Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Октаэдрические комплексы теория кристаллического пол

    Величину Од (иногда Д=1009) обычно называют параметром расщепления. Для октаэдрического комплекса теория кристаллического поля приводит к выражению Г)д = др , где — эффективный заряд лиганда, а [c.328]

Рис. 20-10. Модель октаэдрического комплекса в теории кристаллического поля. Шесть лигандов представлены шестью отрицательными зарядами, расположенными как раз против пучностей электронной плотности 2-и г-орбиталей металла. Если на этих двух -орбиталях имеются электроны, они должны отталкиваться отрицательными зарядами лигандов. Заселение электронами таких -орбиталей металла требует поэтому больше энергии по сравнению с заселением И -орбиталей, пучности которых направлены между лигандами. Рис. 20-10. <a href="/info/361518">Модель октаэдрического комплекса</a> в <a href="/info/2530">теории кристаллического поля</a>. <a href="/info/1775068">Шесть лигандов</a> представлены шестью <a href="/info/17611">отрицательными зарядами</a>, расположенными как раз против пучностей <a href="/info/2873">электронной плотности</a> 2-и г-<a href="/info/68278">орбиталей металла</a>. Если на этих <a href="/info/1696521">двух</a> -орбиталях имеются электроны, они должны отталкиваться <a href="/info/1716752">отрицательными зарядами лигандов</a>. <a href="/info/761243">Заселение электронами</a> таких -<a href="/info/68278">орбиталей металла</a> требует поэтому <a href="/info/1636959">больше энергии</a> по сравнению с заселением И -орбиталей, пучности которых <a href="/info/1438921">направлены между</a> лигандами.

    Естественно, энергия трех Г2д-орбиталей одинакова то же самое справедливо для двух е -орбиталей. Если вкладом gj пренебречь, разность между энергиями орбиталей и tjg составит Зе - 4е , что в теории кристаллического поля соответствует Д. В комплексе энергии е- и Гг-орбиталей определяются как S/3e + 4/3e и 4/3ej + 8/9е + 16/9 j соответственно. Отметим, что при таких параметрах Д = 4/9До . В комплексах более низкой симметрии добавляются величины энергий всех лигандов и рассчитываются энергии -орбиталей. Численные значения параметров е , и определяют из энергий -орбиталей октаэдрических комплексов. Значения е для различных комплексов параметризуют в соответствии с интегралом перекрывания. Значение описанного подхода состоит в том, что совокупность параметров, полученную для данного лиганда и данного металла, можно использовать для объяснения спектров комплексов многих переходных металлов, если учесть геометрию комплекса и перекрывание. В работе [47] приведены соотношения между Dq, Ds, Dt, 6а, ott и и е . [c.118]

    Системы интенсивно изучали, особенно комплексы Сг . В октаэдрических комплексах электроны металла находятся на орбиталях поэтому сверхтонкое взаимодействие с лигандом обычно мало. г-Фак-тор для этой системы определяется, согласно теории кристаллического поля, выражением [c.236]

    Теория кристаллического поля применима также к тетраэдрическим и плоско-квадратным комплексам. Однако энергетическая последовательность -орбиталей в комплексах последнего типа отличается от присущей октаэдрическим комплексам. [c.401]

    Мы рассмотрели теорию кристаллического поля в приложении к комплексам с октаэдрическим расположением (октаэдрической координацией) лигандов. С аналогичных позиций могут быть рассмотрены и свойства комплексов с иной, например тетраэдрической, координацией. [c.359]

    В системе -уровней октаэдрического комплекса имеются два близких уровня несвязывающий к, и разрыхляющий образованные при участии -уровней центрального атома. Расстояние между ними принимается равным 10 Именно они оказываются внешними электронными уровнями и заполняются электронами от одного до десяти. Этот вывод соответствует положению теории кристаллического поля о расщеплении уровня -электронов на 2 и eg в октаэдрическом поле. [c.127]

    В рамках теории кристаллического поля, в которой лиганды моделируются точечными отрицательными зарядами, причиной расщепления является неодинаковое взаимодействие электронов, находящихся на разных орбиталях, с лигандами. При октаэдрической структуре комплекса максимально отталкивание и 22-орби- [c.177]


    Используя теорию кристаллического ноля, определите, будут ли диамагнитными или парамагнитными следующие октаэдрические комплексы, в которых лиганды создают сильное поле  [c.66]

Рис. 219. Сопоставление теорий молекулярных орбиталей (ТМО), валентных связей (ТВС) и кристаллического поля (ТКП) применительно к октаэдрическому комплексу rf-элемента Рис. 219. Сопоставление <a href="/info/21169">теорий молекулярных орбиталей</a> (ТМО), <a href="/info/17003">валентных связей</a> (ТВС) и <a href="/info/2530">кристаллического поля</a> (ТКП) применительно к <a href="/info/70693">октаэдрическому комплексу</a> rf-элемента
    Теория кристаллического поля смогла объяснить также магнитные свойства комплексов, которые вызваны наличием в них неспаренных электронов. Комплексы, обладающие неспаренными электронами и, следовательно, магнитным моментом, называются высокоспиновыми, а не обладающие магнитными свойствами — низкоспиновыми. Согласно теории, в пределах одной группы орбиталей или электроны располагаются в полном соответствии с правилом Хунда, сообщая комплексу максимальный спин. Поэтому ионы с электронной конфигурацией (8с , Т1 , Сг ) в октаэдрическом поле — высокоспиновые. Четвертый электрон (например, в ионах или Мп ), попадая в ион, может заполнить одну из ячеек нижнего уровня в октаэдрическом поле) или занять вакантную ячейку (й ) более высокого уровня. Обе возможности связаны с затратами энергии. Энергия спаривания электронов Г7 обычно определяется квантово-химическими расчетами. Если и > > Л, электрон предпочитает занять более высокую орбиталь и тем самым увеличить спин комплекса, если V < < А, электрон идет на уже занятую электроном орбиталь и снижает общий спин. Например, для комлексного иона Ге с конфигурацией = 210 кДж/моль, А (НгО) = = 124 кДж/моль, А (СМ ) = 397 кДж/моль. Поэтому комплекс [Ре (Н20)в] — высокоспиновый, а [Ре (СМ)в] — низкоспиновый. В ионе [Ре (СМ)в] все электроны находятся на связывающих орбиталях в отличие от иона [Ре (Н20)в] , поэтому прочность связи и химическая устойчивость цианидного иона должна быть много выше, чем аквоиона, что и наблюдается на практике. [c.269]

    Метод молекулярных орбиталей. Полосы поглощения, возникающие за счет электронных переходов, нельзя достаточно точно интерпретировать с помощью теории кристаллического поля. Лучшим приближением в этом случае является рассмотрение природы химической связи между центральным ионом и лигандами без учета отрицательных зарядов лигандов. На рис. 4.12 с помощью метода ЛКАО построена диаграмма энергетических уровней молекулярных орбиталей в октаэдрическом комплексе. [c.236]

    Следствием этой теории является вывод, что комплексы с координационным числом четыре и шесть в основном имеют соответственно тетраэдрическую и октаэдрическую конфигурации. Комплексы переходных металлов иногда отклоняются от этого правила, и это отклонение можно отнести за счет имеющихся в них -электронов. Теория кристаллического поля дает возможно наиболее простое объяснение влиянию -электронов на структуру комплексов. [c.74]

    Теория кристаллического поля. В этой теории основная роль в комплексообразовании отводится электростатическому взаимодействию между центральным ионом и лигандами. Важнейшие положения этой теории также рассмотрим на октаэдрических комплексах, образованных -элементами (наиболее часто встречающийся случай). В качестве примера возьмем два комплексных иона [Fe ]  [c.282]

    Параметр расщепления кристаллическим полем для тетраэдрических комплексов составляет примерно 40—50% от величины До для аналогичных октаэдрических комплексов. Это значение неожиданно оказалось очень близким к теоретическому, значению, полученному на основании чисто электростатической теории кристаллического поля Af == дДо- [c.417]

    До сих пор мы рассматривали применение теории кристаллического поля лишь к комплексам с октаэдрической структурой. Если центральный ион металла окружен только четырьмя лигандами, комплексы чаще всего обладают тетраэдрической структурой, исключение составляют лишь ионы металлов с электронной конфигурацией о которых мы будем говорить чуть позже. Картина расщепления энергетических уровней -орбиталей металла кристаллическим полем в тетраэдрических комплексах отличается от описанной выше для октаэдрических комплексов. Четыре эквивалентных лиганда взаимодействуют с центральным ионом металла наиболее эффективно, приближаясь к нему со стороны четырех верпшн тетраэдра. (Наглядное представление об октаэдрическом и тетраэдрическом окружениях дает рис. 22.14.) Оказывается (хотя это и нелегко объяснить в нескольких словах), что картина расщепления энергетических уровней /-орбиталей мeтaJ лa в тетраэдрическом кристаллическом поле качественно противоположна картине, наблюдаемой в случае октаэдрического поля. Это означает, что три /-орбитали металла приобретают более высокую энергию, а две остальные, наоборот, более низкую энергию (рис. 23.31). Поскольку в тетраэдрических комплексах всего четыре лиганда вместо шести в октаэдрических комплексах, расщепление кристаллическим полем для тетраэдрических комплексов имеет намного меньшую величину. Расчеты показывают, что при одних и тех же ионах металла и лигандах расщепление кристаллическим полем для тетраэдрического комплекса составляет всего д соответствующей величины для октаэдрического комплекса. По этой причине все тетраэдрические комплексы относятся к высокоспиновым кристаллическое поле [c.398]


    Вычисления интенсивности, ожидаемой для электронноколебательно разрешенных переходов, ясно показывают [9, 12, 13, 26, 78, 88, 123, 192], что для октаэдрических комплексов модель кристаллического поля дает достаточно высокие, хотя и не очень точные значения, а для того, чтобы объяснить наблюдаемые большие интенсивности у тетраэдрических молекул, следует пользоваться моделью теории поля лигандов (интенсивности в тетраэдрических молекулах примерно в 10 раз больше, чем у октаэдрических).  [c.260]

    Попытки понять природу сил связи в комплексах были сделаны еще до создания квантовой механики. Представление об электростатическом ион-ионном или ион-дипольном взаимодействии между центральным ионом и лигандами позволило найти наиболее выгодные с этой точки зрения условия образования устойчивых комплексов. Было показано, что для четырех-координационных комплексов предпочтительна тетраэдрическая , а для шестикоординационных — октаэдрическая конфигурация. Однако область применимости электростатической теории оказалась очень узкой. Это естественно, поскольку неквантовая теория не может правильно описать явления, для которых существенны квантовые эффекты, а именно к таквн явлениям принадлежит явление химического связывания. Возронздение электростатической теории комплексов, но уже в квантовой трактовке, произошло в работе Бете, заложившей основы теории кристаллического поля. В этой квантовомеханической теории центральный ион, помещенный в электростатическое поле лигандов, рассматривается с детальным учетом его электронной структуры. Основные идеи теории кристаллического шля представляют значительную ценность. Известно, например, что иод воздействием электростатических полей различной симметрии снимается вырождение электронных состояний центрального иона. Проведенный в теории кристаллического поля теоретико-групповой анализ расщепления состояний центрального иона в полях различной симметрии используется, практически без всяких изменений, во всех последующих теоретических рассмотрениях строения комплексов. Теория кристаллического поля позволила объяснить и предсказать электронные свойства и, в частности, спектральные и магнитные характеристики широкого круга комплексов. Однако, несмотря на плодотворность теории кристаллического поля, область ее применимости ограничена комплексами с лигандами, компактная электронная структура которых почти не меняется при комплексообразовании. [c.9]

Рис. 215. Сопоставление теорий молекулярных орбиталей (ТМО) ва [внтных связей (ТВС) и кристаллического иоля (ТКП) применительно к октаэдрическому комплексу d-элемента Рис. 215. Сопоставление <a href="/info/21169">теорий молекулярных орбиталей</a> (ТМО) ва [внтных связей (ТВС) и <a href="/info/1592248">кристаллического иоля</a> (ТКП) применительно к <a href="/info/70693">октаэдрическому комплексу</a> d-элемента
    V Сопоставление теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как теории валентных связей, так и теории кристаллического поля. Шести сг = -орбиталям октаэдрического комплекса в рамках теории валентных связей отвечают шесть а-связей, возникающих за счет донорно-акцепторного взаимодействия psp -гибридных орбиталей комплексообразователь и электронных пар шести лигандов (рис. 215). Что же касается молекулярных л - и [c.513]

    Однако теория кристаллического поля несколько глубже. В ней рассматривается, что происходит с пятью -орбиталями атома металла, когда к нему приближаются октаэдрически расположенные вокруг него шесть отрицательных зарядов предполагается, что эти заряды располагаются на осях координатной системы, в которой определены -орбитали. Эти отрицательные заряды изображают неподеленные пары электронов на лиган-. дах. Считается, что они принадлежат лигандам и в комплексе, а не вовлекаются в образование ковалентных связей с металлом. Следовательно, теория кристаллического поля исходит из предположения о чисто ионной связи. [c.228]

    Обратим внимание на то, как одни и те же факты объясняются двумя соверщенно различными теориями-теорией валентных связей и теорией кристаллического поля. Обе теории утверждают, что низкоспиновые октаэдрические комплексы возникают, когда для -электронов, первоначально принадлежавщих центральному иону металла, доступны только три -орбитали с низкой энергией. Высокоспиновые октаэдрические комплексы воз- [c.231]

    На рнс. 1.64 представлена диаграмма уровней энергии МО в октаэдрическом комплексе. Переходу электрона с несвязывающей орбитали 28 на разрыхляющую орбиталь eg отвечает изменение энергии А. Таким образом, если в теории кристаллического поля предполагается, что переход, энергия А которого определяется из спектральных данных, происходит между АО с низкой энергией ( г, ( ху, йуг) и АО С более высокой энергией аГ а у ), то в теории МО он рассматривается как переход с несвязывающей МО, сходной с АО хг< ху, Луг, на разрыхлянэщую МО, образованную из или АО. [c.129]

    Сопоставление методов молекулярных орбиталей (ММО) валеит-связей (МВС) и теории кристаллического поля (ТКП) применительно к октаэдрическому комплексу -элемента [c.125]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    Расположим октаэдрический комплекс относительно декартовой системы координат так, как показано на рис. 2.3. Напомним, что в теории кристаллического поля ли1анды рассматриваются бес-структурно, как точечные отрицательные заряды. Изображенные на рис. 2.3 локальные системы координат для лигандов поэтому пока излишни и будут использованы позднее, когда мы откажемся от этого слишком грубого предположения. [c.178]

    Вполне возможно повышение электронной плотности на лигандах в том случае, когда уровень орбиталей лигандов ниже уровня орбиталей иона металла — это происходит у связывающих орбиталей (у разрыхляющих, наоборот, электронная плотность повышается у металла). Теория молекулярных орбиталей позволяет также учесть и возможность образования л-связей за счет 4 -орбиталей иона металла (т. е. орбиталей, которые теория кристаллического поля относит к несвязывающим) и л-орбиталей лигандов. Молекулярные орбитали системы лигандов и атомная орбиталь центрального иона должны обладать одинаковыми свойствами симметрии. В качестве примера рассмотрим октаэдрический комплекс с шестью лигандами. [c.225]

    В соответствии с теорией кристаллического поля плоскоквадратные комплексы часто встречаются у ионов с электронной конфигурацией (никель, палладий, платина) и (медь). Если ион не имеет ЭСКП, то обычно легко образуются тетраэдрические комплексы (й1°, с1 , й( °) это происходит в комплексах железа (111), цинка (И), алюминия (111), кадмия (11), марганца (II). Относительно высокие координационные числа характерны для легких переходных металлов. Поэтому квадратные комплексы чаще встречаются в соединениях меди, палладия, платины, а ионы с конфигурацией с1°—Ф обычно дают октаэдрические комплексы. Тип химической связи в комплексах зависит от положения соответствующего иона в последовательности переходных металлов ионы металлов, расположенных в начале ряда, дают преимущественно ионные комплексы, а в конце — ковалентные [ионные комплексы образует, например, ион титана (И), а ковалентные — ионы никеля или меди (II)], Комплексы анионного типа (например, СоС ) обычно имеют меньшие координационные числа, чем катионные. [c.227]

    Прп обсуждении теорий кристаллического поля н по. я лигандов ы рассматривали октаэдрические комплексы. Тс же аргумента можно применить д.ля комплексов другой симметрии, иа которых часто встречаются тетраэдрические и плоские квадратные комп,чекеы. Нарисуйте эскиз расщепления пяти d-орбнта-,тей, ожплае.чого прп образовании комплексов этих двух типов. [c.557]

    Сопоставлеиие теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи теории валентных связей и теории кристаллического поля (рис. 219), Шести электронным парам связывающих (Т-орбиталей октаэдрического комплекса в рамках теории валентных связей отвечает шесть сг-связей. Они возникают за счет донорно-акцепторного взаимодействия гибридных орбиталей комплексообразователя и электронных пар шести лигандов. Что же касается молекулярных 5Г - и т -орбиталей, то в теории кристаллического поля [c.560]

    К практическим применениям указанного общего подхода принадлежит один из квантовохимических методов расчета свойств неорганических комплексных соединений — так называемая теория кристаллического поля, которая основана на следующей модели. Гамильтониан свободного атома, в котором учитываются только электростатические взаимодействия, инвариантен относительно одновременного вращения координат всех электронов. Наличие у гамильтониана симметрии такого типа ведет к вырождению уровней в рамках термов -например, для одного электрона, находящегося в -состоянии, это означает, что его энергетический уровень пятикратно вырожден, т. е. ему соответствуют пять различных -функций. Если атом теперь подвергнется действию лигандов (химически связанных с ним соседних атомов) и возникший при этом комплекс будет иметь симметрию, отвечающую группе С, то исходная сферическая симметрия атома нарушится и вместе с ней изменится исходное вырождение уровней. Квантовые числа I н Мь перестают быть хорошими квантовыми числами, поэтому вместо них следует ввести новые квантовые числа Г и шг, где Г — неприводимое представление группы О, а шг — компонента этого представления, если неприводимое представление Г является многомерным. Мы видели, например, в разд. 6.6 при описании конструирования гибридных орбиталей, что если атом помещен в поле лигандов октаэдрической симметрии (см. рис. 6.4), то его вырожденные -состояния расщепляются на два новых состояния, которые соответствуют неприводимым представлениям Е я Т группы О. Следовательно, исходный пятикратно вырожденный уровень расщепляется на два новых энергетических уровня, один из которых трехкратно вырожден, а другой двукратно вырожден. [c.160]

    Теория кристаллического поля объяснила магнитные свойства и оптические спектры комплексов переходных металлов в растворе. Дуниц и Орджел [169] применили эту теорию к объяснению кристаллической структуры твердых ионных соединений переходных металлов, в особенности окислов. Например, для ионов Сг + и NP+ октаэдрическая конфигурация дает большую стабилизацию энергии, чем тетраэдрическая. Поэтому последняя для этих элементов в твердых телах почти не наблюдается. Для ионов d°, d , d (Ti +, V +, r +, [c.50]

    В приведенных примерах прилменение теории кристаллического поля и теории поля лигандов приводит к одинаковым результатам. Однако, если лиганды способны образовывать я-связь (О3, N0, СО, С2Н4, бензол и другие), чисто электростатический подход теории кристаллического поля пе может объяснить свойства комплексов. Согласно теории поля лигандов [166], в образовании октаэдрических 0-связей участвуют две е -орбиты ( и 8, р-орбиты атома [c.58]

    На основании химических соображений нельзя произвести определение абсолютных конфигураций оптических антиподо.в даже сравнительный конфигурационный анализ очень труден из-за возможности инверсии конфигураций в процессе замещения. Теоретические расчеты вращательной способности данных конфигураций и сопоставление результатов расчетов с экспериментальными значениями не вполне однозначны. Такие расчеты предпринимаются для комплексных соединений очень редко, за исключением недавней работы Моффитта [179], рассмотревшего оптическую вращательную способность октаэдрических комплексов переходных металлов тина [М(АА)з] на основании теории кристаллического поля. Полная оптическая вращательная способность соединения (М) может быть разделена на отдельные части (парциальные вращательные способности Му), ассоциированные с отдельными полосами поглощения в спектре комплекса, так что М = Показано 1) что пер- [c.198]

    Тетраэдрические комплексы кобальта, в частности [Go I ] , изучены подробно, и их спектры были интерпретированы на основании теории кристаллического поля [87, 144] (см. раздел III, 1,А, 1). Интенсивности этих спектров также примерно в 10 раз больше, чем у октаэдрических комплексов. Известны спектры еще многих других комплексов кобальта (II) [8, 39, 42, 43, 53, 85, 86, 91, 166, 185]. [c.270]

    На рис. 31 приведена относительная устойчивость высокоспиновых октаэдрических комплексов [М(П)Ьв] переходных элементов первого ряда, предсказанная теорией кристаллического поля. Системы с тремя и восемью -электронами будут более устойчивы по сравнению со своими соседями, так как они характеризуются самыми большими значениями энергии стабилизации. При переходе от комплексов Са " к комплексам наблюдается обгцее увеличение устойчивости, что происходит в результате уменьнк -ния в этой же последовательности радиуса ионов М +. Порядок устойчивости, предсказанный теорией кристаллического поля и приведенный на рис. 31, соответствуют [c.137]

    Так как тетраэдрическая конфигурация образуется только четырьмя лигандами, а октаэдрическая — шестью, то расщепление кристаллическим полем Для тетраэдрических комплексов заметно слабее, чем для октаэдрических с такими же лигандами. Параметр расщепления Одт для тетраэдрического комплекса может быгь оценен в теории кристаллического поля и составляет 9 параметра расщепления октаэдрического комплекса Одо с те- [c.329]


Смотреть страницы где упоминается термин Октаэдрические комплексы теория кристаллического пол: [c.182]    [c.125]    [c.284]    [c.295]    [c.243]    [c.315]    [c.76]    [c.112]    [c.85]    [c.396]   
Неорганическая химия (1987) -- [ c.254 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы октаэдрические

Теория кристаллического



© 2024 chem21.info Реклама на сайте