Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление зарождение цепи

    Ранее мы отмечали одну из особенностей газофазного окисления углеводородов — наличие области температур, в которой коэффициент температурной зависимости скорости реакции имеет отрицательное значение. Аналогичный эффект наблюдается и при жидкофазном окислении углеводородов в условиях, когда зарождение цепей происходит преимущественно по гомогенному механизму. Экстремальный характер температурной зависимости скорости образования продуктов окисления отмечался в литературе [30—32]. Возможной причиной наблюдаемого эффекта является экстремальная температурная зависимость скорости реакцин зарождения цепей по гомогенному механизму, что подтверждается приведенным ниже теоретическим анализом процесса зарождения цепей, скорость которого определяется уравнением (2.15). [c.36]


    Согласно цепной теории процессы автоокисления начинаются с реакций зарождения цепи окисления. При этом наиболее вероятно, что возникновение первичных радикалов может происходить за счет взаимодействия молекул углеводорода с кислородом [c.43]

    Надежная количественная оценка скорости цепного окисления углеводородов затруднительна. Чтобы воспользоваться известными способами оценки скорости цепного окисления, необходимо детально изучить механизм цепного процесса и прежде всего механизм его наиболее медленных стадий — возбуждения молекул и зарождения цепей. [c.26]

    МЕХАНИЗМ ЗАРОЖДЕНИЯ ЦЕПЕЙ ПРИ ОКИСЛЕНИИ УГЛЕВОДОРОДОВ [c.29]

    Обычно зарождение цепей в окисляемых углеводородах происходит по обоим механизмам — гомогенному и гетерогенному. Вклад каждого механизма в суммарную скорость зарождения цепей зависит от условий окисления — соотношения объема углеводорода и поверхности реактора, скорости диффузии кислорода к поверхности металла и т. ц. Так, например, при длительном хранении топлив в больших резервуарах зарождение цепей будет происходить преимущественно по гомогенному механизму. При жидкофазном окислении топлива в реакторе в условиях интенсивного перемешивания смеси и барботирования кислорода зарождение цепей с большей вероятностью происходит по гетерогенному механизму. Гетерогенный механизм зарождения цепей остается постоянным при окислении углеводородов как в газовой, так и в жидкой фазе. Иначе обстоит дело при гомогенном зарождении цепей. [c.29]

    Е. т. Денисов [16] считает, что основной реакцией зарождения цепей лри низкотемпературном жидкофазном окислении углеводородов является протекающая в объеме реакция  [c.30]

    Характерно изменение ПК для ароматических углеводородов, содержащихся в топливах Т-б и Т-7. Исходные ароматические углеводороды топлива Т-6 по сравнению с ароматическими углеводородами топлива Т-7 поглощают кислород в количестве, вдвое меньшем, а их оксидаты (после окисления при 150 °С) — на 7з больше. Это совпадает с ранее приведенными данными о более высокой скорости зарождения цепей при температуре выше 100 °С в топливе Т-6. Неуглеводородные соединения, остающиеся в топливах, полученных гидрогенизационными процессами, содержат некоторое количество естественных ингибиторов окисления ( 57.10- моль/л), что сказывается на Ти (см. рис. 2.6), однако их концентрация приблизительно в 100 раз меньше, чем концентрация обычно вводимого промышленного противоокислителя — ионола. Содержание природных ингибиторов тем меньше, чем дольше хранилось топливо, т. е. ингибиторы в процессе хранения расходуются. [c.48]


    Указывается также на возможность зарождения цепей при жидкофазном окислении углеводородов по реакциям  [c.30]

    Такой вывод был сделан на основании исследований механизма зарождения цепей в окисляющихся жидких углеводородах косвенными методами — по начальной скорости цепного окисления и методом ингибиторов, что не всегда позволяет однозначно определить действительный механизм процесса [17]. [c.30]

    Если считать, что в рассматриваемой системе преобладает гомогенный механизм зарождения цепей, и допустить, что в начальной стадии окисления скорость процесса определяется наиболее медленной элементарной реакцией — зарождения цепей, то согласно [24], активированный комплекс этой реакции (рис. 2.1,6) можно рассматривать в качестве сольватированного комплекса, и в этом случае для константы скорости реакции (О ) в схеме цепного окисления справедливо уравнение  [c.33]

    На основании рассмотренного выше механизма зарождения цепей можно не только оценивать противоокислительную стабильность углеводородов различного строения, но и объяснить некоторые особенности процесса жидкофазного окисления. [c.36]

    Соответственно изменению п с температурой будет изменяться и энергия активации реакции (О ). Таким образом, при жидкофазном окислении углеводородов в условиях, когда зарождение цепей происходит преимущественно по гомогенному механизму, может существовать такая температура, при которой скорость реакции образования свободных радикалов будет наибольшей. Соответственно при небольших временных превращениях, когда в целом скорость цепного процесса определяется скоростью наиболее медленной стадии — зарождения цепей, скорость окисления также будет характеризоваться экстремальной температурной зависимостью. [c.37]

    Из изложенного следует весьма важный вывод в сложных смесях углеводородов, которыми являются нефтяные топлива и масла, могут присутствовать соединения, являющиеся эффективными ингибиторами окисления. Подобные соединения получили название естественных или природных ингибиторов, в отличие от искусственных ингибиторов, специально вводимых в топлива и масла для повышения их противоокислительной стабильности. Следовательно, процесс окисления топлив и масел в начальной стадии относится к так называемому ингибированному окислению, в котором одновременно с зарождением цепей протекают [c.39]

    Длительность индукционного периода и скорость окисления определяются скоростью зарождения цепей (образование радикалов) при возбуждении молекул и распаде гидропероксидов, что, в свою очередь, очень сильно зависит от температуры. Скорость зарождения свободных радикалов в гидроочищенном (РТ) и гидрированном (Т-6) топливах при барботировании газов характеризуется данными, приведенными в табл. 2.6 [47]. [c.46]

    При барботировании воздуха и особенно кислорода при 120 °С скорость зарождения свободных радикалов в топливе Т-6 становится больше, чем в топливе РТ. Причины указанного явления пока не выяснены. Оно может быть объяснено большей скоростью распада (при высоких температурах) гидропероксидов, образующихся при окислении топлива Т-6, а также ингибирующим действием продуктов окисления ароматических углеводородов. Какой-либо существенной зависимости скорости зарождения цепей от длительности хранения топлива в описываемых экспериментах не обнаружено. Начальная скорость зарождения радикалов в топливах и выделенных из него фракций одинакова. После накопления гидропероксидов в концентрациях около 2 ммоль/л они становятся основными инициаторами окисления. В этих случаях в атмосфере азота для топлива Т-6 при 120 °С имеем Гг = 50-103 моль/(л-с) [43] [c.47]

    Современный взгляд на механизм действия противоокислителей исходит из представления об окислении углеводородов как о цепном процессе, в котором зарождение цепей и их развитие идут с участием свободных радикалов (см. раздел 2.1). Все, что может способствовать превращению радикалов в стабильные молекулы и таким образом мешает регенерации радикалов или затрудняет их образование и накопление в продукте, должно тормозить окисление. Чтобы противоокислитель мог предохранять топливо или масло от окисления, его действие должно быть направлено на обрыв реакционной цепи путем уменьшения количества образующихся радикалов. Предполагают, что такой ингибитор (1пН), будучи веществом активным, легко отдает свой водород радикалам основного окисляющегося вещества, переводя их таким образом в неактивное состояние и заменяя их радикалами 1п, не способными в силу своей относительно малой активности регенерировать радикалы и продолжать цепь  [c.80]

    Однако в некоторых случаях значительная часть превращения осуществляется в газовом объеме, иногда на большом расстоянии от поверхности катализатора. Исследования показали, что в ходе многих каталитических реакций окисления имеет место десорбция радикалов с поверхности катализаторов в газовую фазу. Экспериментально было доказано, что катализатор может участвовать в процессе зарождения цепи в качестве инициатора свободных радикалов и в процессе продолжения цепи в качестве одного из участников элементарных стадий на поверхности [1.30]. [c.15]


    Вывод о наличии в топливах ингибирующих примесей не противоречит рассмотренным в предыдущем разделе экспериментальным данным об инициированном окислении топлив, где природные ингибиторы в топливе обнаружены не были. При автоокислении топлив, содержащих ингибитор, в течение периода индукции инициирование осуществляется в основном по реакциям зарождения цепей. Время (т), в течение которого ингибитор вырабатывается , определяется с одной стороны его емкостью /[1пН]о, с другой — скоростью зарождения цепей о т=/[1пИ] o/Vio- [c.83]

    Рассмотрим решение прямой кинетической задачи дпя реакции окисления метана, следуя в основном результатам работы [23]. Механизм процесса приведен в табл. 5.1. Он основан на предложенной H.H. Семеновым радикально-цепной схеме процесса окисления метана. Стадия (1) — зарождение цепи, стадия (6) - разветвление цепи, стадии (2) - (5) и (7) -(12) — продолжение цепи, стадии (13) — (17) —обрывы цепи. [c.148]

    ЗАРОЖДЕНИЕ ЦЕПЕЙ ПРИ ОКИСЛЕНИИ [c.88]

    Кинетические параметры реакции зарождения цепей в топливах РТ, Т-6 и Т-8, измеренные методом ингибиторов [112], приведены в табл. 4.8, а на рис. 4.7 показана зависимость скорости зарождения цепей от температуры для четырех образцов топлива Т-6. Значения о в топливах имеют тот же порядок, что и для индивидуальных углеводородов (см. табл. 2.1). В среде азота (1—2% Оз) скорости инициирования в топливах примерно на порядок ниже чем в среде кислорода, а в среде воздуха примерно в четыре раза меньше чем в среде кислорода. Следовательно, зарождение цепей при окислении топлив осуществляется в основном по реакциям молекулярного кислорода со слабыми С—Н-связями углеводородов по реакциям [c.89]

    Т-6 при 125 °С н poj=100 кПа). Если сравнить ингибированное окисление топлива с олеатом меди (см. выше) и с медным порошком, то они сходны между собой в универсальной зависимости т от Vi и [1пН]о. На рис. 6.13 показано, что т как функция от [InH]o/oi представляет собой одну и ту же прямую линию для опытов в присутствии олеата меди и медной поверхности. Различие между окислением с олеатом меди и с медной поверхностью лежит в и, олеат меди ускоряет только распад гидропероксидов на радикалы, т. е. вырожденное разветвление цепей, в то время как медная поверхность интенсифицирует и вырожденное разветвление, и зарождение цепей. [c.224]

    Вычислите энергию активации для реакции зарождения цепи при окислении бутана, если по истечении 100 с от начала реакции получены следующие данные  [c.399]

    Если исходные вещества не поглощают света, то инициирование может быть осуществлено путем применения фотосенсибилизатора. Так, добавление паров ртути к смеси пропана с кислородом приводит к фотосенсибилизированному цепному окислению пропана,, зарождение цепей в котором происходит в результате реакций  [c.270]

    Поскольку на ранних стадиях окисления можно считать [RH1 постоянной величиной, то по зависимости от концентрации какого-либо продукта реакции Р можно судить, как зависит от [Р] скорость зарождения цепей. Это дает сведения о механизме реакции вырожденного разветвления. [c.332]

    Например, при окислении декана, тэтралина, циклогексана зарождение цепей осуществляется по тримолекулярной реакции. В случае окисления метилэтилкетона и этилового спирта при 145— 200 °С и давлении 5 МПа зарождение цепей происходит по бимолекулярной реакции, В некоторых случа 1х процесс зарождения цепей оказывается гетерогенным и идет на стенках реакционного сосуда. [c.269]

    ДО дает восстановленный катализатор и продукты реакции. Этот механизм возможен при взаимодействии одной молекулы окисляемого ве-и ества с одной молекулой кислорода, однако при глубоком окислении, когда по стехиометрии для реализации процесса необходимо участие в реакции большого числа молекул кислорода, механизм становится маловероятным (например, для окисления одной молекулы этилена в элементарном каталитическом акте должны одновременно участвовать три молекулы кислорода, для окисления более сложных молекул необходимы десятки молекул кислорода). Стадийный механизм включает по крайней мере две стадии процесса, при этом вначале происходит стадия диссоциативной хемосорбции кислорода на катализаторе с образованием активированного комплекса. На второй стадии молекула окисляемого вещества взаимодействует одновременно с несколькими активированными комплексами с образованием продуктов реакции и восстановлением катализатора. При гетерогенно-гомогенном радикально-цепном механизме катализатор облегчает наиболее энергоемкий этап цепного процесса - зарождение цепей. Образовавшиеся радикалы органических веществ десорбируются в газовую фазу, давая начало объемному развитию цепи. Гомогенные стадии в гетерогенно-гомогенном катализе изучены пока недостаточно глубоко. Многочисленные экспериментальные данные по глубокому окислению углеводородов часто проти- [c.11]

    Главным продуктом фотохимического окисления формальдегида является муравьиная кислота. Кроме того, образуются значительные количества СО и Н2О и очень немного СО2 и Нг- Происходит также частичная полимеризация формальдегида, которая не имеет прямого отношения к рассматриваемому процессу, поскольку было показано, что она обусловлена гетерогенной реакцией, катализируемой муравьиной кислотой [93]. Среди продуктов реакции нельзя ожидать появления пермуравьиной кислоты, ибо радикал НСО, образующийся при реакции, аналогичной реакции (1.121), вероятно, не может присоединять молекулу кислорода непосредственно путем двойного столкновения, а реагирует с кислородом каким-то другим путем. В этом отношении интересно отметить, что переход двухвал ентного С (как, например, в СО) в четырехвалентное состояние, являющийся переходом из состояния Р в состояние эндотермичеп( 100 ккал моль) [94]. Вероятно, по этой причине разложение, например, НСНО на Н2 и СО является почти термонейтральной реакцией, ибо можно предположить, что примерно 200 ккал, требующихся для отрыва от НСНО двух атомов Н, выделяются при их рекомбинации и переходе атома С в состояние Ф (см. приложение Л, табл. 6). На том же основании приблизительно термонейтральна диссоциация НСО на Н и СО поэтому возможно, что этот радикал должен реагировать с О2, образуя НО., и СО. Теперь, [егко составить механизм реакции окисления формальдегида с участием радикалов НСО, НО2 и ОН, который объяснял бы возникновение главных продуктов окисления. Зарождение цепей происходит благодаря взаимодействию фотохимически возбужденной м( лекулы формальдегида с молекулой кислорода [c.84]

    Оэгласно современным представлениям, окисление углеводородов — сложный многостадийный процесс, развивающийся через перекиси и свободные радикалы. В общем виде механизм окисления углеводородов может быть представлен схемой, включающей следующие элементарные стадии , , зарождение цепи [c.223]

    Помимо чисто практического значения знание у, позволяет сделать определенные выводы о механизмах зарождения цепей в окисляющемся топливе и распада гндропероксида на радикалы, измерить константы скоростей распада на радикалы гидропероксида и других ингибиторов окисления. На начальной стадии автоокисления топлива инициирование осуществляется за счет реакций зарождения цепей, на более поздней — в результате распада гидропероксида на радикалы. При наличии в топливе специально введенного инициатора (I) он также является источником свободных радикалов. В общем случае [c.63]

    Автоокисление углеводорода с InH. По иному развивается процесс в отсутствие инициатора. В начальный период окисления цепи зарождаются по би- и трнмолекулярной реакциям углеводорода с кислородом. Скорость зарождения цепей очень мала (см. с. 38 и 90). Образующийся в процессе окисления гидропероксид распадается на радикалы и увеличивает ско- [c.112]

    С насыщенными углеводородами (алканами и цикланами) генерирования радикалов под действием Ме"+ и О2 не наблюдается. Наоборот, как отмечалось выше, металлы в состоянии низшей валентности часто вызывают длительные периоды индукции из-за обрыва цепей по реакции ROa с Ме"+, а это означает, что радикалы в углеводороде, не содержащем ROOH, генерируются по реакциям без участия катализатора (например, по реакции RH с О2). Если бы катализатор генерировал радикалы со скоростью, превышающей скорость реакции RH с О2, то он оказывал бы ускоряющее, а не тормозящее действие. Следовательно, в окисляющихся углеводородах в подавляющем большинстве случаев можно исключить участие катализатора в зарождении цепей по его реакции с RH или с RH и О2. Главный источник радикалов — реакция ROOH с Ме"+, а также Ме + с кислородсодержащими соединениями — продуктами окисления углеводорода. Вопросы селективного каталитического окисления углеводородов подробно рассмотрены в обзоре Эмануэля [298]. [c.204]

    Весьма сходным в своих главных чертах оказалось поведение топлива, содержащего ионол, в присутствии порошка меди. Медная поверхность ускоряет окисление (см. предыдущий раздел), разрушая гндропероксиды на радикалы и увеличивая скорость зарождения цепей. Последняя линейно растет с увеличением поверхности меди S u, для топлива Т-6 при 125 °С и ро = = 100 кПа на основании экспериментов со смешанным инициированием [c.223]

    Xл Сь орость зарождения цепей, измеренная методом ингибиторов, 2)о = 9 10 моль с . Реакция окисления дибензилового эфира при инициировании озо-изо-бутиронитрилом имеет энергию акгивацпи Е = 93,6 кДж, энергия активации распада аэо-иэо-бyтиpoJlитpи a 128,9 кДж. Рассчитайте длину цепи и энергию активации каждой стадии. [c.393]

    Изучено влияние на термоокислительную стабильность реактивных топлив ряда производных ионола, содержащих серу и азот, азометинов, гидразонов, аминов, сульфидов, дисульфидов и др. Показано, что эти производные (за исключением азометинов и гидразонов) тормозят окисление не только в период зарождения цепи, но и в стадии ее развития, потому что они способны взаимодействовать с первично образующимися радикалами окисляющегося вещества — пероксидами, тем самым разрушая их. Антиокислительная способность перечисленных веществ оказалась различной азометины, например, совсем не влияют на термоокислительную стабильность топлив и иногда даже снижает ее, а остальные соединения проявляют ингибирующий эффект, сопоставимый с эффектом ионола. [c.256]

    Весьма сходным в своих главных чертах оказалось поведение топлива, содержащего ионол, в присутствии порошка меди [66, 67, 75]. При этом ускоряются процессы окисления, так как увеличиваются скорость радикального распада гидропероксидов и скорость зарождения цепей [75, 81]. Наиболее вероятными представляются схемы, согласно которым, гидропероксиды адсорбируются на активных центрах медной поверхности, где быстро распадаются на радикалы  [c.74]

    Механизм действия металлобромидных катализаторов еще недостаточно ясен. Известно, что при окислении различных веществ в их присутствии порядок реакции по исходным реагентам и компонентам катализатора очень разный. Имеется предположение, что из бромидов сначала образуется бромистый водород, который окисляется до атомарного брома, участвующего в зарождении цепи  [c.402]

    При осуществлении неполного окисления метана используются как гомогенные катализаторы и инициаторы, так и гетерогенные. Согласно положений теории цепных разветвленно-вырожденных процессов, к которым относится окисление метана, первичным актом, требуюпщм значительной затраты энергии, является зарождение цепей, протекающее, как показано Семеновым [76, 77], по следующей, реакции  [c.165]

    Более совершенным является процесс одностадийного окисления п-ксилола молекулярным кислородом, разрабс аиный фирмами Teijin, Mid- aitury и др. Окисление п-ксилола осуществляется в растворе уксусной кислоты в присутствии ацетата кобальта (катализатора) и бромида натрия (промотора, ускоряющего зарождение цепи). Вместо бромида натрия могут применяться ацетальдегид или метилэтилкетон, выполняющие ту же функцию. [c.183]

    На рис. 87 приведена в качестве иллюстрации кинетика расходования а-нафтола при окислении кислородом н-декана при 150" С. Из графика видно, что расходование идет с постоянной скоростью. Из наклона прямой непосредственно определяется скорость расходования а-нафтола и тем самым скорость зарождения цепей, равная 2,05-10 моль1л-сек. [c.313]

    Скорость вырожденного разветвления может быть также определена методом ингибиторов. На рис. 94 в качестве иллюстрации показана зависимость скорости расходования ингибитора (которая, как показано в 3 этой главы, равна скорости зарождения цепей) от концентрации гидроперекиси при окислении н-декана при 130° С. Н в этом случае скорость инициирования пропорциональна концентрации гидроперекиси н-децила, т. е. вырожденное разветвление есть реакция первого порядка по концентрации гидроперекиси. Из наклона прямой линии легко определяется константа скорости вырожденного разветвления, равная в этом случае 1,9-Ю " секГ . [c.333]

    Начальный период окпс- чения и развившийся процесс окисления резко различаются по своей чувствительности )ч воздействию ингибиторов. Так, 1обавка к -декану перед началом процесса окисления при температуре 130 С ингибитора а-нафтола в концентрацт 2-10 моль л приводит к появлению периода индукинн 80 ч. Между тем, если такое же количество а-нафтола добавить в н-де-кан, в котором накопилось 0,1 моль л гидроперекиси, то реакция затормозится всего на 1 ч. Это связано со значительно большей скоростью зарождения цепей, а следовательно, и со значительно большей скоростью расходования ингибитора во втором случае. [c.342]


Библиография для Окисление зарождение цепи: [c.228]   
Смотреть страницы где упоминается термин Окисление зарождение цепи: [c.29]    [c.31]    [c.32]    [c.63]    [c.90]    [c.206]    [c.75]   
Антиокислительная стабилизация полимеров (1986) -- [ c.59 , c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Зарождение цепи



© 2025 chem21.info Реклама на сайте