Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции, протекающие при гидродеалкилировании

    В соответствии с изложенным выше механизмом реакции гидрокрекинга парафинов метан и этан могут образовываться лишь в незначительных количествах. На первый взгляд такой механизм реакции находится в противоречии с фактом значительного содержания метана и этана, в газообразных продуктах-риформинга. К другому выводу можно прийти, если учесть, что протекают также и другие реакции, приводящие к образованию этих углеводородов. Так, определенный вклад вносят реакции гидрогенолиза как парафинов, так и ароматических углеводородов. Хотя реакции гидрогенолиза играют весьма ограниченную роль в каталитическом риформинге, все же они идут, особенно в жестких условиях процесса. В частности, метан и этан образуются при гидрогенолизе (гидродеалкилировании), алкилбензолов. Дегидрирование ге>и-диалкилзамещенных циклогексана, как упоминалось выше, также сопровождается образованием метана. [c.45]


    Таким образом, процессы деметилирования представляют собой высокотемпературные процессы гидрокрекинга, в которых создаются максимально благоприятные условия для радикальных реакций расщепления и всеми мерами предотвращается гидрирование ароматических углеводородов., Разработано много модификаций как каталитических, так и некаталитических процессов деметилирования (см. гл. 1, а также обзоры ), различающихся сырьем и технологическими параметрами. Применение катализаторов позволяет снижать температуру процесса на 100—150 °С (500—550 против 650—700 °С), что в свою очередь снижает капитальные вложения вследствие применения более дешевых металлов для изготовления оборудования, но повышает стоимость эксплуатации из-за расходов на производство и регенерацию катализатора. В зависимости от конкретных экономических условий применяются и каталитические, и некаталитические процессы в настоящее время в ряде стран до 20—25% бензола и более 50% нафталина получают при помощи процессов гидродеалкилирования Все процессы протекают под давлением водорода. [c.327]

    Гидрогенизационные процессы осуществляют путем контакта нефтяной фракции с водородом в присутствии определенного катализатора и в соответствующих условиях, В процессе гидрогенизации углеводородов протекают следующие основные реакции гидрокрекинг алканов и циклопарафинов гидрирование непредельных и ароматических углеводородов гидродеалкилирование ароматических углеводородов гидроизомеризация всех классов углеводородов. Соединения, содержащие серу, азот, кислород, подвергаются, как правило, гидрогенолизу. [c.234]

    Термическое гидродеалкилирование протекает при 700°С иод давлением 3—10 МП.1. Превращение толуола в бензол протекает как реакция первого порядка с энергией активации 209—230 кДж/моль. Конверсия достигает 98%. Механизм реакции — радикально-цепной  [c.311]

    Исследование кинетических закономерностей термического гидродеалкилирования ароматических углеводородов показало, что реакция протекает по цепному механизму и скорость ее пропорциональна концентрации углеводорода и концентрации водорода в степени 0,5 суммарный порядок реакции равен 1,5 [4, 30, 34, 37—43]. В табл. 6.6 приведены результаты гидродеалкилирования 1,3,5-три-метилбензола в каталитическом и термическом процессах [44]. [c.255]

    Гидродеалкилирование. Окружное и др. [187, 188] изучили гидро-деалкилирование толуола, этилбензола и кумола на катализаторе 5% Ni- aA, полученном пропиткой цеолита СаА 0,5 М раствором N (N03)2 с последующим восстановлением водородом при 350 (3 ч) и 500° С (3 ч). При температурах 420 60° С, молярном соотношении водород углеводород, равном 5 1 и давлении 10 атм реакции протекали без образования высококипящих продуктов. Газообразные продукты состояли в основном из метана это указывает на то, что деалкилирование идет с последовательным отщеплением метильных групп. Легкость деметилирования снижалась в ряду кумол > этилбензол > толуол. [c.193]


    Реакция термического гидродеалкилирования алкилбензолов протекает по следующему механизму  [c.158]

    Из данных табл. 76 следует, что характер реакций гидрокрекинга весьма сложен наряду с расщеплением и гидрированием протекают реакции изомеризации, разрыва и сжатия — расширения колеЦ алкилирования, гидродеалкилирования и т. д. [c.307]

    Катализаторы гидродеалкилирования ароматических углеводородов условно могут быть разделены на две группы низкотемпературные, например никелевые, ускоряющие процесс при 400—460° С, и высокотемпературные, такие, как алюмокобальтмолибденовые, начинающие достаточно эффективно работать лишь при 530° С и выше. Никелевые катализаторы, например 10—20% N1—АЬОз, обладают высокой активностью однако в промышленных условиях их пока не применяют вследствие низкой стабильности катализаторов и малой селективности процесса — одновременно протекает побочная реакция распада ароматического ядра до метана [21—24]. [c.298]

    Подобные же реакции, очевидно, протекают и в условиях каталитического риформинга. Образование толуола нз изомеров ксилола объясняется тем, что они подвергаются гидродеалкилированию  [c.49]

    Наряду с крекингом и гидрированием при гидрокрекинге нефтяных фракций протекают реакции изомеризации, отщепления колец, разрыв колец, гидродеалкилирование и диспропорционирование, ведущие к образованию ценных углеводородов. Ниже показаны в общем виде основные реакции, протекающие при гидрокрекинге нефтяных фракций (стр. 136). [c.135]

    Процесс гидрокрекинга представляет собой совокупность ряда параллельных и последовательно протекающих реакций расщепления высокомолекулярных углеводородов, гидрирования продуктов расщепления, гидродеалкилирования алкилароматических углеводородов, гидрогенолиза сероорганических и азотсодержащих соединений и изомеризации углеводородов при давлениях ниже 150—200 ат протекают еще реакции уплотнения и коксообразования. Рабочие условия и катализатор гидрокрекинга обычно выбирают так, чтобы по возможности подавить две последние нежелательные реакции. Удельные соотношения перечисленных основных реакций и их интенсивность в значительной степени определяются типом и избирательностью действия катализаторов, природой и составом исходного сырья, а также рабочими условиями гидрокрекинга. [c.40]

    Окисные катализаторы, например алюмокобальтмолибденовые, алюмохромовые и др., позволяют достаточно эффективно проводить процесс гидродеалкилирования при 530° С и выше, однако при этом также может протекать побочная реакция распада ароматического углеводорода до метана. Следовательно, при выборе катализатора необходимо обеспечить подавление этой реакции. [c.298]

    В присутствии алюмокобальтмолибденового катализатора при температуре 570° С, молярных отношениях водорода к толуолу 3,8 1 и воды к толуолу 2,9 1 и постоянном условном времени контакта повышение давления до 90 ат приводит к увеличению выхода бензола и повышению селективности процесса гидродеалкилирования толуола (рис. 69) [25]. При давлениях 100 ат и выше начинают протекать нежелательные реакции гидрирования бензола. [c.299]

    Реакции гидродеалкилирования, сопровождающиеся отрывом метильных групп от моноциклических и бициклических ароматических углеводородов, в интервале температур 227—627°С протекают практически нацело [79, с. 245]. В качестве сырья для получения этим методом бензола широко используется толуол, ресурсы которого во многих странах превышают спрос на него, а также алкилароматические углеводороды жидких продуктов пиролиза. Деалкилирование с получением бензола осуществляется как на катализаторах, так и чисто термическим путем в присутствии водорода или водяного пара [79, с. 244—268 149, 150]. [c.193]

    Значения констант равновесия реакций гидродеалкилирования, сопровождающихся отрывом метильных групп от моноциклических и бициклических ароматических углеводородов, показывают, что в интервале 227—627 °С (500—900 К) эти реакции могут протекать практически нацело. [c.245]

    Кроме того, при взаимодействии образующегося водорода с толуолом протекает реакция гидродеалкилирования. Побочные реакции, приводящие к расщеплению бензольного кольца, в этом процессе будут реакции (6.2) и (6.3), а также следующая  [c.246]

    И повышению селективности процесса гидродеалкилирования толуола. При давлениях 10 МПа (100 кгс/рм ) и выше начинают протекать нежелательные реакции гидрирования бензола. [c.249]

    МПа (5—20 кгс/см ).. Это вызвано тем, что реакция конверсии с водяным паром протекает с поглощением тепла, а реакция гидродеалкилирования — с выделением тепла. Выбором определенного значения давления можно регулировать относительные скорости этих реакций и тем самым суммарный тепловой эффект процесса. [c.266]

    В процессе может также протекать побочная реакция диспропорционирования ксилолов с образованием толуола и триметилбензолов, а при проведении реакции иод давлением водорода — реакции гидрирования и гидродеалкилирования ароматических углеводородов. [c.278]


    Рассмотрим, например, процесс, разработанный японскими фирмами термические гидрокрекинг и деалкилирование (процесс ЭМ-ЭЙГ-СИ, или МНС). Его особенностью является возможность, содержания в сырье до 30% (масс.) неароматических углеводородов. Б реакционной зоне протекают следующие реакции гидродеалкилирование алкилароматических углеводородов и гидрокрекинг парафиновых и нафтеновых (преимущественно до метана и этана) углеводородов. Процесс МНС имеет преимущества перед другими, ранее разработанными термическими процессами. Первая промышленная установка такого типа производительностью 100 тыс. т бензола в год находится в эксплуатации уже в течение многих лет. Ниже приведены показатели различных промышленных процессов деметилирования толуола для получения 1 т бензола  [c.291]

    Интенсивность исследований в области каталитического гидродеалкилирования и диспропорционирования, особенно в подборе более эффективных катализаторов и режима, дает основание предполагать, что в ближайшее время эти процессы найдут применение в производстве бензола и других ароматических углеводородов. Гидродеалкилирование алкилбензолов на никелевых катализаторах протекает в менее жестких условиях, чем на других катализаторах [16]. Эта реакция внедрена в промышленность как способ получения ароматических углеводородов из высших его гомологов, содержащихся во фракциях нефти. [c.292]

    Образующийся в процессе водород также может реагировать с толуолом, т. е. протекает реакция гидродеалкилирования  [c.292]

    Гидродеалкилирование а-метилнафталина (рис. 3). Здесь приводятся результаты, полученные в присутствии окиси хрома на окиси алюминия, стабилизированной калием. При применявшихся условиях одновременно протекают две реакции крекинга и гидрирования. Оба направления были исследованы раздельно. Оказалось, что они могут быть описаны такими же кинетическими уравнениями, которые использовались для гидродеалкилирования этилбензола. Линейное преобразование позволило определить кинетические параметры  [c.7]

    При гидродеалкилировании толуола при 1000 К и давлении 5 МПа протекают следующие реакции  [c.200]

    Кроме описанных основных реакций протекают и сопутствующие реакции изомеризации, перераспределения боковых цепей и гидродеалкилирования. В процессах, направленных на получение масел, эти превращения стремятся подавить подбором условий реакции и применением селективных катализаторов. Кроме того, ароматические углеводороды, особенно полициклические, способны вступать в реакцию поликонденсации, которая ведет к образованию кокса. ЗакоксовьЕвание поверхности катализатора является одной из основных причин снижения его активности. Последнее частично компенсируют повышением температуры процесса, однако при этом возрастает роль нежелательных побочных пре- [c.298]

    В эксперименте различными авторами найдены значения энергии активации в пределах 226—234 кДж/моль (54—56 ккал/ /моль). Так как гидродеалкилирование толуола идет с выделением тепла (реакция СуИв + Н2-> СбНб + СН4 экзотермична на 50 кДж/моль, т. е. 12 ккал/моль), требуется только нагрев до заданной температуры, далее реакция протекает без подвода тепла. Практически термическое деалкилирование толуола проводят при 650—750 °С, давлении порядка 5 МПа (50 кгс/см ) и начальном соотношении водород толуол около 4 1. Высокое парциальное давление водорода подавляет выделение пироуглерода. [c.110]

    В качестве катализаторов гидродеалкилирования толуола использовали [87] цеолиты ЫаУ (5102/А120д = 4,9—5,1), содержащие 0,5 вес.% Р1 и 0,5—2,0 вес.% N1 и Си. Процесс проводили при 550—570 "С, 31,5 кгс/см , объемной скорости подачи сырья 1 ч и мольном отношении Н2 углеводороды = 10 1. На катализаторе Р1ЫаУ реакция протекала наиболее селективно — выход жидкого продукта, обусловливающий высокую эффективность промышленного применения катализатора, составил 85 вес.% содержание бензола достигало 80 и выше вес.%, образования ксилолов не наблюдалось. При использовании в качестве катализаторов Ы1Ыа и СиНаУ в значительной степени протекали реакции диспропорционирования, конверсия толуола составляла около 50%. Катализаторы работали продолжительное время. [c.143]

    Взаимодействие толуола с водяным паром приводит к образованию газообразных продуктов, содержащих кроме водорода и окислов углерода еще и метан. При повышении температуры реакции выход водорода снижается и увеличивается образование метана. Специальными опытами показано, что одновременно протекает гидродеалкилирование толуола водородом, образующимся при конверсии с водяным паром. Эту р ёакцию можно интенсифицировать подъемом в реакционной зоне температуры и повышением давления. Зависимость глубины превращения метилбензолов от объемной скорости подачи сырья на ЛЧ-Сг катализаторе показана на рис. 6.11 [3, с. 168—176]. Процесс проводили при 375 °С и мольном отношении вода углеводород = 6 1. С увеличением числа метильных групп в молекуле углеводорода скорость деалкилирования в одном ряду углеводородов возрастает толуол < ж-ксилол (и-ксилол) < мезитилен и в другом ряду убывает толуол > о-ксилол гемимеллитол. Скорость деалкилирования псевдокумола больше, чем о-ксилола, и меньше, чем м- и и-ксилола. Таким образом, скорость деметилирования возрастает в том случае, если каждая последующая метильная группа станет по отношению к предыдущим в мета- или параположение [61—66]. [c.258]

    Реакции гидрокрекинга очень сложны наряду с расщеплением и гидрированием протекают изомеризация, разрыв и нерегруппи-ровка циклов, алкилирование, гидродеалкилирование и др. Механизм гидрокрекинга сходен с механизмом каталитического крекинга, но усложнен реакциями гидрирования. Гидрокрекинг алканов низкой молекулярной массы при гидрировании нефтяных фракций нежелателен, так как приводит к образованию легких углеводородов, вплоть до метана. При переработке высококипящих фракций и нефтяных остатков гидрокрекинг алканов желателен, так как в результате образуются углеводороды, по температуре кипения соответствующие светлым нефтепродуктам. Такие реакции протекают под давлением и в присутствии окисных или сульфидных катализаторов. [c.210]

    При обычных условиях гидродеалкилирования сколько-нибудь интенсивная изомеризация насыщенных пятичленных колец алкилинданов в шестичленные насыщенные кольца не может протекать и действительно, по крайней мере при процессе хайдеал, реакции изомеризации не наблюдались. Г. оэтому основными реакциями являются гидродеалкилирование боковых цепей и гидрокрекинг насыщенного кольца. [c.181]

    Интенсивность этих реакций при деалкилировании алкилнафталинов определяется жесткостью режима. Последовательность разрыва насыщенных колец и гидродеалкилирования при работе на алкилинданах в качестве сырья, по-видимому, детально не изучалась, хотя в литературе отмечалось [18], что при термическом процессе превращение индана протекает медленнее, чем этил- или пропилбензола, но немного быстрее, чем толуола и метилнафталина. Отсюда можно сделать вывод, что разрыв насыщенного кольца и гидродеалкилирование коротких боковых цепей протекают со сравнимыми скоростями. Этот вопрос представляет в известной степени лишь академический интерес, так как при любых практически приемлемых степенях превращения алкилнафталинов обе эти реакции протекают с такой полнотой, что алкилинданы сырья практически нацело превращаются в ароматические углеводороды, кипящие ниже температуры кипения нафталина, т. е. в бензол, толуол, ксилолы, алкилбензолы Ср, индан или метил-индаи, которые или выводятся и используются как высокооктановый компонент бензина, или рециркулируют в процессе до полного превращения в бензол. [c.181]

    Исследовано [261] гидродеалкилирование толуола в присутствии металлов, отложенных на полиамидах. Исследована активность и селективность Р1, КЬ и Р(1 (0,4—5,1% металла), нанесенных на поли-п-фенилентерефталамид, при 140—400 °С. Показано, что катализаторы, полученные нанесением соединений металлов на этот полиамид, имеют низкую гидрирующую активность, в то же время реакция гидродеалкилирования протекает на них при более низких температурах, чем на катализаторах, где в качестве носителей применяются АЬОз или активированный уголь. Был сделан вывод, что гидрирующая активность и селективность металлов, отложенных на полиамидах, обусловлена влиянием носителя и образованием поверхностных активных комплексов. Предполагают, что в этих комплексах атомы переходного металла с валентностью больше нуля координационно связаны с амидной группой полимерной цепи. [c.175]

    Кроме того, в ходе гидрогенизационных процессов протекает ряд побочных (нежелательных) реакций, к числу которых относятся гидродеалкилирование ароматических и нафтеновых углеводородов, ведущее к образовгнию циклических углеводородов, склонных к поликонденсации (в свою очередь, поли конденсация циклических углеводородов вызывает образование коксовых отложений на катализаторе и снижение его активности) крекинг углеводородов, обусловливающий снижение выхода и вязкости масел. Эти реакции стремятся подавить путем подбора оптимального состава катализатора и технологических условий процесса. [c.234]

    Технологические схемы. Процесс пиротол (фирма Ноис1гу — рис. 2.78). Фракцию 70—150 °С, выделенную в колонне подготовки сырья 1 из пироконденсата, совместно с горячим водородом подают в испаритель 2, с верха которого термически стабилизированную фракцию направляют в реактор предварительной гидроочистки 3. Полимерные соединения и небольшие количества фракции БТК с низа испарителя возвращают в колонну подготовки сырья 1. Газосырьевую смесь из реактора 3 нагревают в печи 5 до 550—620 °С и направляют в три последовательных реактора гидродеалкилирования б, где одновременно протекают реакции гидрообессеривания и гидрокрекинга неароматических углеводородов. Температуру между реакторами снижают введением холодного водородсодержащего газа. [c.278]

    Нафтеновые углеводороды подвергаются гидрокрекингу и в меньшей степени. Реакции гидрогенолиза и гидрокрекинга протекают с поглощением водорода и приводят к уменьшению концентрации водорода в водородсодержащем газе (ВСГ). С гидрокрекингом и гидрогеноли-зом углеводородов сходны реакции гидродеалкилирования ароматических углеводородов, отличаясь лишь размером радикала, отрываемого от кольца [c.139]

    Затем поток вторично нагревают и подают в реактор Пиротол , где протекают гидрокрекинг и деалкилирование с выделением большого количества теплоты. Одновременно протекают реакции гидрообессеривания. Необходимую температуру поддерживают, подавая охлаждающий поток в реактор между слояш катализатора. Продукты охлаждают (теплообмен с сырьш или.производство пара) и конденсируют. После выделения циркулирующего и отходящего газов поток стабилизируют и разгоняют, получая ароматические углеводороды того же качества, что и при гидродеалкилирования толуола. Соотношение скоростей реакций гидрокрекинга неароматических, деалкилирования ароматики С, н деал-килирования толуола таково, что Щ)одукт практически не содержит неароматических углеводородов и ароматики 8. Толуол и дифенилы возвращают в реактор для увеличения выхода бензола. [c.113]

    Каталитическое гидродеалкилирование. Катализаторы гидродеалкилирования ароматических углеводородов можно условно разделить на две группы 1) низкотемпературные, например никелевые, ускоряющие процесс при 400—460 °С 2) высокотемпературные, например такие, как алюмокобальтмолибденовые, начинающие достаточно эффективно работать лишь при 530 °С и выше. Никелевые катализаторы, содержащие 10—20% Ni на AljOg, высокоактивны однако в промышленности их пока не применяют вследствие низкой стабильности катализаторов и малой селективности процесса — одновременно протекает побочная реакция распада ароматического ядра до метана [4, с. 113—119, 120—124 17—19]. Окисные катализаторы (алюмомолибденовые, алюмокобальтмолибденовые, алюмо-хромовые и др.) позволяют достаточно эффективно проводить процесс гидродеалкилировапия при температурах выше 500 °С, однако при этом также может протекать побочная реакция распада ароматического углеводорода до метана. [c.247]

    Термическое гидродеалкилирование осуществляют при i = 650-т-850 °С и PHj = 3,0- 7,0 МПа. Скорость гидродеалкилирования толуола описывается уравнением первого порядка по толуолу, порядок по водороду 0,5. Энергии активации гидродеалкилирования толуола и ксилолов 210 20 кДж/моль. Скорость термического гидродеалкилирования ксилолов выше, чем толуола, и убывает в ряду о- > п- > л-ксилол. Реакция деалкилирования протекает по ради ольно-цепному ыеханизму. [c.110]

    Прошлые теоретические и экспериментальные работы [7—12] и последние исследования [13—17] показали, что процесс гидрокрекинга, или, как раньше его называли, крегинг в присутствии водорода (деструктивная гидрогенизация), представляет собой совокупность ряда параллельных и последовательных реакций. К ним относятся расщепление парафиновых, нафтеновых и оле-финовых углеводородов, отрыв боковых цепей ароматических и нафтеновых углеводородов, деструктивное гидрирование, или гидродеалкилирование алкиларома-тических углеводородов, гидрогенолиз сероорганических и азотсодержащих соединений, гидрирование продуктов расщепления, изомеризация, уплотнение полупродуктов и коксообразование. Гидрокрекинг, может протекать под давлением водорода от 30 до 700 ат и выше, при этом реакции уплотнения молекул и дегидрирования заметно подавляются. При высоких давлениях (200 ат и более) они могут предотвращаться практически полностью. [c.10]

    Возможно, что полученные различные кажущиеся порядки реакций по водороду и по бензолу наблюдались из-за неодинаковых условий и методик проведения экспериментов, а возможно еще и из-за неодинаковой активации катализаторов, применявщихся в опытах. Известно, что для одного и того же процесса, проводимого в присутствии разных катализаторов, могут наблюдаться неодинаковые кажущиеся порядки реакций. Например, при гидродеалкилировании толуола над хромуголь-ным катализатором процесс протекал с кажущимся нулевым порядком по водороду и первым по толуолу. Деалкилирование же над алюмокобальтмолибденовым катализатором, промотированным калием, протекало с кажущимся первым порядком по толуолу и дробным (в степени 0,3) по водороду [74]. [c.156]

    Наиболее полно и достаточно селективно (свыше 95%) реакции гидродеалкилирования протекают в нс нсутствии окисных катализаторов, содержащих молибден, кобальт, хром иа окиси алюминия. Для предотвращения коксообразования, протекающего преимущественно на кислотных активных центрах, в катализатор вводят соединения щелочных металлов или воду. Вода обладает иовы-шепной способностью к хемосорбцни на окислах типа АЬОз и, [c.311]

    В условиях гидродеалкилирования протекают многочисленные реакции, в подавляющем большинстве случаев — сильно экзотермические. Важнейшая реакция — отщепление боковой алкильной цепи от ароматического кольца, например  [c.290]

    Отщепление боковой цепи протекает в несколько стадий, поэтому при малой глубине превращения в продукте содержатся и частично гидродеалкилированные компоненты. Как правило, ароматические углеводороды с длинными боковыми цепями реагируют быстрее, чем с короткими, а полизамещенные —быстрее, чем монозамещенные. Нежелательной реакцией, протеканию которой способствуют низкое парциальное давление водорода и жесткие условия процесса, является конденсация ароматических колец. Эта реакция —первая на пути к дальнейшей конденсации, которая может привести к закоксованию реактора и катализатора. Крайне нежелательна также реакция превращения ароматических углеводородов в метан и производные циклогексана, дальнейший [c.290]

    Термическое и каталитическое гидродеалкилирование. Методам деалкилирования и гидродеалкилирования для получения мо-. ноароматических углеводородов из алкилароматических посвящено много работ [16, 137, 193]. В наиболее важных исследованы два метода деалкилирования каталитическое и термическое. Сначала внедрение термического деалкилирования было затруднено подбором конструкционных материалов для осуществления процесса, так как температура в зоне реакции достигает 800 °С. Поэтому ведутся разработки каталитического процесса. В остальном процесс отличается простотой, так как отпадают затраты на катализатор и его замену он протекает спокойно и без коксообразования исключительно гибок и позволяет гидродеалкилировать различное сырье. Расход водорода минимален вследствие высокой избирательности образования целевых продуктов. Все эти факторы обусловливают довольно низкие удельные капитальные вложения. [c.291]

    Высокая эффективность деалкилирования толуола паром на родиевых катализаторах подтверждена и зарубежными исследователями. В этой связи определенный интерес представляет работа, в которой родиевый катализатор промотирован окислами металлов [197]. Стремясь уменьшить расход благородных металлов, исследовали промотируюшее влияние на выход бензола окислов N1, Со, Ре, V, КЬ, Се, Сг, Мо и Ш. Показано, что при постоянном выходе бензола с увеличением содержания НЬ конверсия толуола и концентрация СН4 возрастают, концентрация газов Нг, СО2, СО практически не меняется. Образование СН4 можно объяснить одновременным с деалкилированием протеканием гидродеалкилирования с выделением Нг, причем с увеличением содержания КЬ интенсивность гидродеалкилирования возрастает, максимальная интенсивность деалкилирования паром достигается при содержании Rh, равном 0,2—0,3% (масс.). Так, если проводить деалкнлиро-вание паром на катализаторе с 0,3% (масс.) родия и 1% (масс.) иОз при 420 °С, мольном отношении вода толуол-6 и объемной скорости подачи толуола 0,67 ч , то при отношении Нг НгО = = 0,35 протекает реакция гидродеалкилирования. При любых значениях. НгО толуол максимальная селективность достигается на катализаторе НЬ—РегОз. Механизм деалкилирования адсорбированного толуола до бензола водяным паром на никелевом катализаторе предложен А. А. Баландиным этот механизм объясняет и деалкилирование толуола на родиевом катализаторе в присутствии платины и других металлов. [c.294]


Смотреть страницы где упоминается термин Реакции, протекающие при гидродеалкилировании: [c.182]    [c.60]    [c.14]    [c.309]   
Смотреть главы в:

Новейшие достижения нефтехимии и нефтепереработки том 9-10 -> Реакции, протекающие при гидродеалкилировании




ПОИСК





Смотрите так же термины и статьи:

Гидродеалкилирование



© 2024 chem21.info Реклама на сайте