Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологическая схема и серной кислот

    Основные стадии процесса следующие получение диоксида серы в результате сжигания в топке сероводородного газа охлаждение полученного диоксида углерода в котле-утилизаторе с получением водяного пара окисление диоксида серы до триоксида в контактном аппарате, загруженном ванадиевым катализатором конденсация триоксида серы и паров воды с образованием серной кислоты улавливание тумана и капель серной кислоты в электрофильтре. Технологическая схема установки представлена на рис. ХП-5. [c.113]


    Процесс закачки. Комплекс технических средств для закачки в пласт серной кислоты в соответствии с одной из известных технологических схем объединения Татнефть (рис. 79) включает следующие основные элементы  [c.145]

    В общей схеме сернокислотного производства существенное значение имеют две первые стадии —подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты. [c.153]

    Особое значение для сернокислотного производства имеет создание энерготехнологических схем, в которых комбинируются технологические (получение серной кислоты) и энергетические (выработка электроэнергии) процессы переработки одного и того же сырья. Подобные схемы разработаны для производства серной кислоты из серы. Высокая теплота сгорания серы (10 кДж/кг) делает возможным использование ее в качестве топлива в тепловых машинах, например в газовых турбинах для выработки энергии, направляя отходящие газы, содержащие оксид серы (IV) на производство серной кислоты. Подобная энерготехнологическая схема приведена на рис. 13.21. [c.180]

    Технологическая схема хлорирования в газовой фазе состоит из тех же стадий, что и при жидкофазном хлорировании. Подготовка ))еагентов заключается в испарении жидкого хлора, предварительном нагревании газообразного хлора, осушке реагентов концентрированной серной кислотой или адсорбентами, смешении реагентов друг с другом и с рециркулятом. В случае синтеза аллил-и металлилхлорида исходные углеводороды испаряют и подогревают до нужной температуры. [c.121]

    Технологическая схема производства этилацетата представлена на рис. 7.11. Смесь уксусной кислоты, этилового спирта и серной кислоты из смесителя 1 непрерывно поступает на верхнюю тарелку колонны-эфиризатора 2, в куб которой подается острый пар. Образующийся этилацетат вместе с парами воды и спирта отгоняется с верха колонны, а жидкость по мере продвижения вниз по тарелкам обогащается водой. Благодаря отгонке летучего компонента и избытку спирта этернфикация протекает почти до полного превращения уксусной кислоты. [c.240]

    В описываемом производстве, связанном с применением на всех стадиях технологического процесса серной кислоты, большое внимание уделяется защите полов, приямков, лотков и прочих элементов строительных сооружений. При изготовлении кислотостойких полов и подобных конструкций используются проверенные схемы защиты. Кроме верхнего покрытия из кислотоупорной плитки или кирпича, предусматривается гидроизоляционный слой из листового полиизобутилена ПСГ или другого непроницаемого материала. Конструкции и способы изготовления кислотостойких полов описаны в литературе [12—17]. [c.99]


    Развитие производства этих удобрений стимулируется следующими факторами — сравнительная простота процессов получения суперфосфата, возможность использования по этой схеме серной кислоты, когда ее недостаточно для крупного производства фосфорной кислоты. Удобрения на основе карбамида и суперфосфата одновременно содержат азот, серу и фосфор и пригодны для различных культур и почв. Технологическая схема производства сложно-смешанных удобрений аналогична схеме, приведенной на рис. 38. [c.87]

    Технологическая схема производства нитрофоски азотно-сернокислотным способом приведена на рис. У1П-14. Разложение апатита азотной кислотой происходит в первых двух реакторах. Часть серной кислоты (60%) дозируют в 3-й и 4-й реакторы, а остальную кислоту в 5-й к 6-й. [c.247]

    История техники свидетельствует о том, что технология отдельных производств химической промышленности изменяется со временем, причем изменяются даже такие промышленные производства, как, например, основанный на гомогенном катализе камерный способ получения серной кислоты, в котором, по существу, имеет место то же самое сырье (пирит) и тот же самый конечный продукт (серная кислота). Изменяются главным образом орудия и предметы труда, так как на некоторых участках технологической схемы могут быть изменены технологические условия (например, температура, давление и концентрация) наконец, меняются люди, занятые в производстве, их образование, организация труда и т. д. Если мы широко рассмотрим эти изменения в ряде существующих промышленных производств, то можно найти общее во многих индивидуальных изменениях, так как они обусловлены одной и той же причиной. [c.13]

    Технологическая схема установки приведена на рис. VI.3. Сырье из секции подготовки (на схеме не показана) подается насосом 1 в холодильник 2 (здесь хладагент — испаряющийся изобутан), а затем равными порциями вводится параллельно в пять зон реактора 6. В первую зону реактора 6 вводится циркулирующая и свежая серная кислота насосом 4 и проходит последовательно все зоны реактора. [c.61]

    РИС. ХП-5. Технологическая схема установки производства серной кислоты нз технического сероводорода  [c.113]

    С эксплуатационной точки зрения процесс с использованием жидкой серной кислоты более сложен. Концентрация кислоты является решающим фактором, поэтому необходимо поддерживать ее в определенных узких пределах (именно ниже 90%, температура 40°) во избея апие сульфирования ароматических и олефиновых углеводородов. Сульфирование кумола идет легче, чем бензола. Серьезным фактором становится также коррозия аппаратуры особенно в тех местах, где скорость потока большая. На рис. 8 показана упрощенная технологическая схема. [c.500]

    Каталитические процессы с большим выходом продукта за один цикл осуществляются, как правило, по прямоточным технологическим схемам — производство серной кислоты по контактному способу, производство разбавленной азотной кислоты и др. В таких системах для защиты атмосферы применяется санитарная очистка отходящих газов. Методы очистки газов отражены в некоторых примерах главы VII. [c.110]

    Значительного улучшения показателей производства изопропанола сернокислотным методом можно ожидать от внедрения так называемого мгновенного гидролиза. Он осуществляется перегретым водяным паром и позволяет получать отходящую серную кислоту с концентрацией 70%. Такую кислоту можно возвращать в производство без упаривания, что позволит упростить технологическую схему и снизить капитальные и эксплуатационные затраты. [c.45]

    Технологическая схема установки включает блоки подготовки сырья, реакторный, ректификационный и регенерации отработанной серной кислоты. На блоке подготовки сырья осуществляется смешение и усреднение потоков сырья, осушка, удаление сернистых и диеновых углеводородов. Технологическая схе]Ма реакторного и фракционирующего блоков дана на рис. 2.32. В промышленности помимо представленного на рисунке горизонтального контактора с охлаждением продуктами реакции применяется каскадный контактор с внутренним охлаждением за счет испарения изобутана и более легких углеводородов непосредственно в зоне реакции и вертикальный контактор с охлаждением через трубный пучок аммиаком или пропаном. [c.170]

    Принцип безотходности стремятся осуществить и в производствах, издавна работающих по прямоточной технологической схеме. Разработана и внедряется циклическая технологическая схема производства серной кислоты по контактному способу, благодаря которой в атмосферу не попадают выбросы, содержащие серу. Основной узел этой системы — каталитический реактор окисления 502 со взвешенными слоями катализатора. Элементы расчета этого реактора приведены в примере 17 данной главы. [c.110]


    На рис. 33 представлена технологическая схема установки сернокислотного алкилирования. Исходная углеводородная смесь после очистки и обезвоживания охлаждается испаряющимся бутаном в холодильнике и поступает пятью параллельными потоками в смесительные секции реактора 1-, в первую секцию подают также циркулирующий изобутан и серную кислоту. Из отстойной секции реакторов выходит серная кислота (на циркуляцию или сброс) и углеводородная смесь, которая проходит нейтрализацию щелочью и водную промывку. [c.85]

    Непрерывно работающие ХТС. Такие системы характеризуются временным постоянством (стационарностью) главных переменных состояний и выходов ХТС. Кроме этого, их структура не изменяется во времени. Примерами таких ХТС являются технологические схемы производств метанола, аммиака, серной кислоты и др. (см. рис. 1.21). [c.16]

    Разработка технологической схемы производства серной кислоты [c.609]

    Серную кислоту из газов обжига колчедана рационально производить по схеме с двойным контактированием в нестационарном режиме и двойной абсорбцией. Реактор на первой стадии контактирования работает с котлом-утилизатором, размещенным внутри или снаружи реактора и отводящим тепло реакции из центральной части слоя катализатора. Основные технологические характеристики процесса приведены в табл. 8.9. [c.198]

    Существенный аспект топливно-энергетической проблемы — это повыщение эффективности использования топливных ресурсов, в частности возможно более полное использование всех видов энергии. Известно, что химическая промышленность и смежные с ней отрасли являются крупнейшими потребителями тепловой и электрической энергии. В последние годы особенно большое внимание уделялось снижению всех видов энергозатрат в химико-технологических процессах — прежде всего уменьшению теплопотерь и наиболее полному использованию реакционной теплоты. Одним из путей повышения энергетической эффективности химико-технологических процессов служит химическая энерготехнология, т. е. организация крупномасштабных химико-технологических процессов с максимальным использованием энергии (прежде всего теплоты) химических реакций. В энерготехнологических схемах энергетические установки — котлы-утилизаторы, газовые и паровые турбины составляют единую систему с химико-технологическими установками химические и энергетические стадии процесса взаимосвязаны и взаимообусловлены. Химические реакторы одновременно выполняют функции энергетических устройств, например вырабатывают пар заданных параметров. Энерготехнологические системы реализуются прежде всего на базе агрегатов большой мощности — крупнотоннажных установок синтеза аммиака, синтеза метанола, производства серной кислоты, азотной кислоты, получения карбамида, аммиачной селитры и т. д. [c.37]

    Технологическая схема синтеза этриола изображена на рис. 10.7. Обез-метаноленный формальдегид, водный раствор NaOH и масляный альдегид подаются в реактор 1. Реактор представляет собой аппарат с диффузором (выполненным в виде змеевика) и пропеллерной мешалкой. Конденсацию альдегидов осуществляют при температуре 30—50 °С. Тепло реакции отводится хладагентом, подаваемым в рубашку и змеевик. Продукты конденсации из реактора поступают в нейтрализатор 2, где избыток щелочи нейтрализуется серной кислотой до pH = 64-7. Нейтрализованный раствор продуктов конденсации стекает в отстойник 3, где жидкие продукты отделяются от шлама. Шлам из отстойника подается на центрифугу 4 и далее направляется в отвал. Фугат после центрифуги возвращается в отстойник. Водный раствор продуктов конденсации из отстойника 3 подается на насадочную колонну 5, с верха которой отбирается смесь формальдегида, метанола и воды, которая направляется на обезметаноливание. Кубовая жидкость колонны 5 подается в верхнюю часть экстракционной колонны [c.338]

    На рис. 6.9 дана схема обезвреживания сульфидсодержащих технологических конденсатов методом десорбции углеводородным газом. Конденсат нагревается до температуры 95—98 С, при которой основная масса гидросульфида аммония разлагается на свободный сероводород и аммиак. Процесс проводят при давлении 0,02—0,03 МПа, расходе углеводородного газа 100 м на 1 м конденсата. Сероводород и аммиак уносятся током газа из десорбера и направляются на моноэтаноламиновую очистку. Сероводород используют в производстве серной кислоты, аммиак — как удобрение для сельского хозяйства. Очищенный конденсат сбрасывается в I систему канализации. [c.569]

    Наиболее эффективные направления развития производства серной кислоты овязаны с интеноивными факторами повышением концентрации ЗОг в перерабатываемом газе, проведением процессов под повышенным давлением, применением технического кислорода, вьюокоинтенсинных реакторов, новых катализаторов, организацией производства по более совершен/НЫМ технологическим схемам [86, 87 . [c.221]

    Как отмечалось выше, основное количество серной кислоты получают из серы и колчедана. Принципиальное различие технологических схем производства кислоты из этих видов серусодер-жащего сырья заключается в отсутствии промывного отделения в системах, использующих серу. Поэтому в качестве примера рассмотрим только современную сернокислотную систему, работающую на колчедане (рис. 9.19). [c.190]

    На рис. 7.15 представлена технологическая схема установки непрерывного сульфатирования высших синтетических спиртов С — ao серным ангидридом, содержащимся в контактном газе производства серной кислоты (6,5% (об.) SOj, 0,5% SO2, 11% Oj, 82% N2). Смесь циркулирующего кислого алкилсульфата и свежего спирта подается в нижнюю часть реактора 1 с мешалкой, в который вводится газ, содержащий SO3. Требуемая температура 36—43 °С обеспечивается циркуляцией сульфомассы через наружный холодильник 2. Таким же образом отводится теплота нейтрализации. В нейтрализатор 3 вводится хлор или гипохлорит для отбеливания алкилсульфата. При мольном отношении серный ангидрид/спирты, близком к единице, степень превращения спирта составляет 80— [c.245]

    Технологическая схема процесса изображена на рис. 9.13. Толуол нитруется азотной и серной кислотами в двух последовательно расположенных нитраторах I к 3. Образующийся динитротолуол отделяется в сепараторе 4 от смеси кислот, промывается в аппаратах 5 и б соответственно горячей водой и специальным [c.304]

    Использование для этих целей гидросульфита натрия и ронгалита является нерентабельным, так как расход этих дефицитных реагентов при обесцвечивании, например, слабозагряз-ненного общего стока красильно-отделочных фабрик достаточно велик (до 3 кг/м ). В то же время атомарный водород может быть сравнительно легко получен при взаимодействии разбавленной соляной или серной кислоты с металлическими стружками. С учетом того, что на предприятиях, где образуются окрашенные стоки, производят или широко применяют в технологических процессах серную кислоту, а металлические стружки являются отходами механических цехов, предложен метод очистки [39], заключающийся во взаимодействии предварительно подкисленного серной кислотой стока с железными стружками, последующей его нейтрализации и отстаивании. На базе этого метода, в основу которого заложен принцип восстановительно-окислительной деструкции органических примесей, разработана рациональная технологическая схема очистки сточных вод красильно-отделочных фабрик [1]. Аналогичный метод реализован также при очистке сточных вод производства красителей [94], текстильной фабрики [114] разнообразные модификации метода [69, 70, 113] апробированы при очистке различных категорий сточных вод и подтвердили высокую его эффективность. [c.35]

    На рис. 4 изображена принципиальная технологическая схема синтеза ДМД. Исходный формалин, содержащий 8—12% метанола, поступает на ректификационную колонну 1, где в качестве погона отбирается метанол, а из куба выводится продукт с содержанием метанола менее 1%. К обезметаноленному формалину добавляют рассчитанное количество серной кислоты, затем смесь подают в верхнюю часть реактора 2. В нижнюю часть этого реактора через распределительное устройство подают сжиженную С -фракцию, которая в диспергированном состоянии поднимается снизу вверх. Поскольку катализатор — серная кислота — практически полностью находится в водной фазе, в ней и протекают все [c.703]

    Из приведенных в табл. 35 данных видно, что установки с вертикальными реакторами имеют существенные недостатки несоверщенство схемы и конструкции реакторов, несоответствие технологического режима проектному и др. На больщинстве действующих установок отношение изобута бутилены в реакторах равно 3—4 и лишь на некоторых оно составляет 6—7. Между тем на современных установках отношение изобутан бутилены в отдельных секциях реактора внешнее составляет 30, а внутреннее достигает 500—600 [56]. Недостаток изобутана в реакторе приводит к ухудшению качества алкилбензина и рез1Ком у увеличению расхода серной кислоты. [c.151]

    На рис. 9.3 изображена технологическая схема одной из разновидностей указанного процесса — процесса фирмы Aiontedison (Италия). Сырье — подогретая смесь пропилена, аммиака и воздуха (мольное соотношение 1 1,1 12) — поступает в реактор 1 с псевдоожиженным слоем катализатора, в качестве которого используется смесь высших окислов молибдена, теллура и церия на силикагеле. Реакцию проводят при температуре 420—460 С и давлении 0,2 МПа. Для снятия теплоты реакции в холодильное устройство реактора 1 подается вода. Продукты реакции после реактора I поступают в абсорбер 2, где при 80— 100 °С раствором серной кислоты улавливается непрореагировавший аммиак и образуется 30—35% водный раствор сульфата аммония. Далее в абсорбере 3 водой из газа извлекаются акрилонитрил, ацетонитрил и синильная кислота. Отходящие газы выбрасываются в атмосферу, а водный раствор нитрилов поступает в отпарную колонну 4, с верха которой отгоняется смесь синильной кислоты, ацетонитрила и акрилонитрила, которая затем направляется на разделение в блок ректификационных колонн 5—8. С низа колонны 4 выводится вода, которая вновь возвращается на орошение абсорбера 3. В колонне 5 верхним погоном отбирается синильная кислота. Кубовый продукт колонны 5 поступает в ректификационную колонну 6, в которой с помощью экстрактивной ректифика- [c.284]

    Для заполнения резервуаров-накопителей, опрессовки приемной линии насосных агрегатов и трап-гребенки и подачи серной кислоты из резервуаров на прием насосов высокого давления в технологической схеме предусмотрены передвижные воздушно-компрессорные установки модели ДК-9М производительностью до 10 м мин при числе оборотов 1000 1/мин. Эти установки смонтированы на двухосной прицепной под-рсссорной тележке с закрытым кузовом. Обычно используют один рабочий и один резервный агрегаты. [c.147]

    Технологическая схема установки приведена на рис. 1. Дизельное масло М-11 селективной очистки при 40—50 °С сульфируют серным ангидридом (контактным газом, содержащим 7—8 % серного ангидрида и полученным при производстве серной кислоты контактным способом) в сульфураторе 3 периодического действия. В процессе сульфирования температура в аппарате не превышает 50°С, что достигается циркуляцией сульфированного масла через выносной холодильник 5. Процесс сульфирования контролируют по кислотному числу сульфированного масла, которое должно быть в пределах 18—22 мг КОН/г. ПутеК отстаивания в аппарате 6 от сульфированного масла отделяют кислый гудрон. Нейтрализацию сульфированного масла осуществляют в реакторе 9 периодического действия с перемешивающим устройством, [c.223]

    Промышленный реактор. В СССР работают несколько промышленных реакторов для окисления диоксида серы в производстве серной кислоты. Рассмотрим кратко данные эксплуатации одного из таких реакторов [13, 14]. В соответствии с технологической схемо реакционная смесь от нагнетателя через фильтр-брыз-гоуловитель поступает на клапан-переключатель по 80г и в зависимости от положения тарелки рабочего органа этого клапана направляется в верхнюю или нижнюю часть реактора. После реактора в коммуникациях температура реакционной смеси усредняется и прн У = 100—180°С направляется на абсорбцию. [c.194]

    Для гидролиза хлопкового линта разработан способ его облагораживания и гексозного гидролиза малыми количествами концентрированной серной кислоты [27]. По разработанной технологической схеме и режиму гидролиза хлопкового линта третьего сорта малым количеством концентрированной серной кислоты обеспечивается выход РВ к сходному линту 78—82%, или 85— 89% от теоретического. [c.171]

    Концентрация применяемой серной кислоты предопределяет и особенности технологии извлечения изобутилена. Наибольшее распространение получила технология фирмы Standard Oil Development, разработанная в конце 1930 гг. и основанная на применении кислоты с концентрацией 60—<35% (масс.). Технологическая схема выделения изобутилена из С4-фракций 60—65%-ной серной кислотой изображена на рис. 5.14. Извлечение изобутилена осуществляется в две ступени смеситель—отстойник по противоточной схеме. [c.298]

    Получение диметилвинилкарбинола. В 1969—1972 гг. в СССР был разработан и испытан в полупромышленном масштабе метод получения диметилвинилкарбинола — ценного сырья для производства витаминов А и Е — из промежуточных продуктов синтеза изопрена из изобутилена и формальдегида (см. раздел 2.1). Технологическая схема процесса представлена на рис. 3.17. Водный раствор изобутенилкарбинола, выделенный азеотропной ректификацией с водой из фракции возвратного 4,4-диметил-1,3-диоксана. подается в куб реакционно-отгонной колонны 1, куда загружен катализатор (серная или щавелевая кислота). В кубе поддерживается кипение реакционной смеси (температура в парах 87—88 °С). Из верхней части колонны 1 непрерывно отбирается смесь водного азеотропа диметилвинилкарбинола н изопрена с примесью непревращен-ного изобутенилкарбинола. Для обеспечения полного расслаивания дистиллята и повышения степени осушки органической фазы в линию отбираемых продуктов подается дополнительное количество изопрена, отгоняемого в колонне 3. В отстойнике 2 смесь расслаивается. Нижний водный слой возвращают в колонну 1 в виде флегмы. Органическая фаза поступает в систему ректификационных колонн [c.97]

    Аналогична схема получения вторичных алкилсульфатов нз высших олефинов сульфатированием серной кислотой. При сульфатировании первичных спиртов хлорсульфоновой кислотой или серным ангидридом технологическая схема существенно упрощается сульфомасса после нейтрализации непосредственно поступает на упаривание. При использовании хлорсульфоновой кислоты сульфомасса перед нейтрализацией продувается инертным газом или выдерживается под вакуумом для удаления НС.  [c.245]


Смотреть страницы где упоминается термин Технологическая схема и серной кислот: [c.185]    [c.323]    [c.111]    [c.167]    [c.8]    [c.615]    [c.244]    [c.266]    [c.584]    [c.140]    [c.170]    [c.301]   
Технология азотной кислоты Издание 3 (1970) -- [ c.282 , c.284 ]




ПОИСК





Смотрите так же термины и статьи:

ЕРМАКОВ, М.Г. СЛИНЬКО, B.. БЕСКОВ и др Оптимальные технологические схемы контактных узлов в производстве серной кислоты

Контактная серная кислота, производство технологические схемы

Производство серной кислоты контактным методом Технологическая схема производства контактной серной кис

Производство серной кислоты контактным методом Технологическая схема производства контактной серной кислоты из колчедана

Производство серной кислоты контактным методом Технологическая схема производства серной кислоты контактным методом из колчедана

Производство серной кислоты контактным способом из серного колчедана Технологическая схема производства

Производство серной кислоты нитрозиым методом Технологическая схема производства серной кислоты башенным способом

Производство серной кислоты нитрозным методом Технологическая схема производства серной кислоты башенным способом

Разработка технологической схемы производства серной кислоты

Схема ной кислот

ТЕХНОЛОГИЧЕСКАЯ СХЕМА И АППАРАТУРА ПРОИЗВОДСТВА СЕРНОЙ КИСЛОТЫ БАШЕННЫМ МЕТОДОМ

Технологическая схема капельного концентрирования серной кислоты

Технологическая схема концентрирования серной кислот

Технологическая схема производства контактной серной кислоты из колчедана

Технологическая схема производства никотиновой кислоты из 2-метил-5-этилпиридина окислением азотной кислотой в присутствии серной при атмосферном давлении

Технологическая схема производства никотиновой кислоты из хинолина окислением азотной кислотой в присутствии серной кислоты и ванадиевого катализатора

Технологическая схема производства серной кислоты башенным спосоФизико-химические основы нитрозного процесса

Технологическая схема производства серной кислоты башенным способом

Технологическая схема производства серной кислоты из колчедана

Технологическая схема производства серной кислоты нитрозным способом

Технологическая схема произвол серной кислоты

Технологическая схема регенерации серной кислоты- из КГ - отходов производства жидких парафинов

Технологические схемы контактной серной кислоты

Технологические схемы серной кислоты з трубах Вентури

ЧАСТЬ ТРЕТЬЯ Производство серной кислоты контактным методом Технологическая схема производства серной кислоты контактным методом из колчедана



© 2025 chem21.info Реклама на сайте