Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельных металлов комплексы

    Сп2+ И редкоземельными металлами. Комплекс кальция — красного цвета, кобальта и никеля — желтого, меди—оранжевого. [c.262]

    Если уравнение (11.34) применять к комплексам ионов редкоземельных металлов, то получается прекрасное соответствие между рассчитанными и экспериментальными значениями восприимчивости (данные для некоторых трехзарядных ионов представлены в табл. 11.4) Такое прекрасное соответствие обусловлено тем, что кристаллическое поле лигандов неэффективно гасит орбитальный угловой момент [c.147]


    Другим интересным применением метода является использование оптически активных СР для определения оптической чистоты. Идея аналогична той, которая обсуждалась в гл. 8, где описывалось применение оптически активных растворителей. В данном случае образование различных диастереоизомерных аддуктов характеризуется различными константами устойчивости, что дает для энантиомерных оснований различные сдвиги, усредненные по мольным долям. В работах [61—63] сообщается об использовании для этой цели различных оптически активных комплексов редкоземельных металлов. [c.198]

    Мурексид образует с ионами кальция, никеля, кобальта, меди и редкоземельных металлов устойчивые комплексы, которые можно использовать при титровании. В отличие от эриохрома черного Т, комплексы металлов с мурексидом являются рН-ин-дикаторами. Окраска комплекса металла с мурексидом зависит [c.186]

    Строение комплексов нитратов редкоземельных металлов La (HI), e (IV) Eu (III) с дициклогексил-18-краун-б / А. А. Дворкин, Н. Ф. Краснова, Ю. А. Симонов и др. // II Всесоюз конф. по химии макроциклов (20—22 нояб. [c.242]

    Строение комплексов нитратов редкоземельных металлов La (III), e (IV) Eu (III) с дициклогексил-18-краун-б / А. А. Дворкин, Н. Ф. Краснова, Ю. А. Симонов и др. // II Всесоюз. конф. по химии макроциклов (20—22 нояб. 1984 г., Одесса) Тез. докл. и сообщ,—Одесса, 1984,—С. 69. [c.242]

    Реактив при pH 1—5 желтого цвета, пр рН>7—красно-фиолетового. Со многими металлами при pH I—6 образует комплексы красного цвета. Некоторые спектрофотометрические характеристики ксиленолового оранжевого на примере реакции с индием приведены выше (см. табл. 12 и рис. 95 и 96). Ксиленоловый оранжевый является одним из лучших реактивов для фотометрического определения циркония, висмута, олова, индия, редкоземельных металлов и др. [c.295]

    Для аналитических целей до сих пор применяют цитратные буферы, дающие вполне удовлетворительное разделение следов редкоземельных металлов. Чем ниже pH, тем выше коэффициент разделения элементов, стоящих рядом в периодической таблице, но тем больше продолжительность элюирования. Поэтому при выборе условий проведения анализа следует принимать компромиссное решение. Чтобы ускорить разделение, можно использовать ступенчатое элюирование с постепенным повышением величины pH [12]. Сначала элюируются элементы с большим атомным номером, образующие с лимонной кислотой более устойчивые комплексы. Этот метод очень удобен для разделения радиоактивных изотопов и широко применяется при анализе продуктов ядерного расщепления. Для облегчения анализа элюата применяли нейтронную активацию природных редких земель [6, 41 ] однако при разделении больших количеств веществ чаще используют спектрофотометрические [30, 84] и спектрографические [18, 89] методы (ср. [47, 48, 57, 63]). [c.321]


    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    Комплексообразование с редкоземельными металлами. Редкоземельные элементы при взаимодействии с комплексонами, в структуре которых содержатся гетероатомы, так же как и переходные элементы, образуют водородные и нормальные комплексы эквимолекулярного состава. [c.184]

    Фтор образует мало растворимые соединения или устойчивые комплексы со многими элементами, например с бором, кремнием, титаном, торием, цирконием, железом, алюминием, щелочноземельными металлами, магнием, свинцом и редкоземельными металлами (стр. 246). В развитии объемно-аналитических [c.397]

    Конечно, катион В+ будет, по всей вероятности, тоже реагировать с лигандом, и его выходная кривая будет также смещена влево. Однако, если константы устойчивости комплексов различны, влияние лиганда на выходные кривые двух разделяемых ионов будет различным. К счастью, внутри любой группы катионов увеличение коэффициентов селективности при обмене на сульфополистирольных смолах соответствует уменьшению устойчивости их комплексов с любым общим анионным лигандом. Например, щелочноземельные металлы вымываются хлоридом аммония с дауэкса-50 в последовательности Са < 5г < Ва < Ка, а константы устойчивости их комплексов изменяются в обратном порядке. Таким образом, лиганд добавляют для того, чтобы увеличить расстояние между выходными кривыми, и тем самым улучшить разделение. Сказанное относится и к разделению редкоземельных металлов и актинидов. [c.138]

    Элементы, не образующие анионных комплексов с хлорид-ионами и не сорбирующиеся анионитами из растворов НС1 любой концентрации. Сюда относят катионы щелочных, щелочноземельных и редкоземельных металлов. [c.328]

    И. X. применяется для разделения катионов металлов, напр, смесей лантаноидов и актиноидов, 2г и НГ, Мо и W, КЬ и Та последние разделяют на анионитах в виде анионных хлоридных комплексов в р-рах соляной и плавиковой к-т. Щелочные металлы разделяют на катионитах в водных и водно-орг. средах, щел.-зем. и редкоземельные металлы-на катионитах в присут. комплексонов. Большое значение имеет автоматич. анализ смесей прир. аминокислот на тонкодисперсном сульфокатионите.в цитратном буфере при повыш. т-ре. Аминокислоты детектируют фотометрически после их р-ции с нингидрином или флюориметрически после дериватизации фталевым альдегидом. Высокоэффективная И. X. (колонки, упакованные сорбентом с размером зерен 5-10 мкм, давление для прокачивания элюента до 10 Па) смесей нуклеотидов, нуклеозидов, пуриновых и пиримидиновых оснований и их метаболитов в биол. жидкостях (плазма крови, моча, лимфа и др.) используется для диагностики заболеваний. Белки и нуклеиновые к-ты разделяют с помощью И. X. на гидрофильных высокопроницаемых ионитах на основе целлюлозы, декстранов, синтетич. полимеров, широкопористых силикагелей гидрофильность матрицы ионита уменьшает неспецифич. взаимод. биополимера с сорбентом. В препаративных масштабах И. х. используют для вьщеления индивидуальных РЗЭ, алкалоидов, антибиотиков, ферментов, для переработки продуктов ядерных превращений. [c.264]

    К, что подтверждается анализом термограмм (рис. 4.17) ТГ и ДСК анализа [76, 78]. Высокие значения температуры, теплового эффекта и энергии активации, обнаруженные для 18 К6-диглицин-2Н20 указывают на сильную специфическую гидратацию данного комплекса, содержащего до 16 молекул воды, из которых четыре сильно коррели-рованы за счет водородных связей. Однако кристаллогидрат 18 К6-глицил-Ь-а-аланин-12Н20, также содержащий большое количество молекул Н2О, не является таким устойчивым и теряет воду при менее высокой температуре, что сопровождается меньшим тепловым эффектом дегидратации. Комплекс 18 К6-глицил-Р-аланин-ЗН20, содержащий более жесткие молекулы дипептида (подобные диглицину), также имеет высокую теплоту дегидратации. Значения активационных энергий дегидратации изученных комплексов лежат в пределах, найденных для комплексов 18 Кб с нитратами редкоземельных металлов, в то время как тепловой эффект дегидратации последних выше [79]. Можно [c.231]


    Принцип жестких и мягких кислот и оснований (ЖМКО), сформулированный Пирсоном, гласит, что наиболее устойчивые комплексы образуются при взаимодействии кислот и оснований одинаковой (или близкой) степени жесткости жесткое — с жестким, мягкое — с мягкимУ). Так, для ионов редкоземельных металлов наиболее устойчивы комплексы с 0-содержащими лигандами, для, Со — с N-содержащими, а для и — с S-содержащими. [c.153]

    Электростатическая теория, илн, иначе, теория кристаллического поля, была первоначально разработана Бете, Ван Флеком и др. в период 1929—1935 гг. для учета магнитных свойств соединений пере.чодных и редкоземельных металлов, в которых имеются несвязывающне d- или /-электроны. Альтернативный метод молекулярных орбиталей был предложен Ван Флеком тоже в 1935 г. После периода относительного забвения начиная с 1950 г. обе теории начали широко использоваться для объяснения спектроскопических, термодинамических и стереохимиче-ских свойств конечных комплексов переходных металлов и не- [c.387]

    В качестве магнитного носителя предложено также использовать комбинацию соединений редкоземельных металлов с кобальтом, которые оказались более предпочтительными по сравнению с другими комплексами. Один из оптимальных магнитных носителей альбуминовые микросферы, состоящие из матрицы полимеризованного сывороточного альбумина размером 0,2—2 мкм, в которую введено до 50% магнетита Рсз04 размером 10—100 нм и в которой содержится 5% лекарственного препарарга. Агрегация мелкодисперсных частиц в поле может быть осуществлена за счет внесения поверхностно-активных веществ, что позволило существенно снизить их размер и получить магнитные жид- [c.651]

    В работах ряда исследователей [25—27] было найдено, что с оксихино-лином только некоторые элементы (Ьа, Ьи, У) способны образовывать флуоресцирующие комплексы. Так как наблюдаемая люминесценция проявляется также в комплексах с другими не редкоземельными металлами, то ее следует приписать органической части молекулы комплекса. Из числа реактивов следует упомянуть фениловый эфир салициловой кислоты (голубая флуоресценция), о-оксихинолин и его 5,7-дибромзамещенное (желто-зеленая флуоресценция). Причиной того, что к флуоресценции способны лишь комплексы перечисленных выше трех элементов, следует считать отсутствие в их ионах электронов на 4/-оболочке (Ьа, У) или наличие полностью заполненной 4/-оболочки (Ьи). Поэтому в комплексах с реактивами отсутствуют возбужденные уровни, способные к тушению флуоресценции вследствие безызлучательных переходов. У ионов остальных р. з. э. такие уровни имеются, что приводит к тушению возбужденных состояний молекул. До настоящего времени реактивы применялись лишь для локализации зон индивидуальных р. з. э. на бумажных хроматограммах [19], однако нет сомнения, что при дальнейшей разработке они смогут найти более широкое использование. [c.104]

    Комплексоны. Комплексы типа 1 2 катионов редкоземельных металлов с нитрилотриацетатом. [c.525]

    Научные исследования посвящены фундаментальным проблемам кристаллохимии и стереохимии координационных соединений и теории рентгеноструктурного анализа. Расшифровал структуры многих комплексных соединений переходных и редкоземельных металлов различных классов. Разработал основы стереохимии соединений переходных металлов четвертого периода, установил закономерности строения комплексов с кратными связями металл — лиганд и стереохимические основы устойчивости изо- и гетерополианионов. Сформулировал основные положения стереохимии карбокси-латов и комплексонатов. Разработал общие принципы стереохимии координационных соединений редкоземельных элементов. Инициатор разработки комплексов структурных программ для ЭВМ СССР. Автор учебника Практический курс рентгеноструктурного анализа (совместно с Г. Б. Бокием, 2-е изд. 1964). [c.403]

    Фторид-ион, обладая достроенной электронной оболочкой (тип неона) и малым радиусом, обычно образует комплексы только с электростатическим характером химической связи. Поэтому комплексообразующие свойства иона фтора часто существенно отличаются от свойств ионов С1 , Вг и I". Последние также имеют электронную оболочку типа инертных газов, однако значительный радиус этих ионов облегчает их поляризуемость, поэтому они значительно чаще образуют с катионами комплексы за счет обобщения электронов. В результате ионы С1 , Вг и 1 (а также их аналог— роданид-ион) образуют комплексы преимущественно с ионами переходных элементов с недостроенным -подуровнем. Наиболее прочные хлоридные и роданидные комплексы образуют золото и ртуть, наименее прочные — цирконий, торий, алюминий, редкоземельные металлы и аналогичные элементы. Наоборот, для фтора характерно прежде всего комплексообразование именно с последними элементам1и наиболее прочный фторидный комплекс — это соединение с цирконием. Другие элементы IV и V групп периодической системы дают несколько менее прочные фториды. Однако это обусловлено конкуренцией между фторид- и гидр- [c.246]

    Кроме этого, известны случаи, когда комплексы металлов с, экстрагентами сами могут играть роль экстрагентов. Интересно, ЧТО такие комплексы иногда оказываются более эффективными экстрагентами по сравнению с исходны)МИ соединениями (см. разд. 3.1). Например, разделение редкоземельных металлов на колодке с Д2ЭГФК становится трудным или даже невозможным в присутствии больших количеств урана [8, 9]. Эти эффекты, которые обнаружены также и в обычных экст ракцио1нных системах, более вероятны в хроматографии, при осуществлении которой основная часть удерживаемого элемента может концентрироваться в нижней части коланки. [c.102]

    Рекомендовано также проводить разделение редкоземельных металлов фракцион-вым осаждением миндальной кислотой. Автор предполагает, что избирательное осаждение редкоземельных элементов миндальной кислотой является результатом различной скорости образования внутрикомплексных соединений, а также различной растворимости этих- комплексов. Доп. перев.  [c.631]

    При. возбуждении хелатов возбужденное состояние молекулы лиганда обычно образуется за счет перехода я -я, и спектр люминесценции при нормальной температуре характеризуется наличием ш.ирокой полосы это видно из рис. 2.36, где представлены спектры поглощения и флуоресценции комплекса 2-(о-о,ксифе-нил)бензоксазола с галлием (III). Хелаты редкоземельных металлов (Sm, Ей, Gd, ТЬ, Dy), а также комплексы хрома (III) и меди (II) при некоторых условиях могут проявлять люминесценцию перенос энергии на резонансный уровень иона металла вызывает люминесценцию, обусловленную переходом d—d или /—f. В этом случае в спектре люминесценции обнаруживаются очень узкие полосы или линии, характерные для данного иона металла. Иногда оказывается возможным даже возбуждение иона металла [например, Gd(III)] оно происходит при переносе энергии к Лиганду, который затем дает я — я-флуоресценцию. [c.102]

    Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля , основанную на прямом частотном индукционном нагреве гиихты ИзОа + + хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции см. гл. 7), используется для плавления оксидных керамических материалов [14] низкочастотная технология применяется для крупномасштабного металлотермического производства циркония и гафния из фторидного сырья и рафинирования различных редкоземельных металлов и сплавов (см. гл. 14). В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель . Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70-80-х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80-х годах появилось металлургическое оборудование типа холодный тигель , работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья. [c.319]

    К нейтральным экстрагентам, содержащим так называемые электродонорные атомы, отдающие электроны, относятся 1) альдегиды (например, фурфурол для извлечения кобальта, очистки смазочных масел) 2) кетоиы (например, циклогексанон или метилизобутилкетон для выделения германия, урана, разделения тантала и ниобия из растворов сильных кислот 3) спирты (СС4—Се) для извлечения металлов из растворов сильных кислот в виде гидратно-сольватных, оксониевых и гидрооксониевых комплексов 4) эфиры (простые и сложные). Простые эфиры (например, р, Р -дихлорэти-ловый эфир, называемый также хлорексом, с меньшими летучестью и растворимостью в воде, чем диэтиловый эфир, и не воспламеняющийся при комнатной температуре) экстрагируют некоторые компоненты с образованием прочных комплексов, причем способность к извлечению уменьшается с увеличением молекулярной массы. Сложные эфиры (например, образующийся при взаимодействии бутилового спирта с фосфорной кислотой трибутилфосфат) широко применяют для выделения урана и редкоземельных металлов из кислых растворов. [c.49]

    Зависимость логарифма константы устойчивости от атомного числа у редкоземельных металлов выражается- возрастающей кривой с острым изгибом у гадолиния (см. рис. 46, кривая В). Уилрайт с сотрудниками [25] объяснили это тем, что этилендиаминтетрауксусная кислота в комплексах с редкоземельными металлами вплоть до гадолиния имеет шесть координационно связанных групп, с более тяжелыми редкоземельными металлами — пять. [c.535]

    Шварценбах и Гут [26] нашли, однако,острый изгибу гадолиния и у комплексов нитрилтриуксусной кислоты (см. рис. 46, кривая X)), которая входит в комплекс только в виде четырехзубчатого комплексообразователя и у 1,2-диаминоциклогексантетрауксусной кислоты (рис. 1, кривая А), которая всегда шестизубчатая. Константы устойчивости К- -оксиэтилэтилендиамин-М, К", К -три-уксусной кислоты с редкоземельными металлами определил Спеддинг с сотрудниками [27] (см. рис. 46, кривая С). [c.535]

    Церей и Триулзи [1101 установили, что для восьми более легких редкоземельных металлов (от лантана до гадолиния) на обыкновенной хроматографической бумаге при проявлении О—3 М азотной кислотой в водном метаноле, содержащем -0—99,9 об. % спирта, значения Я/ близки между собой и находятся в пределах 0,54—0,86. Однако на диэтиламиноцеллюлозной бумаге при этом же тройном проявителе разделение было гораздо лучше. Увеличение концентрации метанола или азотной кислоты в проявителе приводит к уменьшению значений Rf и лучшему разделению. Это объясняется тем, что метанол и азотная кислота способствуют образованию анионных комплексов. Авторы приводят состав восьми проявителей из воды, метанола и азотной кислоты, каждый из которых может выделить три элемента из смеси. Поведение этих металлов на диэтиламиноцеллюлозной бумаге напоминает их поведение в колонке с анионообменной смолой. Однако любо- [c.322]

    Характер кривых зависимости констант устойчивости от атомного номера редкоземельных металлов (РЗМ) для полиэтиленполиаминнолифосфоновых кислот свидетельствует о возрастании прочности комплексов с увеличением атомного номера элемента от лантана до лютеция с характерным изгибом у гадолиния. Исключение составляют комплексонаты, содержащие гетероатомы кислорода и серы (ОБИФ и ТБИФ), для которых подобная зависимость выражается двугорбой кривой с минимумами на средних элементах каждой под- [c.244]


Смотреть страницы где упоминается термин Редкоземельных металлов комплексы: [c.191]    [c.191]    [c.202]    [c.321]    [c.428]    [c.425]    [c.161]    [c.17]    [c.85]    [c.534]    [c.327]    [c.450]    [c.129]    [c.187]    [c.526]    [c.280]    [c.101]   
Металлоорганические соединения переходных элементов (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы

Редкоземельные металлы



© 2024 chem21.info Реклама на сайте