Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы сублимация

    Зависимость между кажущимися энергиями активации гидродеалкилирования толуола и теплотами сублимации металлов [2561. [c.175]

    Можно пользоваться и таким показателем, как теплота сублимации металла (Я ), поскольку, с одной стороны, она связана с такими характеристиками металла, как незаполненность -электронных уровней и параметры кристаллической решетки, а с другой стороны пропорциональна величине д. [c.134]


Таблица 8. Теплоты сублимации металлов, кДж/моль Таблица 8. <a href="/info/986347">Теплоты сублимации металлов</a>, кДж/моль
    Признанная многими мультиплетная теория Баландина (стр. 139)> вводит в представления об активных центрах фактор геометрического и энергетического соответствия между поверхностью и реагентами. Активные центры являются кристаллическими зародышами, скоплениями атомов, ориентированных на твердой поверхности и обладающих избытком свободной энергии. Они воспроизводят узлы кристаллической решетки металла, что облегчает протекание гетерогенных реакций. А. А. Баландин пишет ...каталитически активные центры—это атомная группа с определенной конфигурацией и с определенными энергетическими свойствами. Этот активный центр способен деформироваться под влиянием соседних атомов, природы их, числа и расположения, т. е. своего окружения. Деформированный центр имеет измененную связь с решеткой катализатора, меняется его энергия сублимации и способность притягивать и деформировать посторонние молекулы [21]. [c.111]

    Для определения численного значения члена 1)( / —Ш) Элей использует энергию сублимации металла, полагая, что [c.52]

    Пользуясь необходимыми данными из приложения Г, постройте график зависимости энтальпии сублимации элементов от К до 2п от их атомного номера. Какие характеристики металла отражает величина Чем объяснить изменения ДН уб, в зависимости от атомного номера элемента  [c.369]

    Метод весьма эффективен при обжиге сульфидных руд и концентратов, сублимации сравнительно летучих металлов, прокаливании, охлаждении и сушке различных веществ. [c.543]

    В ряде работ предприняты попытки найти корреляции между электрокаталитической активностью и физико-химическими свойствами металлов и сплавов. Высказано предположение, что высокие электрокаталитические свойства платиново-рутениевых сплавов объясняются особенностями их электронной структуры. Количественной характеристикой электронной структуры служит.число неспаренных -электронов, приходящееся на атом катализатора. Число -электронов на атом для Р1 и Рс1 равно 0,6, для КЬ — 1,4, для 1г — 1,7, для Ни — 2,2. Для гомогенных сплавов предполагается линейная зависимость числа неспаренных -электронов от состава сплава. Повышенная активность связывается с оптимальным числом неспаренных -электронов. Активность электрокатализаторов сопоставлена с их парамагнитной восприимчивостью, с теплотами сублимации металлов и сплавов, работой выхода электронов, сжимаемостью и другими характеристиками. К сожа- [c.300]


    Для решения ряда задач важно определить теплоту испарения или сублимации. Для веществ, у которых эти превращения происходят при высоких температурах, например для металлов, [c.47]

    Энергия металлической решетки (1 ) может быть получена из опытных данных на основе закона Гесса следуюш,им образом. Разделение решетки на элементы, т. е. на ионы и электроны, можно представить себе в виде двух последовательных процессов сублимации металла и ионизации атомов. Таким образом, и = = —а — V, где а — теплота сублимации решетки V — потенциал ионизации атома. [c.502]

    Металл Ребро элементарного куба. А Теплота сублимации при Т = 0° К  [c.514]

    Изменение энтальпии при образовании катиона металла определяется как сумма изменения энтальпии при сублимации металла и при его ионизации [c.160]

    Взаимодействие металлов и металлоидов с элементарными окислителями. При взаимодействии металлов и металлоидов с элементарными окислителями атомы последних восстанавливаются, притягивая к себе электроны. В идеальных условиях (газовое состояние восстановителя и продукта его окисления, атомарное состояние окислителя) реакция идет самопроизвольно, если энергия сродства к электрону атома окислителя превышает энергию ионизации атома восстановителя Е ан- Тепловой эффект реакции выразится разностью величин этих энергий. Однако в реальных условиях (твердое состояние восстановителя и продукта его окисления, молекулярное состояние окислителя) реакция осложняется процессами сублимации восстановителя, диссоциации молекул окислителя и кристаллизации продукта окисления. Энергии этих процессов субл. лисс и Е сказываются соответствующим образом на тепловом эффекте суммарного процесса, что в соответствии с законом сохранения энергии может быть выражено уравнением [c.46]

    В качестве восстановителей могут выступать не только металлы и металлоиды, но и такие элементарные вещества, как азот, сера, селен, хлор, бром, иод, астат, и даже благородные газы — криптон, ксенон и радон. Восстановительная активность элементарных веществ определяется в основном, как это видно из приведенных рассуждений, величинами энергии ионизации атома и энергии сублимации вещества— чем эти величины меньше, тем сильнее восстановительная активность элементарного веш,ества. [c.46]

    Все -элементы в сво дном состоянии являются металлами. Как правило, онн (сличаются высокой твердостью, тугоплавкостью (особенно элементы подгруппы 1Б и более всего ), большой энтальпией сублимации (рис. 3.66), значительной электропроводностью. [c.476]

    Проба термически разлагается до оксидов металлов, после чего происходит восстановление оксида углеродом на поверхности печи с последующей сублимацией металла (для большинства элементов через стадию образования димеров)  [c.176]

    В другом цикле, предложенном Майером (1930), используются энергии сублимации галогенидов шелочных металлов, энергии диссоциации их газообразных молекул и некоторые другие термохимические величины, уже фигурировавшие в цикле Габера — Борна. Для Na l этот цикл дает AG = 75(5 кДж-м оль . Таким образом, можно полагать, что энергия решетки хлорида натрия должна лежать в пределах от 760 до 790 кДж-моль , куда попадают значения, подсчитанные по уравнениям. (1.23) и (1.25) величину 762 кДж-моль- можно считать наиболее вероятным значением энергии решетки Na l. [c.46]

    Сублимация 1 моля металла М с затратой энергии ДОоуб. [c.63]

    Os > Pd > iRu > Pt. В условиях, когда глубина превращения толуола не превыщает 50%, селективность деалкилирования в первую очередь определяется природой металла и для перечисленных катализаторов составляет 99 (Pd/AbOa)—80 (Ru/AbOa) 7о (мол.). Определены [256] кажущиеся энергии активации гидродеалкилиро-вания толуола (см. табл. 6) и найдена антибатная зависимость между энергиями активации и теплотами сублимации металлов [257] (рис. 36). С увеличением теплоты сублимации закономерно снижается кажущаяся энергия активации. Это объясняется [256] тем, что энергии связи металлов с реагирующими атомами изменяются, как правило, симбатно с теплотами их сублимации [153, т. 2 258], в то время как энергетический барьер, который необходимо преодолеть для разрыва Сар—Сал-связи, должен быть тем меньще, чем больще энергия связи М—С [259]. [c.174]

    В работе [180] обсуждены вопросы, связанные с дисперсностью, фазовым и поверхностным составом и электронной структурой биметаллических катализаторов. Отмечено, что наличие очень малых кристаллитов металла приводит к характеристическому изменению температуры плавления, формы частиц, параметров рещетки и ряду других свойств по сравнению с макрокристаллами. Поверхностный состав сплава часто значительно отличается от объемного, причем поверхность обогащается тем металлом, который имеет меньщую энтальпию сублимации или большее сродство к газовой фазе. [c.254]


    Физико-химические процессы, происходящие вблизи поверхности при химико-термической обработке, заключаются в образовании диффундирующего вещества в атомарном состоянии вследствие химических реакций в насыщенной среде или на границе раздела среды с поверхностью металла (при насыщении из газовой или жидкой фазы), сублимации диффундирующего элемента (насыщение из паровой фазы), последующей сорбции атомов элемента поверхностью металла и их диффузии в поверхностные слои металла. Концентрация диффундирующего вещества на поверхности металла возрастает с повышением температуры (по экспоненциальному закону) и с увеличением продолжительности процесса (по параболическому закону). Диффузионный слой, образующийся при химикотермической обработке деталей, изменяя i тpyктypнo-энepгeтичe кoe состояние поверхности, оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объемные свойства деталей. Химико-термическая обработка позволяет придать изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т. д. [c.42]

    Всс d-элементы являются металлами. Как правило, они отличаются высо< кой твердостью, тугоплавкостью (особенно элементы подгруппы VIB и болев всего W), эптальпией сублимации (рис, 3.91), значительной электропроводностью, Иттрий и лантан бойчее сходны с лгнтаноидамн, чем с -э-пементами. [c.491]

    Большой интерес представляют насыщенные пары при высоких температурах, Процесс испарения жидкости или сублимации твердого тела при любых температурах происходит в результате того, что тепловое движение преодолевает связи между частицами. Однако при обычных или более низких температурах тепловое движение может преодолевать лишь сравнительно слабые силы межмолекулярного взаимодействия, а при высоких — оно способно разрывать и достаточно прочные связи, в частности химические связи между атомами в кристаллах с атомной решеткой. Поэтому в парах при высоких температурах могут содержаться свободные атомы или группы атомов с ненасыщенной валентностью (свободные радикалы). Так, кристаллические полуторные окислы некоторых металлов (АЬОз, ЬааОз, РгаОа и др.) при образовании паров в области 2000° К претерпевают химическое разложение по реакциям  [c.239]

    В подобных реакциях в качестве восстановителей могут выступать металлы и металлоиды, а также другие элементарные веигест-ва, кроме гелия, неона и фтора (см. также гл. VII, 1 и 2). Восстановительная активность элементарных веществ определяется в основном, как это видно из приведенных рассуждений, энергиями ионизации атома и сублимации вещества чем они меньше, тем сильнее восстановительная активность элементарного вещества. [c.118]

    По физическим свойствам цинк, кадмий и ртуть резко отличаются от щелочноземельных металлов. Плотности н атомные объемы возрастают от цинка к ртути, а температуры плавления и кипения в том же направлении снижаются. Теплоты сублимации цинка, кадмия и ртутн в 1,3—2,7 раза меньше, чем у кальция, стронция и бария этим объясняется большая летучесть цинка, кадмия и ртути. [c.330]

    С повыщением теплоты сублимации металла энергетический барьер, а следовательно, и энергия активации должны снижаться, что и наблюдается в действительности. Л. Г. Рабинович и В. Н. Можайко показали [196], что деалкилирование толуола в присутствии водяного пара катализируется металлами платиновой группы, причем наиболее активен алюмородиевый катализатор. Опыты проводили с катализаторами, содержацдами по 6 моль-атом металла на 1000 моль -АЬОз (размер частиц 1 мм) при мольном отношении Н20 С7Н8 = 6 и объемной скорости подачи сырья 1— 8 ч . Результаты опытов приведены ниже  [c.293]

    Представляет интерес также применение в качестве катализаторов гидродеалкилирования гидридов различных металлов и их сплавов. В работе В. В. Лунина и Б. Ю. Рахамимова [92, с. 122] исследованы каталитические свойства гидридов сплавов 2г—N1— —Н и 2г—СО—Н, нанесенных на силикагель, в реакции гидродеалкилирования толуола. Указанные катализаторы сохраняют преимущества индивидуальных гидридов высокую активность, продолжительное действие без дополнительной регенерации. Специфичность гидридных катализаторов обусловлена содержанием в их кристаллической решетке больших количеств водорода — до 450 мл/г [198]. Постоянное присутствие водорода в структуре катализатора снижает такие нежелательные явления, как спекание катализатора и коксоотложение на его поверхности. Рентгенофазовый анализ гидридов сплавов 2г—N1—Н и 2г—Со—Н показал, что в процессе работы катализатора на поверхности гидридной фазы частично выделяется металл с меньшей теплотой сублимации (N1 или Со). При этом образуется каталитическая система N1—2г— N1—Н/510г. В работе показаны преимущества таких систем перед катализаторами N1, 2г—N1—Н и N1—5Юг. [c.294]

    Металл Атомный объем V. при 293 К, см Температур кипения, К, Т. Теплота испарения при Т., ДН, кДж/г-атом Теплота сублимации при 293 К, ДН кДж/гатом Плотность энергии когезии по АН, при 293 К, кДж/см Плотность энергии когезии по АН. при 293 К. К11ж/см  [c.105]

    В предыдущем разделе мы видел , что экспериментальные значения теплот хемосорбции многих газов обладают наибольшей величиной для тантала и падают в определенной последовательности при переходе к другим металлам. Последовательность, которая там приведена, несколько отличается от порядка расположения металлов по теплотам сублимации [68]. Но если уравнение (32) справедливо и членом, учитывающим значения элоктроотрицательности можно пренебречь или он одинаков для всех металлов, то выражения для разных металлов будут отличаться членом, отражающим прочность связе+1 между цх атомами, который будет изменяться при переходе от одного металла к другому в соответствии с изменением теплот сублимации. [c.59]

    Полученный металл содержит до 15% МдО и до 5% С. Для получения более чистого металла пуссьеру подвергают очистке — сублимации с выделением при конденсации металла, содержащего 99,97% М . 1 [c.507]

    В таблице 5 (см. приложение) представлены значения изменения энтальпий сублимации АЯма, характеризующие прочность связи между атомами щелочных металлов в их кристаллической решетке М(к)=М(г), и энтальпии плавления АЯгэв М(к)=М(ж). Объясните, пбчему у лития наблюдается максимальное значение всех параметров. [c.159]

    Взаимодействие металлов и металлоидов с различными соединениями. Металлы и металлоиды могут окисляться при взаимодействии с различными соединениями, которые играют роль окислителей как в сухом виде, так и в виде растворов, в том числе водных. Реакция между металлами или металлоидами и сухими галидами или хальки-дами происходит только при сильном нагревании, хотя и сопровождается экзотермическим эффектом. Условием для протекания таких реакций является меньшее значение энергии диссоциации соединения-окислителя по сравнению с энергией образования продукта окисления восстановителя. Весь процесс взаимодействия складывается из ряда эндотермических и экзотермических стадий. На первой стадии происходит диссоциация соединения — окислителя, а на второй — образование продукта окисления из металла или металлоида и эле-.ментарного окислителя, образовавшегося при диссоциации соединения — окислителя. Восстановительная активность элементарного вещества при этом тем сильнее, чем меньше величины энергии его ионизации и сублимации. [c.47]

    Теплота гидратации. Расчет теплоты гидратации может быть осуществлен на основании термохимических циклов, изображенных на рис. 8 и 9 для металлов (рис. 8) надо знать теплоты сублимации АЯсубл, ионизации / = АЯиониз и гидратации АЯгидр газообразных катионов для неметаллов (рис. 9) — теплоту диссоциации АЯд сс< электронное сродство Е = А ал и теплоту гидратации АЯ ,др газообразных анионов. [c.23]

    Окислительно-восстановительный потенциал пары U /U расплавленных средах, наоборот, минимален по абсолю1ноку значению среди для щелочных металлов. Близость значений других щелочных металлов объясняется kim-пенсацией энергий сублимации, ионизации и гидратации в цикле [c.321]

    Физические свойства. Цинк, кадмий и ртуть являются тяжелыми металлами. Ртуть — единственный жидкий при обыкновенных условиях металл температура плавления его около —39° С. Плотности и атомные объемы возрастают от цинка к ртути, а температуры плавления и кипения в том же направлении падают. По физическим свойствам эти металлы резко отличаются от щелочноземельных металлов (см. табл. 4). Теплоты сублимации цинка, кадмия и ртути соответственно равны 131,38 112,97 и, 64,64 кдж1г-атом. Они в 1,3—2,7 раза меньше, чем у кальция, стронция и бария, и этим объясняется большая летучесть этих металлов. При температурах, близких к абсолютному нулю, цинк (0,84° К) и ртуть (4,12° К) являются сверхпроводниками. [c.161]

    Хлорид алюминия и хлориды остальных металлов этого гомологического ряда — твердые, бесцветные кристаллические вещества с невысокими сравнительно температурами плавления и кипения. При температуре сублимации или кипения они имеют бимолекулярный состав Alj le. Gaj lj и т. п. [c.449]

    Теплоты плавления (первая цифра) и испарения (вторая цифра) в ккал1г-атом по ряду Мп (3,5 и 52,5)— Тс (5,5 и 138,0)—Re (7,9 и 169,0) последовательно повышаются. Перевод при обычных условиях твердых металлов в парообразное состояние требовал бы затраты следующих теплот сублимации 69,3 (Мп), 155 (Тс) и 186 (Re) ккал/г-атом. [c.301]


Смотреть страницы где упоминается термин Металлы сублимация: [c.33]    [c.228]    [c.621]    [c.23]    [c.38]    [c.216]    [c.218]    [c.222]    [c.165]    [c.386]    [c.50]    [c.372]    [c.45]   
Машинный расчет физико химических параметров неорганических веществ (1983) -- [ c.223 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Паули принцип теплоты сублимации металло

Сублимация

Теплота сублимации металлов

Щелочноземельные металлы энергия сублимации, таблиц

Щелочноземельных металлов энтальпии сублимации

Щелочные металлы энергия сублимации

Щелочных металлов энергетика сублимации

Энергия сублимации галогенидов гидридов щелочных металлов таблица



© 2025 chem21.info Реклама на сайте