веп ества, близких по размерам молекул и по скорости диффузии. При растворении высокомолекулярных соединений обычно вначале происходит набухание, т. е. проникновение небо.пьших и подвилшых молекул растворителя в полимер. Молекулы растворителя раздвигают макромолекулы, ослабляя связи между ними и облегчая им тем самым переход в раствор. При растворении полимера можно [c.437]

    Набухание далеко не всегда кончается растворением полимера. Очень часто после достижения определенной степени набухания процесс прекращается из-за того, что высокомолекулярное вещество ограниченно растворяется в данном растворителе. Вследствие этого в конце процесса набухания образуется две фазы — насыщенный раствор полимера в растворителе и насыщенный раствор растворителя в полимере (студень). Такое ограниченное набухание имеет много общего с ограниченным растворением жидкостей. Примерами набухания, обусловленного ограниченным растворением, является набухание поливинилхлорида в ацетоне и полихлоронрена в бензоле. [c.152]

    Возьмите кусочек полученного полимера тнгельными щипцами и внесите в пламя газовой горелки. Обратите вшшание на цвет пламени, характерное потрескивание при горении и запах. Опустите оставшийся кусочек полимера в пробирку с бензином. Происходит ли растворение или набухание полиметилметакрилата в бензине  [c.249]

    Ограниченное набухание обычно заканчивается на стадии Па или //б, неограниченное — приводит к растворению полимера (рис. XVI. 2,///). Ограниченно набухший полимер называете. студнем. Отметим, что студень можно получить н путем кондеп- [c.301]


Смотреть страницы где упоминается термин Растворение полимеров и набухание: [c.315]    [c.301]    [c.34]    [c.377]    [c.313]    [c.65]    [c.438]    [c.466]    [c.213]    [c.250]   
Физико-химия полимеров 1963 (1963) -- [ c.311 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Набухание



© 2024 chem21.info Реклама на сайте