Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластификатор анализ

    Наряду с общими методами анализа мономеров и полимеров приводятся анализы отдельных видов сырья многоатомных спиртов, альдегидов, карбоновых кислот, производных бензола, азотсодержащих соединений и пластификаторов анализ отдельных видов полимеров полистирола, поливинилового спирта, феноло-формальдегидных смол, фенопластов, мочевино-формальдегидных смол. Описаны теплофизические, физико-механические и электрические испытания пластмасс. [c.2]


    АНАЛИЗ РАСТВОРИТЕЛЕЙ И ПЛАСТИФИКАТОРОВ АНАЛИЗ РАСТВОРИТЕЛЕЙ [c.278]

    Применение методов хроматографии для идентификации пластификаторов. Анализ эфиров адипиновой и азелаиновой кислот. [c.152]

    Вычислить норму производственного запаса пластификатора в подготовительном цехе завода резиновых технических изделий, вырабатывающем 80 т/сут резино вой смеси, если норма расхода пластификатора на 1 т смеси составляет 14,7 кг, норма текущего запаса—12 дней, страхового — 7,5, транспортного — 2, для разгрузки, складирования и анализа — 2 дня. Стоимость 1 т пластификатора 1500 р. [c.19]

    Ход анализа усложняется с повышением сложности состава полимеров. Простые операции по разделению (экстракция различными растворителями и т. д.) часто способствуют упрош,ению хода анализа, особенно при анализе остатков мономеров, пластификаторов или различных наполнителей. [c.418]

    Количественный анализ полимерных соединений включает определение содержания основного вещества, пластификатора, наполнителя, стабилизатора, красителя. Для этого полимерные соединения специально подготавливают пластификатор выделяют методом экстракции наполнитель отделяют обработкой растворителем, в котором он не растворяется, после чего полимеры осаждают. В табл. 18.4 приведены растворители и осадители для некоторых видов пластмасс. [c.355]

    Выделение пластификатора-)-За. Анализ пластификатора. [c.435]

    Содержание диоктилфталата во всех случаях в пленке нижнего слоя несколько выше, чем в пленке верхнего (наружного) слоя. Для анализа брали образцы пленок в двухслойной конструкции покрытия, расположенных строго одна под другой. С повышением температуры и пористости грунта скорость миграции пластификатора из покрытия возрастает. [c.9]

    Исторический очерк. Нек-рые Л. (жиры животные, растительные масла) используют с древнейших времен как продукты питания, для приготовления лек. и косметич. препаратов, лакокрасочных материалов, а также для освещения. С нач. 18 в. Л. стали использовать для мыловарения, а в 20 в. - для приготовления моющих ср-в, эмульгаторов, детергентов, пластификаторов и технол. смазок. Первый элементный анализ Л. выполнен в нач. 19 в. [c.598]

    Термогравиметрия используется в полимерной химии при исследовании термической деструкции полимеров (кинетика и механизм деструкции),термостойкости полимеров, окислительной деструкции, твердофазных реакций, определении влаги, летучих и зольности, изучении процессов абсорбции, адсорбции и десорбции, анализе летучести пластификаторов, состава пластмасс и композитных материалов, идентификации полимеров. [c.175]


    Подробное описание методов анализа продуктов гидролиза ПА 6, 66, 610, 11 и их сополимеров приведено в [13]. После удаления пластификатора образец полиамида гидролизуют 50%-ной соляной кислотой. Продукты гидролиза экстрагируют эфиром для удаления кислот и хлориды извлекают из водных растворов, оставшихся после экстракции. В цитируемой работе [13] детально изложены методы разделения и идентификации индивидуальных компонентов в этих двух основных фракциях. [c.247]

    У целлюлозы как аморфно-кристаллического полимера возможны переходы релаксационных (физических) состояний в ее аморфных участках. У сухого целлюлозного волокна аморфная фаза находится в стеклообразном состоянии. Температура стеклования целлюлозы Тс лежит выше температуры деструкции, и перевод аморфной части целлюлозы (как и кристаллической) в высокоэластическое состояние нагреванием невозможен. Однако пластификация волокна, например, глицерином, этиленгликолем, водой, ледяной уксусной кислотой и др. снижает температуру перехода и делает возможным переход целлюлозы из стеклообразного состояния в высокоэластическое. Это позволяет экспериментально определять Т< целлюлозы методом термомеханического анализа на пластифицированных образцах с постепенно уменьшающейся долей пластификатора и последующим фафическим экстраполированием на ее нулевое значение. Найденное таким методом значение Тс составляет около 220°С. [c.244]

    С перестройкой связано большинство сегодняшних технологий упрочнения волокон и пленок. Суть перестройки сводится к преобразованию под действием силового поля при повышенной температуре или в присутствии пластификатора отправной сферолитной или ламелярной НМО в фибриллярную. При анализе этих процессов необходимо считаться с принципом ТВЭ (или сводимыми к нему принципами напряженно-временной или деформационно-временной аналогии). [c.375]

    Пример. В нижеследующей таблице представлены результаты анализа процентного содержания пластификатора до (I) и после (II) обработки массы в печи  [c.655]

    Как уже было сказано, все методы идентификации пластмасс требуют предварительного выделения высокомолекулярной части образца. Наибольшие примеси красителя, пластификаторов могут исказить картину при испытаниях пластмасс химическим методом. Но при полярографическом анализе эти примеси не мешают и можно обойтись без выделения высокомолекулярного продукта полярографирование в большинстве случаев проводят при низкой чувствительности записывающего прибора и присутствие небольших количеств других полярографических активных веществ существенно не сказывается на результатах полярографических исследований. [c.222]

    В последнее время увеличилось число работ, в которых опи сывается определение эпоксидной функциональной группы мето" дами титрования в неводной среде " . Методы неводного титрования позволяют с большой точностью определить количество эпоксидных соединений несравненно более сложной структуры, чем окись этилена. В неводной среде не протекает нежелательная побочная реакция гидратации окиси этилена. Кроме того, методы анализа в неводных средах незаменимы для эпоксисоединений, не растворимых в воде, например различных смол и пластификаторов. [c.133]

    В анализе полимеров тонкослойная хроматография (ТСХ) применяется для определения примесей мономеров, пластификаторов и других добавок с целью оценки качества готовых продуктов и технологического контроля. [c.32]

    Современные пленочные материалы в большинстве своем являются многокомпонентными. В тех случаях, когда число компонентов не превьш1ает двух (например, полимер и пластификатор), анализ и оптимизация свойств таких материалов не представляют существенных трудностей и достаточно подробно рассмотрены в специальной литературе [5]. При использовании смесей пластификаторов или одновременном присутствии в материале пластификаторов, стабилизаторов, наполнителей и других модифицирующих добавок, количество компонентов может составлять три и более. В этом случае задача анализа и оптимизации таких систем значительно усложняется. Для характеристики превращений в тройных системах применяют тройные диаграммы (симплексы). На симплекс наносят линии постоянного значения параметров (прочность, деформативность, температура стеклования и т.д.) и находят составы, обладающие наилучшим сочетанием анализируемых свойств. [c.93]

    Хроматографический метод и идентификации пластификаторов. Анализ эфиров лимонной и себациновой кислот. [c.152]

    Дальнейшим шагом было получение композиции, содержащей полимер и золь, представляющей основу для будущей мембраны. На основе анализа литературных данных в качестве регулятора вязкости бьш выбран водорастворимый полимер - гидроксизтилцеллюлоза (ГЭЦ). Кроме полимера в композицию вводили 1 % масс, глицерина в качестве пластификатора, а также нитраты лантана и меди, в таком количестве, чтобы после обжига селективный слой содержал 94 % моль. СеОг, 4 % моль ЬезОз и 2 % моль СиО, что соответствует известному составу катализатора. [c.143]


    Методы защиты полимерных материалов от биоповреждений аналогичны используемым при защите ЛКП. Например, одним из важнейших условий получения стойких к воздействию микроорганизмов материалов является введение в их состав таких компонентов, которые не могут быть использованы микроорганизмами в качестве субстратов в процессе развития. Анализ химического состава пленок ПВХ показал, что после воздействия на них некоторых культур грибов и бактерий содержание пластификатора (ПДЭС-1) резко снижалось. Очевидно, это связано с использованием последнего в процессе жизнедеятельности микроорганизмов. Подобное явление наблюдалось при поражении грибами полиэтиленов. Биостойкость резко снижалась при введении в полиэтилены углеродсодержащих наполнителей или при использовании полиэтиленов с низкой молекулярной массой. Для повышения стойкости полимерных материалов достаточно было в первом случае заменить пластификатор, во втором — исключить наполнитель и применять полиэтилены с высокой молекулярной массой. [c.82]

    Требуется установить, влияет ли термообработка на содержание пластификатора в реакционной массе. На рис. 2.6 представлена блок-схема решения задачи с автоматической оценкой истинности рассматриваемой гипотезы о влиянии из.менения технологии процесса на ее результат с сопоставлением расчетного и табличного значений критерия Стьюдента. В блок-схеме предусмотрен расчет критерия Стьюдента /, ввод в программу табличных значений критерия Стьюдента /7 и анализ результатов сравнения и в б.лок-схеме обозначена как В18Р. [c.63]

    Эластомеры обычно являются сложными смесями, содержащими один или более основных полимеров, пигменты и наполнители, пластификаторы, катализаторы полимеризации, антиоксиданты, стабилизаторы смазки, антистатики и т. д. Идентификация методом ИК-спектроскопии всех этих компонентов в высокомолекулярном эластомере маловероятна. Фактически эластомер, наполненный сажей, может быть настолько непрозрачным, что совсем не будет давать ИК-спектра в этом случае необходимо разделение. В различных публикациях рассмотрены анализы конкретных полимерных систем некоторые из них включены во всеобъемлющий обзор приложений ИК-спектроскопии в резиновой промышленности [114]. Для разделения компонентов в ходе подготовки к ИК-анализу часто примшяют экстракцию растворителем и методы хроматографии, включая тонкослойную, гель-проникающую, колоночную и газовую. [c.202]

    Полимеры, содержащие наполнители и пластификаторы, часто готовят к съемке экстрацией растворителем [47]. Пластификаторы могут оказаться растворимыми в мягких растворителях, таких, как S2 или этиловый эфир, и их экстрагируют из измельченного полимера в аппарате Сокслета. Экстракт в S2 можно прямо перенести в ИК-спектрофотометр. От наполнителя полимер отделяется более жестким растворителем, например о-дихлорбензолом. В этом случае из раствора можно отлить пленку полимера, а спектр наполнителя получить методом прессования с КВг или методом суспензии в вазелиновом масле. Примером такого рода является количественный анализ состава поливинилхлорида [21]. [c.267]

    Вторая половина XX века характеризуется бурным, интенсивным ростом производства и потребления продуктов нефтехимии и основного органического синтеза. Одним из наиболее важных и динамично развивающихся направлений является производство химических средств защиты растений, главным образом, хлорорганических соединений. Кроме того, различные хлоруглеводороды и их производные находят широкое применение в качестве растворителей, пластификаторов, мономеров и сополимеров, красителей и др. В то же время, на рубеже веков становится очевидным, что рост масштабов производства и применения этих соединений может представлять определенную угрозу для окружающей среды, поскольку при их производстве и использовании неизбежно образуются эко- и суперэкотоксиканты, (полихлорбифенилы, полихлордибензо-1,4-диоксаны, полихлордибензофураны и др.). В этой связи понятна и очевидна важность и актуальность изучения истории становления и развития ключевых процессов хлорорганического синтеза, к которым относятся производства монохлоруксусной кислоты, монохлорамина, дихлорамина и хлоранила, созданные в 1950-1960-е годы на ОАО Уфахимпром . Исторический анализ опыта производства ряда хлорорганических продуктов на ОАО Уфахимпром позволяет сформулировать основные тенденции и направления развития нефтехимии в XXI веке, что полностью отвечает задачам современной науки и техники. [c.3]

    Распределительная х рЬматография - использует различную растворимость компонентов смеси в подвижной фазЬ (гю или жидкость) и несмешивающейся с ней жидкости, неподвижно закрепленной на пористом инертном наполнителе. В равновесных условиях различие в растворимости приводит к различному соотношению концентраций в обеих фазах, определяемому коэффициентом распределения. Выбирая системы для разделения методом распределительной хроматографии, можно ориентироваться на уже известные системы распределения, применяемые при экстракционном разделении. Более полярный компонент системы обычно наносят на носитель, а менее полярный служит Э1поентом. Методом распределительной хроматографии целесообразнее всего проводить разделение соединений, полярность которых слишком велика, чтобы их можно бьшо разделить с помощью адсорбционной хроматографии. Однако этим методом можно разделить и неполярные вещества, например многоядерные ароматические углеводороды. Анализ пластификаторов, неионогенных поверхностно-активных веществ можно провести как с помощью распределительной, так и адсорбционной хроматографии. [c.53]

    Применение ступенчатого нагрева образца в пиролизере позволяет наряду с полимерами идентифицировать термостабильные примеси и ингредиенты (некоторые стабилизаторы, пластификаторы). Для определения ингредиентов необходимо применять профаммиро-вание хроматографической колонки до более высоких конечных температур, чем при анализе полимеров. [c.78]

    Успешное использование ГПХ при массовом определении параметров ММР полимеров связано с высокой эффективностью метода, наглядностью и воспроизводимостью результатов анализа, высокой производительностью для любых типов полимеров [59, 60]. Метод более информативен, чем другие методы определения ММР, так как позволяет количественно судить о наличии примесей, например ми1фогеля, существенно влияющего на технологические свойства эластомеров, или о содержании введенных добавок (пластификаторов, аш иоксидантов и др.). При молекулярной массе примерно 50000 точность определения молекулярных масс составляет примерно 5 %. Иногда результаты менее удовлетворительны, так как не всегда полимеры ведут себя таким образом, как это описывает простая модель. Тем не менее качественную картину состава или ММР пробы полимера получают всегда. [c.111]

    Наличие примесей, например в твердых при обычных условиях дикарбоновых кислотах и ангидридах, обнаруживается по цвету их расплава. Так, для фталевого ангидрида, полученного окислением нафталина, этот показатель одновременно с данными химического анализа свидетельствует о присутствии примесей нафтохинонов, антрахинонов и других компонентов, отрицательно влияющих на качество сложноэфирных пластификаторов. Одним из возможных путей возникновения красящих веществ является синтез ализарина из антрахинона [91], так как хиноны легко сульфируются в моно- и ди-сульфокислоты. В процессе этерификации фталевого ангидрида спиртами в присутствии катализатора серной или арилсульфокислот существует вероятность сульфирования хинонов. Далее при нейтрализации пластификатора-сырца гидроксидом натрия возможно превращение, например антра-хинонсульфокислот, в краситель — ализарин  [c.118]

    Для характеристики отдельных функциональных групп пластификаторов или соединений в целом используют такие физические методы, как ИК-спектроскопия, ядерный магнитный резонанс, газожидкостная хроматография, спектрофотометрия, [11, 12, 44, 92]. Кроме того, применяются и традиционные химические методы анализа содержания гидроксильных, групп, о]<сирановых групп, непредельных соединений, альдегидных групп и т. п. [15, 26,27]. [c.121]

    Загрязнения создают органические плеики илн частицы разной породы. Идентификация загрязнений возможна микроскопически (частицы), при помощи отражательной ИК-спектроскопии, фотоэмиссиониой спектроскопии (органические пленки), рентгеновского анализа, атомио-абсорбциоиной спектроскопии (неорганические загрязнения). Иленки низкомолекулярных масел или жиров могут образовываться из смазок обрабатывающих устройств, из загрязнений воздуха, а также из пота или масел при ручных операциях с субстратом, из пластификаторов и стабилизаторов, которые могут, особенно при высоких температурах, выделяться из полимерных материалов, используемых для защиты и перемещения подложек. [c.16]

    Для определения остаточных мономеров (эфиров метакриловой кислоты) в полимерных материалах в качестве фона рекомендуется насыщенный раствор Н(СНз)41 в 92%-м метаноле или в смеси метанола с бензолом [140]. Были также найдены условия определения остаточного метилметакрилата в присутствии небольших количеств дибутилфталата, применяющегося в качестве пластификатора. Дибутилфталат, как видно из рис. 3.5, образует две волны, одна из которых практически совпадает с волной метилметакрилата. Определение метилметакрилата в этом случае следует проводить по второй (суммарной) волне, вычитая из нее значение высоты первой волны, соответствующей дибутилфталату. Полярографический метод нашел применение также для анализа сополимеров метилметакрилата с другими мономерами, например, при изучении кинетики сополимеризации этого мономера с метакриловой кислотой [144]. [c.108]

    Остаточные мономеры и низкомолекулярные неполимеризующиеся примеси, попадающие в полимерные материалы из исходного сырья и употребляемых в их производстве растворителей, крайне неблагоприятно действуют на эксплуатационные качества самих полимеров. Источником примесей органических растворителей в полимерных пленках могут оказаться также лакокрасочные материалы, используемые для нанесения украшений и надписей. Иногда летучие примеси попадают в пластмассы вместе с добавляемыми к ним пластификаторами. Наконец, в некоторых медицинских полимерных упаковочных материалах и изделиях содержатся остаточные количества окиси этилена, применяемой для их стерилизации. Большинство содержащихся в полимерных материалах летучих примесей — вредные и ядовитые вещества, а винилхлорид является канцерогеном, вдыхание которого приводит к раку печени. Содержание этих компонентов подлежит строгому нормированию и контролю, причем особенно жесткие нормы устанавливаются на материалы, предназначаемые для упаковки и хранения пищевых продуктов. В этом случае даже сравнительно малотоксичные летучие примеси, попадая в пищу, могут существенно изменить ее запах и вкус, снизить качество и сделать непригодной к употреблению. Определение следов летучих примесей стало, таким образом, одним из важнейших направлений аналитической химии полимеров. Применение для этой цели парофазного анализа представляется особенно целесообразным прежде всего потому, что вводить в хроматограф полимеры нежелательно и не всегда возможно. Однако парофазный анализ полимеров требует учета специфических свойств анализируемых объектов, подавляющее большинство которых представляет собой твердые материалы, плохо растворимые в обычных растворителях и разлагающиеся при сравнительно низких температурах. Казалось бы, самым простым решением задачи мог быть анализ равновесной газовой фазы над полимером, но диффузия летучих компонентов из твердого полимера к его поверхности затруднена и равновс  [c.138]

    Более обшей является проблема экстракции компонентов (обычно низкомолекулярных) органической упаковки инъекционным раствором. При этом из полимерной упаковки или резиновой пробки в раствор переходят остатки олигомеров, наполнителей, пластификаторов и т.д. Данньтй процесс должен обязательно изучаться на стадии разработки препарата, а соответствующие материалы представляться в пояснительной записке к проекту НТД на инъекционное ЛС. По вопросу влияния материала упаковки на качество инфузионных растворов имеются достаточно подробные исследоваттия [14], основанные обычно на изучении процесса экстракции упаковки водой для инъекций. Однако вопрос о том, как контролировать процесс взаимодействия упаковки с инъекционным раствором в готовом препарате, остается, в общем случае, нерешенным, поскольку непонятно, как контролировать экстрагируемые вещества в присутствии компонентов препарата. Эта проблема является общей для всех лекарственных форм и достигает своей наибольшей остроты в анализе аэрозолей [15]. [c.429]

    Метод основан на реакции гидрохинона с флюроглюцином в слабош,елочной среде с последуюш им фотометрическим измерением светопоглощения продукта реакции. Предел обнаружения 0,05 мг гидрохинона в 50 мл раствора. Метод применяется для анализа полиэфирных смол и пластификаторов. Продолжительность анализа без построения г радуирово чного графика 60 мин. [c.258]

    Методические рекомендации по анализу продуктов производства полиамидов, полиэфиров, карбамидных смол, полиимидов, полисульфонов, поли-бензоксазолов и пластификаторов/Под ред. А. И. Малышева. Черкассы, НИИТЭХИМ, 1981. 76 с. [c.293]


Смотреть страницы где упоминается термин Пластификатор анализ: [c.87]    [c.304]    [c.418]    [c.244]    [c.31]    [c.272]    [c.27]    [c.255]    [c.54]    [c.255]    [c.48]    [c.72]    [c.317]    [c.478]    [c.8]   
Лакокрасочные покрытия (1968) -- [ c.612 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификаторы



© 2025 chem21.info Реклама на сайте