Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижность пластификаторов

    ПЛАСТИФИКАЦИЯ ПОЛИМЁРОВ, повышение эластичности и(или) пластичности полимерного материала, обусловленное введением низкомол. в-в (пластификаторов). Сущность П. п. заключается в увеличении гибкости и подвижности макромолекул в присут. низкомол. компонента. Как правило, непременное условие П. п.- термодинамич. совместимость пластификатора с полимером, т. с. образование истинного р-ра пластификатора в полимере. Ииогда эффект П. п. может быть достигнут введением очень небольших кол-в (до 1% по массе) ограниченно совместимых с полимером низкомол. в-в. [c.563]


    РЕЗОРЦИН (1,3-диоксибензол) СбНДОН) , 111 °С, кии 281°С раств. в воде, р-рах щелочей, ацетоне, сп., эф., бензоле, хлороформе f 127 °С, т-ра самовоспламенения 608 °С. Протоны ядра очень подвижны при электроф. замещении, к-рое легко осуществляется в положения 2, 4 и 6 Легко восст. в дпгндрорезорцин (циклогеисапдион-1,3). Получ. щел. плавлением л-бензолдисульфокислоты. Примен. в произ-ве красителей, резорцино-формальдегидных смол антисептик. Эфиры Р.— стабилизаторы и пластификаторы полимеров. Пыль и пары Р. раздражают кожу и слизистые оболочки глаз и дыхат. путей. [c.503]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]

    Электропроводность. Многочисленными исследованиями различных авторов установлена близость закономерностей диффузии и электропроводности, а в ряде случаев и однозначная связь между ними. Поэтому можно считать, что электропроводность большинства полимеров, в том числе и эластомеров, определяется в основном подвижностью ионов. На ионный характер электропроводности полимеров указывают и результаты исследования прохождения тока через растворы полимеров или через полимеры, содержащие большое количество пластификатора. [c.72]

    Для увеличения подвижности ВУС и улучшения ее транспортабельности были использованы различные воздухововлекающие добавки и пластификаторы. [c.169]

Рис. III.14. Связь между совместимостью, эффективностью и подвижностью пластификаторов. Рис. III.14. <a href="/info/26849">Связь между</a> совместимостью, эффективностью и подвижностью пластификаторов.

    Установлено, что добавки снижают вязкость пеков. Наибольший пластифицирующий эффект на пеки оказывают флуорен и нафталин. Видимо, флуорен и нафталин внедряются между макромолекулами пеков, раздвигают входящих в их матрицу структурные фрагменты, ослабляя тем самым межмолеку лярные силы. Пластификаторы взаимодействуют с макромолекулами пека, их сольватируют и препятствуют коагуляции, т.е. улучшают подвижность структурных образований пека. [c.87]

    Исследование закономерностей электропроводности полимерных материалов осложняется и тем, что величина коэффициента теплопроводности зависит от времени с момента приложения электрического поля. При рассмотрении влияния состава резин авторы многих работ отмечают, что все факторы, приводящие к увеличению молекулярной подвижности, обусловливают рост электропроводности. Так, введение пластификатора увеличивает электропроводность полимеров как в высокоэластическом, так и в застеклованном состоянии, что также указывает на роль пластификаторов в процессе ионного переноса электричества. [c.72]

    Процессы релаксации и определение энергии, а также энтропии активации определение полярных групп в неполярных полимерах, подвижности и ориентации сегментов цепи, влияния пластификатора [c.416]

    Пластифицированные смолы получают, вводя в полимерные соединения пластификаторы, увеличивающие их гибкость и снижающие температуру стеклования. Пластификаторы — это низкомолекулярные нелетучие соединения с низкой температурой застывания. Эффект пластификации достигается в результате растворения низкомолекулярного вещества и полимера друг в друге, т. е. в результате проникновения и распределения пластификатора между макромолекулами полимера. Иными словами, пластифицированные материалы — очень концентрированные растворы полимеров. Из-за того, что низкомолекулярное соединение расположено между макромолекулами, изменяется структура вещества связь между цепными макромолекулами ослабляется, они приобретают подвижность и способность изгибаться, а это придает гибкость и эластичность материалу. Чтобы полимер и низкомолекулярное вещество взаимно растворились, должны быть либо оба полярными, либо оба не- [c.27]

    Известны пластификаторы другого типа нерастворимые в полимере, но распределяющиеся по границам раздела элементов надмолекулярной структуры, смачивая их поверхности. Благодаря этому повыщаются подвижность структурных элементов относительно друг друга и гибкость материала. Такая пластификация названа межпачечной, или межструктурной. В случае межструктурной пластификации небольшое количество пластификатора дает значительный эффект. Однако этот эффект ограничен определенными пределами, так как области раздела элементов структур ограничены. Пластификатор, введенный сверх того количества, какое необходимо для смачивания областей раздела, не вызывает дополнительных изменений свойств материала, и избыток пластификатора может выделиться на поверхности полимера ( отпотевание ). Когда пользуются растворимыми пластификаторами, такого предела нет. По мере увеличения содержания растворимого пластификатора возрастает степень эластичности материалов, в конце концов превращающихся в вязкотекучие продукты. Свойства пластифицированного полимера при любом его соотношении с растворимым пластификатором промежуточные между свойствами исходного полимера и пластификатора. Практически выбираются оптимальные соотношения, которые обеспечивают наиболее выгодные для конкретной области применения материала физико-химические, электроизоляционные и другие свойства. [c.28]

    Аналогичную роль играют и наполнители — вещества, усиливающие взаимодействие между макромолекулами и увеличивающие прочность их связи. Обратную роль — увеличение подвижности макромолекул — выполняют пластификаторы. [c.323]

    От указанных недостатков свободны электроды на основе пластифицированных полимерных мембран. Они аналогичны электродам на основе мембран с подвижными носителями, за исключением того, что жидкий ионообменник находится в гомогенной полимерной пленке (матрице) во многих случаях один и тот же ионообменник можно использовать в электродах обоих типов. Для получения достаточно прочной и эластичной пленки растворитель ионообменника должен быть одновременно пластификатором полимера. В качестве матрицы чаще всего применяют пленки из поливинилхлорида, пластифицированного эфирами фталевой, фосфорной и других кислот. Для изготовления мембраны к тетрагид-рофурану добавляют жидкий ионообменник и в полученном растворе растворяют поливинилхлорид. Далее раствор помещают в 208 [c.208]

    Незначительная кристалличность и высокая полярность обусловливают способности ПВХ изменять в широком интервале реологические свойства в присутствии полярных смазок и пластификаторов. При этом. снижается вязкость расплава за счет уменьшения межмолекулярного взаимодействия и повышения подвижности их сегментов, а также увеличения длины отрезков макромолекул между зацеплениями. Уменьшение вязкости расплава, времени и температуры плавления способствует снижению механодеструкции полимера, что существенно облегчает процесс переработки ПБХ композиций. [c.187]


    Для улучшения свойств полимеров (снижения хрупкости, повышения морозостойкости, облегчения их переработки) вводятся низкомолекулярные вещества — пластификаторы. Типичные значения Тст пластификаторов лежат при температурах от 173 до 223 К. Иногда в качестве пластификаторов пластмасс применяют эластомеры. В таких смесях доля пластификатора обычно невелика, и поэтому эффект действия пластификатора называют модификацией свойств полимера. Пластификация приводит к снижению Тст, вязкости, увеличению подвижности макромолекул и надмолекулярных структур. [c.199]

    Поливинилацетатная дисперсия готовится путем полимеризации мономера— винилацетата—в водной среде. Винилацетат эмульгирует в воде с полющью подходящего эмульгатора и в присутствии защитного коллоида. Затем с помощью водорастворимого инициатора (перекись водорода) мономер полимеризуется. Полимеризация производится при 40—80°, т. е. при сравнительно низкой температуре. Выделяющееся при полимеризации тепло можно легко отвести, так как образующаяся дисперсия имеет сравнительно низкую вязкость и поэтому легко подвижна. Пластификаторы мешают процессу полимеризации и поэтому большей частью вводятся в уже готовую дисперсию. В принципе вoз юлшo также растворять твердую полимеризо-ванную слюлу в подходящем растворителе, а затем диспергировать в воде. Однако подобный процесс слежен и поэтому находит лишь ограниченное применение. [c.157]

    Подвижность по 1имерных молекул может быть усилена введением в их состав фрагментов, выступающих в качестве молекулярной смазки. Это пластификаторы. Г1оли1 инилхлорид без такой смазки — жесткий материал и используется для изготовления труб и облицовки домов. Если же добавить пластификатор, то из такого поливинилхлорида можно делать плащи и обувь. Жсстк0с1ь может быть повышена путем дополнительного связывания полимерных молекул химическими связями, которые ограничивают подвижность молекул относительно друг друга. Сравните, например, жесткость резинового жгута и автомобильной покрышки. [c.221]

    Галогенирование является одним из важнейших процессов органического синтеза. Этим путем в крупных масштабах получают 1) хлорорганические промежуточные продукты (1,2-дихлорэтан, хлоргидрины, алкилхлориды), когда введение в молекулу достаточно подвижного атома хлора позволяет при дальнейших превращениях хлорпроизводных получить ряд ценных веществ 2) хлор- и фторорганические мономеры (хлористый винил, винилиденхлорид, тетрафторэтилен) 3) хлорорганические растворители (хлористый метилен, четыреххлористый углерод, три- и тетрахлорэтилен) 4) хлор- и броморганические пестициды (гексахлорцик-логексан, хлорпроизводные кислот и фенолов). Кроме того, гало-генпро зводные используют как холодильные агенты (хлорфтор-произвс дные, так называемые фреоны), в медицине (хлораль, хлорис ый этил), в качестве пластификаторов, смазочных масел и т. д. [c.97]

    В качестве пластификаторов применяют низкомолекулярныо растворители, которые прн иведении в полимер распределяются между макромолекулами илн между надмолекулярными структурами в зависимости от качества растворителя — пластификатора. В результате уменьшается когезия между макромолекулами, образуется подвижная структура, обладающая малой вязкостью и высокой эластичностью. [c.391]

    Так, проявление сегментальной подвижности макромолекул целлюлозы возможно лишь при условии присутствия хотя бы небольших количеств воды, являющейся пластификатором для этого полимера. В условиях интенсивного набухания, а также в концентрированных растворах макромолекулы природных волокнообразующих полимеров способны к самоупорядочению с образованием жидкокристаллических структур. [c.289]

    При хлорировании твердого парафина в расплавленном состоянии при 80—120° получают хлорнарафин, содержащий 7 и больше атомов хлора в молекуле. Согласно Шииру [18], в промышленном масштабе изготовляют три основных вида хлорпарафина. К первому виду относится подвижная нелетучая жидкость, содержащая около 43% хлора, что соответствует Са5-углеводороду с 7 атомами хлора. При 60% хлора (15 атомов хлора на 25 атомов углерода) получают мягкую смолу с температурой плавления 50°. Если содержание хлора доводят до 70% (22 атома хлора на 25 атомов углерода), то продукт представляет собой твердую хрупкую смолу, плавящуюся около 80°. Эти хлорпарафины применяют для различных целей как пластификаторы, в качестве добавки к смазочным маслам для подшипников, работающих при больших нагрузках, и как вещества, придающие огнестойкость пропитываемым ими материалам. Менее хлорированные твердые парафины используют для некоторых химических синтезов. Кроме того, хлорнарафин, содержащий 10—12% хлора, применяют в качестве полупродукта в производстве парафлоу — присадки, понижающей температуру застывания смазочных масел парафлоу получают конденсацией хлорпарафина с нафталином по реакции Фриделя—Крафтса [19]. [c.86]

    Реакция цианэтилирования представляет собой замещение атома водорода на р-цианэтильную группу действием акрилонитрила на вещества, обладающие подвижным атомом водорода — галоидоводо-роды, амины, спирты и др. При этом цианэтилирование спиртов имеет особое значение, поскольку образующиеся продукты — алкоксипро-пионитрилы—обладают многими практически важными свойствами, что позволяет использовать их в качестве эффективных пластификаторов, инсектицидов, полупродуктов для синтеза смачивателей и эмульгаторов. [c.75]

    При межпацечной пластиф11кации пластификатор влияет только на подвижность пачек. При внутрипачечной пластификации моле-кулы пластификатора, внедряясь между макролюлекулами, влияют на подвижность цепей и звеньев способствуя увеличению [c.445]

    Образующиеся адсорбционные слои играют роль граничной смазки, облегчающей взаимное перемещение надмолекулярных структур в тем большей степени, чем гибче молекулы пластификатора. Увеличивающаяся подвижность структурных образований в ряде случаев способствует их взаимной ориентации, что всегда приводит к возрастанию механической прочности. Поэтому малые добавки пластификатора вызывают не понижение, а повышение проч[[ости некоторых полимеров (см, рис. 199). Для аморфных полимеров это может иметь положительное зР[ачение. Длп кристаллических полимеров увеличение подвижности структур при межструктурной пластиф кации может приводить к резкому ускорению рекристаллизации и возникновению хрупкости, что очень часто наблюдается при пластификации кристаллических полимеров. [c.447]

    Для приготовления П обычно используют эмульсионный или микросуспензионный пастообразующий ПВХ (см. Поливинилхлорид) и винилхлорида сополимеры дисперсионной средой служат пластификаторы (40-150% от массы полимера), к-рые обычно применяют в произ-ве пластиката,-это диоктил- и дибутилфталаты, диоктиладипинат и др П содержат также термостабилизаторы, применяемые для стабилизации ПВХ. Высококачеств. товарные П. готовят из ПВХ со сравнительно однородным гранулометрич. составом (средний размер частиц 0,3-2,5 мкм). Иногда часть эмульсионного ПВХ (до 30%) заменяют на более дешевый суспензионный, состоящий из монолитных сферич. частиц размером 20-50 мкм (т наз. ПВХ-экстендер) В результате уменьшаются уд пов-сть порошка и необходимое для его смачивания кол-во пластификатора и увеличивается подвижность П. [c.561]

    Метод спиновых зондов и меток применяется особенно широко для исследования синтетич. полимеров и биох объектов. При этом можно изучать общие закономерност динамики низкомол. частиц в полимерах, когда спиновые зонды моделируют поведение разл. добавок (пластификаторы, красители, стабилизаторы, инициаторы) получать информацию об изменении мол. подвижности при хим. модв-фикации и структурно-физ. превращениях (старение, структурирование, пластификация, деформация) исследовать бинарные и многокомпонентные системы (сополимеры, наполненные и пластифицир. полимеры, композиты) изучать [c.400]

    Полиамиды, характеризующиеся малым соотношением СНг ONH, такие как ПА 6 или 66, могут сорбировать более 9% воды, в результате чего значительно изменяются их механические свойства. Содержание влаги в полиамидах не всегда достигает равновесного значения, и в деталях может существовать градиент концентрации по объему, что также приводит к изменению свойств изделий. Поэтому полиамидные детали рекомендуется выдерживать в среде с определенной влажностью (см. гл. 4) до достижения равновесного влагосодержания. Однако поскольку сорбция и десорбция влаги в полиамидах являются обратимыми процессами, свойства изделий из полиамидов могут претерпевать нежелательные изменения, если не контролируются параметры окружающей атмосферы. Влага обычно действует на полиамиды как пластификатор, повышая подвижность макромолекул. Следовательно, при наличии влаги разрывное удлинение полиамидов возрастает, а модуль упругости снижается. [c.143]

    Блоки полиэфиргликоля выполняют роль внутреннего пластификатора, повышая подвижность макромолекул блоксополимера. Относительное удлинение при разрыве блоксополимера составляет 700—900% при 25—120 °С и 7—10%-ном содержании полиоксиэтиленгликоля. Термоокислительная деструкция полученных блоксополимеров на воздухе при 200°С почти линейно возрастает с увеличением содержания полиэфиргликоля в сополимере. [c.252]

    Распределительная х рЬматография - использует различную растворимость компонентов смеси в подвижной фазЬ (гю или жидкость) и несмешивающейся с ней жидкости, неподвижно закрепленной на пористом инертном наполнителе. В равновесных условиях различие в растворимости приводит к различному соотношению концентраций в обеих фазах, определяемому коэффициентом распределения. Выбирая системы для разделения методом распределительной хроматографии, можно ориентироваться на уже известные системы распределения, применяемые при экстракционном разделении. Более полярный компонент системы обычно наносят на носитель, а менее полярный служит Э1поентом. Методом распределительной хроматографии целесообразнее всего проводить разделение соединений, полярность которых слишком велика, чтобы их можно бьшо разделить с помощью адсорбционной хроматографии. Однако этим методом можно разделить и неполярные вещества, например многоядерные ароматические углеводороды. Анализ пластификаторов, неионогенных поверхностно-активных веществ можно провести как с помощью распределительной, так и адсорбционной хроматографии. [c.53]

    До сих пор подразумевалось, что пластификатор является хорошим растворителем полимера, и его молекулы проникают в любую точку полимера, внутрь любых полимерных структур. Такая пластификация получила название внутриструктурной, в отличие от межструктурной пластификации, когда пластификатор является плохим растворителем полимера. Тогда с полимером пластификатор смешивается только в малых количествах, и его молекулы проникают, в основном, в более рыхлые и неупорядоченные межструктурные пространства. Малое количество пластификатора адсорбируется на поверхностях раздела и играет роль граничной смазки, облегчающей подвижность надмолекулярных структур. Эта ситуация аналогична существующей в коллоидной системе, в которую в виде добавки введено ПАВ. При межструктурной пластификации из-за увеличения подвижности надмолекулярных структур Гст полимера снижается, но до определенного предела, в отличие от внутриструк-турной пластификации. [c.200]


Смотреть страницы где упоминается термин Подвижность пластификаторов: [c.131]    [c.156]    [c.216]    [c.382]    [c.204]    [c.183]    [c.131]    [c.360]    [c.294]    [c.453]    [c.454]    [c.446]    [c.484]    [c.289]    [c.419]    [c.420]    [c.173]    [c.265]    [c.245]   
Пластификация поливинилхлорида (1975) -- [ c.127 , c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификаторы



© 2024 chem21.info Реклама на сайте