Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Автоматический анализ элюата

    Совсем недавно в практику разделения смесей галогенидов и других ионов введена специально подобранная комбинация анионитов и катионитов, обеспечивающая снижение фона электролита, десорбировавшего с колонки компоненты анализируемой смеси (элюата), и позволившая осуществить автоматический анализ элюатов па кондуктометре [8631. [c.60]

    Быстрый рост числа хроматографических разделений малых количеств многокомпонентных ( 10) смесей, полученных из природных веществ, обычно обусловливает необходимость использования автоматических методов контроля элюата. Обычно существуют два различных способа автоматических анализов элюатов, содержащих сахариды. Первый способ, неразрушающий , основан на исследовании элюата физическими методами. При втором, разрушающем , способе сахариды анализируют посредством химической реакции. Оба способа используют главным образом для аналитических разделений. Для препаративных целей любой из элюатов пропускают через кювету, где наблюдают изменения некоторых его физических свойств (при неразрушающем способе не происходит изменения химического состава растворимого вещества), можно также непрерывно анали- [c.70]


    Возможность повышения скоростей элюирования привела к созданию прибора для непрерывного автоматического анализа элюата, вытекающего из колонки [821. Это позволило выполнять полный анализ в течение 24 час с относительно небольшой затратой труда. [c.139]

    Проведение эксперимента значительно упрощается, если имеется возможность производить непрерывный автоматический анализ сходящего с колонки элюата. В противном случае приходится собирать элюат по фракциям и анализировать их обычным способом. Автоматический анализатор, обладая высокой чувствительностью к исследуемым веществам, не должен, однако, каким-либо образом их трансформировать. Измеряемый параметр должен быть при этом пропорционален концентрации результаты анализа следует регистрировать на самописце. Кроме того, на ленте самописца при каждом шаге коллектора должна автоматически ставиться соответствующая метка. [c.63]

    Детальное описание оборудования для фронтального анализа выходит за рамки настоящей книги. Хроматографирование проводят в металлических колонках различной величины, наполненных очень мелкозернистым (но не порошкообразным) активированным углем. Разделяемый раствор продавливается через колонку под избыточным давлением. Для того чтобы под избыточным давлением газ не растворялся в растворителях и его пузырьки не нарушали ход хроматографии, действие сжатого воздуха или другого газа, как правило, передается на раствор через металлический поршень. Элюат поступает в прибор (так называемый интерферометр), позволяющий автоматически регистрировать небольшие изменения концентрации на основе измерения показателя преломления. Результаты измерения получают непосредственно в виде графика (см., например, рис. 342). [c.370]

    Потребность в более точном контролировании анализа и увеличении его универсальности привела к значительному усложнению и увеличению числа различных приборов для анализа методом ГХ. Температуру колонки можно поддерживать неизменной (изотермический режим) или программировать ее. Во втором из этих режимов температуру колонки постепенно повышают, что позволяет за приемлемое время и с достаточной чувствительностью определять соединения самой разной летучести. (В отличие от анализа в изотермическом режиме при программировании температуры соединения, выходящие из колонки в последнюю очередь, дают не растянутые, а узкие хроматографические пики.) Повышение температуры приводит к расширению газа-носителя. Поэтому для поддержания постоянной скорости потока газа-носителя в процессе разделения с программированием температуры колонки требуются дифференциальный регулятор газового потока и баллон с газом высокого давления. Для получения стабильных результатов применяют дифференциальную систему с двойными колонками и двойным детектором, которая позволяет автоматически учесть нестабильную концентрацию паров неизвестной жидкой фазы в элюате, которая возрастает с повышением температуры. Исключительно хорошие разделения обеспечивают незаполненные капиллярные колонки (с жидкой фазой на стенках), длиной 15—300 м. Для проведения сложных анализов часто требуются вспомогательные методы, такие, как химическое превращение анализируемого соединения [1]. [c.421]


    Колонку затем промывали 0,102 н. НС1, элюат пропускали мимо счетчика, который регистрировал активность раствора. Эти показания автоматически записывались. Хотя время анализа было большим (24 ч), он мало трудоемок, так как установка работала автоматически. [c.180]

    К достоинствам газовой хроматографии следует отнести 1) возможность идентификации и количественного определения индивидуальных компонентов сложных смесей 2) возможность изучения различных свойств веществ и физико-химических взаимодействий в газах, жидкостях и на поверхности твердых тел 3) высокую четкость разделения и быстроту процесса, обусловленную низкой вязкостью подвижной фазы 4) возможность исследования микропроб и автоматической записи получаемых результатов, обусловленную наличием высокочувствительных и малоинерционных приборов для определения свойств элюата 5) возможность анализа широкого круга объектов — от легких газов до высокомолекулярных органических соединений и некоторых металлов 6) возможность выделения чистых веществ в препаративном и промышленном масштабе. [c.31]

    Успехи газовой хроматографии, разработка автоматической аппаратуры и высокочувствительных детектирующих устройств для фиксации состава элюата в значительной степени способствовали развитию и других хроматографических методов. Так, в последние годы наблюдается скачок в развитии жидкостной хроматографии, связанный с использованием для этого метода модифицированной газохроматографической аппаратуры и применением методов подбора сорбентов и оптимальных условий анализа, разработанных для газовой хроматографии. [c.33]

    Обычно концентрации анализируемых компонентов в элюате малы (особенно, если определяют примеси), поэтому детектор должен быть очень чувствителен. Поскольку показания детектора используют для количественных расчетов, желательна линейная зависимость показаний детектора от количества определяемого вещества. Детектор должен обеспечивать возможность непрерывной автоматической регистрации показаний в процессе анализа. [c.165]

    Хроматографический детектор представляет собой прибор, позволяющий фиксировать какое-либо физико-химическое свойство бинарной смеси, выходящей из колонки, —элюата, — определяемое ее составом. Хроматографический детектор должен обладать универсальностью, так как в процессе анализа через него могут проходить бинарные смеси газа-носителя с веществами самого различного строения. Концентрация вещества в элюате обычно очень мала, поэтому детектор должен быть очень чувствителен. Поскольку показания детектора используются для количественных расчетов, желательна линейная зависимость сигнала от концентрации вещества. Наконец, детектор должен обеспечивать возможность непрерывной автоматической регистрации показаний в процессе анализа. [c.107]

    Выбор методики анализа фракций определяется природой анализируемого материала причем выбрать методику анализа, а в некоторых случаях и испытать необходимо перед началом хроматографирования. Применяют физические, химические и биологические методики. Чаще всего измеряют показатель преломления. Пользуются также различными колориметрическими методами, а также тонкослойной или бумажной хроматографией и электрофорезом. Идеальным способом является детектирование радиоактивных изотопов. Измеряя pH и электропроводность отбираемых фракций, можно контролировать условия элюирования. Именно такой контроль позволяет воспроизводить условия градиентного элюирования. В ряде случаев очень полезно комбинировать несколько методов детектирования. Полезны также непрерывное автоматическое детектирование (с достаточно высокой чувствительностью) разделенных соединений и регистрация хроматограмм (см. разд. 8.6, 8.7). Результаты измерений записывают в виде кривой зависимости измеряемой величины от объема элюата или номера фракции. Исходя из распределения пиков на хроматограмме некоторые фракции можно объединить. При этом необходимо следить, чтобы объединялись совершенно чистые фракции, не содержащие примесей других компонентов, иначе потребуется повторное хроматографирование. Фракции, предназначенные для количественных анализов, хранят в темноте и на холоду с тем, чтобы не допустить нежелательных реакций. Фракции соединений, окисляющихся на воздухе или поглощающих диоксид углерода, следует хранить в герметически закрытых сосудах. [c.281]

    Орсин-сернокислотный метод был использован Кеслером [45] в хроматографии свободных углеводов на анионообменных смолах в боратной форме. Он использовался также для регистрации разделения продуктов гидролиза древесины и древесной пульпы на анионообменной смоле в сульфатной форме с применением в качестве подвижной фазы 92%-ного водного этанола [57]. Кроме того, орсин-сернокислотный реагент может быть полезен в автоматических анализах элюатов в гель-проникающей хроматографии полисахаридов [58]. Схематическое изображение этой системы с использованием ТесЬп1соп Аи1оапа1угег дано на рис. 22.4. Элюат после колонки вначале смешивают с 1%-ным водным орсином, а затем с 72%-ной серной кислотой. Реакционную смесь затем нагревают до 95 °С, охлаждают и измеряют поглощение образовавшихся продуктов при 420 нм [58]. Для этой цели используют двойной стеклянный змеевик длиной 24 м [c.72]


    При автоматическом анализе элюат делят на три потока, два из которых подвергают анализу с нингидриновым реагентом, а третий подают на коллектор. Обычно для этого исполь- [c.392]

    Рефрактометрические детекторы рассматриваются в п. 3 гл. XIII. Детекторы другого весьма распространенного типа — ультрафиолетовые — не столь универсальны и успешно конкурируют с рефрактометрическими главным образом благодаря нечувствительности к таким источникам помех при автоматическом анализе элюатов, как пульсации давления в хроматографических колонках и механические вибрации. [c.53]

    По первой схеме (рис. 513, а) аналитическая ячейка монтируется непосредственно в месте выхода элюата из колонки. В случае окрашенных веществ ячейка представляет собой фотоэлемент, в случае веществ с характеристической абсорбцией в ультрафиолетовом свете — монохроматор с фотоумножителем (например, шведский прибор Увикорд ), а в случае меченых веществ — счетчик Гейгера — Мюллера. Так как весь поток элюата проходит через ячейку, то некоторые неустойчивые вещества при этом могут разлагаться (в особенности при облучении ультрафиолетовым светом). По другой схеме (рис, 513, б) анализируемые бесцветные вещества Должны сначала прореагировать с соответствующим колориметрическим реагентом, который впускают в элюат при помощи насоса. На этом принципе был разработан метод для полного автоматического анализа аминокислот в микроколичествах [121]. В большинстве случаев эта схема непригодна для препаративной работы. [c.564]

    Химическая ионизация. Современный ионный источник с ионизацией электронным ударом (ЭУ) обычно позволяет работать и в режиме химической ионизации (ХИ). Переключение с режима ЭУ на режим ХИ и наоборот осуществляется настолько быстро, что при масс-спектрометриче-ском анализе элюата газо-жидкостного хроматографа автоматическое переключение на второй режим возможно уже через [c.185]

    Элюат после колонки вначале анализируют с помощью простой цветной реакции, такой, как реакция карбазола с уроно-выми кислотами [18, 19]. Особая модификация этого метода, пригодная для различных типов автоматических анализов, описана в работе [20]. Для гексозаминов подходящей является реакция Эльзона—Моргана [21]. Кроме того, желательно также проверять фракции, содержащие гликозаминогликаны. Очищенные гликозаминогликаны, могут быть также получены из этих фракций после диализа, за которым следует осаждение этанолом в буферном растворе ацетата кальция. Область применения хроматографии для анализов гликозаминогликанов в основном такая же, что и для макромолекулярных веществ гидрофильной природы, главным образом полисахаридов. [c.145]

    В классической колоночной хроматографии алкалоиды в отдельных фракциях определяют спектрофотометрически, колориметрически, потенциометрическим титрованием, взвешиванием сухого остатка и т. д. Описано детектирование алкалоидов в элюате на спектрофотометре с проточной ячейкой. Для автоматического анализа, например в токсикологии, разработан интересный прибор [12], в котором колоночная хроматография сочетается с экстракционной обработкой комплексов алкалоидов [c.103]

    Автоматически действующая установка для одновременного непрерывного анализа элюата из восьми хроматографических колонок изготовлена Симмондсом и Роулэндсом [106 ]. Сложное устройство делит на фракщш элюат из каждой колонки, обрабатывает каждую фракцию цветным реагентом, разбавляет ее и измеряет возникающую окраску. Светоноглощение записывается, и для завершения количественного анализа нужно только вынолнить интегрирование. [c.204]

    Последующее развитие ионообменной методики связано с применением автоматических устройств, описанных Лундгреном и Лёбом 136 ]. Метод, рекомендованный для производственных анализов смесей конденсированных фосфатов в составе детергентов, основан на градиентном элюировании и непрерывном анализе элюата с помощью автоанализатора. Прибор программируется для проведения кислотного расщепления полифосфатов, присутствующих в элюате. Образующийся при этом ортофосфат выделяется путем диализа и взаимодействует с молибдатом аммония. Фосфорномолибденовая кислота восстанавливается гидразинсульфатом голубая окраска восстановленного раствора используется для непрерывных колориметрических измерений, результаты которых регистрируются автоматически. Прибор калибруется с помощью смесей известного состава. Образцы, содержащие только орто-, пиро- и три(поли)фос-фат, могут быть проанализированы в течение 1 ч. В присутствии триметафосфата для анализа требуется обычно 2 ч. Точность метода 3% от количества основного компонента. Для компонентов, присутствующих в меньших количествах, точность определения несколько ниже. [c.394]

    Хотя приведенные выше рассуждения по поводу относительных достоинств и ограничений дискретного и непрерывного методов носят общий характер, все же они будут иметь значение при определении подхода к решению новой проблемьи Два рассмотренных метода автоматического анализа не являются взаимно исключающими. Например, в некоторых промышленных автоматических анализаторах аминокислот используют непрерывное ионообменное разделение с последующим раздельным анализом фракций элюата колонки. Как подчеркнуто ранее, именно химия метода анализа определяет его инструментальное оформление при автоматизации. Только в относительно немногих случаях, в частности в клиническом анализе, выбор аппаратуры оптимизирован. Во многих других случаях, хотя проблеме автоматического анализа и посвящено множество статей, эта проблема находится еще в зачаточном состоянии. Вот почему всесторонний подход к автоматизации с привлечением различных областей науки и техники рассматривается как наиболее верный способ нахождения ответа на первостепенный жизненно важный вопрос как следует подходить к новой проблеме автоматического анализа  [c.23]

    Корфильд и Робсон [87] разработали метод автоматического анализа, в котором не используется реакция с нингидрином. Аминокислоты превращают в медные комплексы, пропуская элюат с ионообменной колонки через колонку с карбонатом меди при pH 9,2. Затем раствор пропускают через полярографическую ячейку, к которой приложено постоянное напряжение. Диффузионный ток усиливают и подают на самописец, который вычерчивает пики аминокислот (или пептидов). [c.141]

    Ч1ротеииы с помощью кислотного, основного или ферментативного гидролиза могут расщепляться на простейшие составляющие — а-ами-нокарбоновые кислоты, обычно называемые просто а-аминокислотами. Ка.чественный анализ получающихся при этом смесей аминокислот связан с относительно большими трудностями. Э. Фишер (1901 г.) обрабатывал такие смеси спиртом и разделял образующиеся в результате смеси сложных эфиров а-аминокислот дробной перегонкой. В настоящее время эти соединения разделяют и идентифицируют методами газовой хроматографии. Использование ионообменной хроматографии позволяет разделить подобные смеси без предварительной этерификации. Существуют приборы, которые автоматически проводят качественный и количественный анализ смесей такого рода. При этом первоначально а-аминокислоты разделяются на ионообменных смолах, элюаты обрабатываются нингидрином, а образующиеся синие окрашенные вещества анализируются колориметрически, кривые поглощения записываются с помоп ью самописца. [c.647]

    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]

    Автором [38] описана схема анализа радиоактивно меченных производных липидов методами ХТС, колоночной хроматографии и хроматографии на бумаге. Смеси жирных спиртов, моно- и диглицеридов и других ацетилируе-мых липидов обрабатывают радиоактивным ацетангидридом и ацетильные производные фракционируют на отдельные классы соединений методом адсорбционной хроматографии на пластинах или на колонках с силикагелем. Количественное соотношение классов ацетилированных липидов определяют, проводя радиометрию элюатов. 1<аждую такую группу соединений можно подвергнуть дальнейшему разделению на силиконизованной бумаге. Количественный промер хроматограммы на бумаге радиоактивных производных липидов осуществляют проточным пропорциональным счетчиком, снабженным приспособлениями для автоматического перемещения полос бумаги и регистрации результатов измерений. [c.75]

    До настоящего времени большинство экстракционных колонок для работы с неорганическими веществ ами снабжается устройством для разделения элюата на фракции (оно управляется вручную или автоматически) и последующего анализа фракций каким-либо достаточно специфичным, воспроизводимым, точным и чувствительным методом. При нео бхо1димости очень высокого разрешения, особенно с радиометричеюким детектираваиием, анализируется каждая капля элюата. [c.93]

    При фракционировании декстрана на шариках пористой двуокиси кремния в дополнение к восстановительному анализу концевых групп, использующему упомянутый выше гексацианофер-рат(П1) калия, Баркер и сотр. [69] применили автоматический непрерывный метод анализа общего содержания гексоз на основе реагента цистеин—серная кислота. Элюат смешивали с водой и добавляли со скоростью истечения потока 0,1 мл/мин [c.76]

    В работе [73] описан автоматический метод анализов органических кислот, предусматривающий использование колонок с силикагелем элюентом служили смеси хлороформа и грег-амило-вого спирта. Концентрация грег-амилового спирта в элюенте непрерывно увеличивалась в градиентном устройстве Уаг1 га(1, и смесь насосом подавалась в колонку. Индивидуальные разделенные кислоты, присутствующие в элюате, реагировали с индикатором (о-нитрофенол в абсолютном метаноле), который непрерывно подавался в поток элюата появляющееся при этом окрашивание регистрировалось проточным фотометрическим детектором при 350 нм. Этот метод был успешно применен для разделения ряда физиологически активных кислот, таких, как промежуточные соединения цикла Кребса. Чувствительность пр проведении серийных разделений этим методом примерно в 40 раз выше, чем при стандартном ручном методе, точность метода выше 3%. Кроме того, до введения образца не требуется предварительная депротеинизация и экстракция (с возможной потерей летучих веществ и получением случайных ошибочных результатов). [c.181]

    Сошедший с колонки элюат можно анализировать любым подходящим методом. Вещества, содержащие ароматические кольца (полистиролы, белки, нуклеиновые кислоты), можно оценить количественно не только с помощью уже описанных автоматических регистрирующих устройств, но также и путем прямого измерения отдельных фракций на спектрофотометре. Для всех твердых веществ вполне приемлем разработанный Крэйгом [63] метод анализа по сухому остатку, который заключается в том, что аликвотную часть элюата упаривают в полусферических чашечках и затем взвешивают остаток. Многие соединения удается анализировать с помощью специфических цветных реакций. Для белков, например, цветная реакция Фолина — Лоури оказывается более чувствительной, чем прямое измерение поглощения в ультрафиолете. Эту реакцию можно проводить непрерывно на автоматическом анализаторе [45]. Еще более чувствительный метод основан на образовании биурето-вого комплекса с избытком радиоактивной меди. (Этот метод позволяет обнаружить белок  [c.79]

    Хроматографическое разделение катионов может производиться на катионитах или анионитах. При разделении на катионитах сначала адсорбируют все катионы на соответствующем адсорбенте, из которого потом фракционированно их выделяют при помощи этилендиаминтетрауксусной кислоты. В некоторых анализах можно применить прием, при котором выбором подходящих условий (особенно изменяя величину pH) достигают элюирования только одного катиона, образующего наиболее прочный комплекс с комплексоном III в других методах анализа получают в элюате последовательно два или более катионов. При применении второго способа необходимо собирать фракции отдельно по мере их вытекания, для чего целесообразно применить автоматический коллектор фракций каждая полученная фракция отделяется количественно. Этот способ определения наиболее удобен при анализе радиоактивных изотопов с применением счетчика Гейгера-Мюллера. Результаты всегда обрабатывают графически по зависимости найденного количества от последовательности фракции. Положение максимумов в определенных, точно установленных условиях характеризует разделяемые катионы, высота. максимумов дает количественный состав. [c.250]

    М раствором этой соли при pH 11 (подщелачивание проводили раствором едкого кали), пропускают 1 мл анализируемого раствора, 0,12 М по содержанию лития и 0,015 М по содержанию едкого натра и цезия эти гидроокиси были растворены в 0,13 М растворе этилендиаминтетрауксусной кислоты с pH 10. Колонку промывают раствором, примененным при подготовке анионита. Цезий проходит через анионит без заметного поглощения, натрий несколько задерживается так, что от цезия он хорошо отделяется. Литий адсорбируется настолько сильно, что для его вымывания необходимо довести pH элюирующего растворителя до 4,2. Элюат принимается автоматическим коллектором фракций. Определение производят спектрографически, методом фотометрии пламени или, если анализируется раствор, содержащий радиоактивные металлы, то радиометрически. Результаты анализа приведены на рис. 29. [c.255]

    Рассмотрим возможность автоматизации хроматографического анализа ферментов на примере, заимствованном из статьи [42]. Авторы статьи провели хроматографическое разделение ферментов на автоматическом анализаторе фирмы Te hni on (рис. 8.22). В этом приборе используется пропорциональный насос Р с 12 пластмассовыми трубками различного диаметра. Буферный раствор из системы формирования градиента прокачивается в колонку через трубку 1. Разделение белков происходит в колонке К. Основная часть элюата из колонки поступает в коллектор фракций F и затем используется после окончания анализа. В процессе хроматографирования от основного потока элюата отделяется очень небольшая часть, которая поступает в три аналитические секции, где проводится определение основной фосфатазы, трансаминазы и всех белков. После определения основной фосфатазы часть элюата поступает через трубку 2 вместе с пузырьками воздуха, введенными через трубку 3, и субстратом из трубки 4 в аналитическую систему. В короткой стеклянной спирали М происходит тшательное смешивание водных растворов, полученная смесь проводится через термостат I, в котором при определенных условиях происходит расщепление субстрата. Чтобы реакция прервалась, к смеси через трубку 5 добавляется раствор соответствующего реагента. Через смесительную спираль результирующая смесь вводится в проточную кювету колориметра С и затем идет на оброс. Сигнал детектора записывается самописцем Z, фиксирующим концентрацию основной фосфатазы (I). На абсциссу наносятся номера фракций. Определение трансаминазы проводится аналогичным образом. Через трубки 6—9 подаются образец, воздух, субстрат и реагент соответственно. Окончательный продукт реакции проходит через колориметр Сг. Результирующая концентрация трансаминазы пропорциональна кривой III записываемой самописцем. Третья аналитическая система, регистрирующая суммарное содержание белков, несколько проще, чем две другие. Часть элюата поступает через трубку 10, воздух проводится через трубку 11, а реагент для обнаружения белков — через трубку 12. Растворы смешиваются в спирали М, полученная смесь поступает в проточную ячейку колориметра Сз. Содержание белков в смеси записьгеается в виде кривой II. [c.80]

    В колонку диаметром 17 мм и высотой 400 мм, заполненную монофункциональной иминодиуксусной смолой в нейтральной На-форме, всякий раз загружали смесь, содержащую по 20 мг-экв каждого из исследуемых ионов и десятикратное количество ацетата натрия в 800 мл воды. Затем колонку промывали водой, не содержащей ионов, а потом элюировали соответствующей кислотой при скорости 0,5 см1мин. Элюат разделяли автоматическим делителем фракций на фракции по 20 мл, в которых определяли pH и содержание металла. Анализ металлсодержащих фракций проводили только комплексометрически. [c.117]

    В своей первой публикации по газовой хроматографии Джеймс и Мартин использовали ячейки для автоматического титрования в качестве детектора летучих жирных кислот такое же устройст-ство позже применяли для анализа смесей ароматических и алифатических аминов. Элюаты вводили непосредственно в ячейку, содержащую раствор кислотно-основного индикатора. Оптическую плотность раствора контролировали фотометрически выходной сигнал фотоэлемента служил для непрерывного контроля за количеством добавленного титранта объем последнего регистрировали самописцем в виде интегральной кривой в координатах объем — время. Из записанной кривой можно было извлечь качественную и количественную информацию. [c.279]

    Колонка из нержавеющей стали, диаметр (внутр.) 1,75 мм ионит — дуррум D -A4 (8 мкм) проба—10 нмоль смеси буферный раствор очищали, пропуская череа аммиачный фильтр, и пропускали через колонку равномерным потоком со скоростью 6—10 мл/ч давление 83,5 атм. Результаты измерения поглощения элюата обрабатывали на ЭВМ PDP/8 с выводом результатов в цифровой и графической форме. ЭВМ осуществляла также управление всей установкой. Анализатор был оборудован охлаждаемым сборником фракций, рассчитанным на 80 фракций, которые отбарались автоматически. Один анализ, представленный на рисунке, длился 42 мин. На оси абсцисс показано отношение поглощения при 570 нм (аналитическая величина) к поглощению при 690 нм (сравнительная [c.311]

    Джонс [88] подробно описал установку для хроматографического анализа пептидов, пригодную как для препаративного (/ 100 мг), так и для аналитического (0,1—1 мг смеси пептидов) разделения. При работе на этой установке щелочной гидролиз не проводится. Эту методику называют прямым методом нингидриновой колориметрии , поскольку в ней используется модифицированный [67, 150] аминокислотный анализатор Спакмана с сотр. [186], который можно непосредственно применять для автоматической хроматографии пептидов [89]. В установке можно использовать блоки различных автоматических анализаторов заводского изготовления. Разделение ведется методом градиентного элюирования. Элюат делится на две части, большая часть направляется в сборник фракций, а [c.313]


Смотреть страницы где упоминается термин Автоматический анализ элюата: [c.62]    [c.204]    [c.205]    [c.197]    [c.174]    [c.101]    [c.313]    [c.313]    [c.174]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ элюата

Элюат



© 2024 chem21.info Реклама на сайте