Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионные испытания качественные

    КАЧЕСТВЕННЫЕ МЕТОДЫ и ПОКАЗАТЕЛИ КОРРОЗИОННЫХ ИСПЫТАНИЙ [c.334]

    Качественные методы и показатели коррозионных испытаний 335 [c.335]

    Целью коррозионных испытаний является установление вида и масштаба коррозионных процессов и изменения свойств металлов в результате коррозии. Для определения стойкости испытуемого металла в коррозионной среде в требуемых условиях оценивают качественные и количественные изменения металлов, вызванные коррозионной средой. Испытания проводят для выбора металлов и варианта защиты, а также для прогнозирования срока службы конструкции или оборудования. [c.90]


    Методы, которые приняты в настоящее время в практике коррозионных испытаний, могут быть подразделены на качественные и количественные. Первые большей частью имеют только вспомогательное значение и позволяют в некоторых случаях заранее установить характер коррозионного процесса и его интенсивность. [c.90]

    Качественные методы коррозионных испытаний сводятся к следующим  [c.90]

    Опубликованные данные коррозионной стойкости керамических материалов в агрессивных средах часто носят характер отдельных качественных наблюдений над материалами неизвестного происхождения и чистоты и, поскольку результаты коррозионных испытаний существенно зависят от состава и структуры материалов, эти наблюдения следует рассматривать лишь как качественно характеризующие явления. [c.4]

    Большая часть данных способов рассмотрена в отдельных лабораторных работах, причем особое внимание уделено методам определения коррозии и испытанию надежности защитных покрытий. Методы коррозионных испытаний, применяемых на практике, различны. Они делятся на качественные и количественные. Качественные методы включают визуальное наблюдение за изменениями, происходящими в процессе коррозии, и изучение микроструктуры металла. К количественным методам относятся определения изменения массы, объема выделяющихся газов или поглощаемого газа, силы коррозионного тока, химический анализ раствора и испытание прочности корродированного изделия или других его свойств. [c.238]

    Для проверки этого предположения был проведен качественный спектральный анализ образцов, прошедших коррозионные испытания в течение 1000 ч при 650° С. Спектры исследуемых образцов фотографировались с помощью спектрографа ИСП-22. [c.49]

    Лабораторные испытания, как бы тщательно они ни были проведены, не могут воспроизвести естественные эксплоатационные условия работы машин и аппаратов, и поэтому результаты таких испытаний имеют относительный характер. Однако лабораторные испытания позволяют сравнительно быстро получать качественную и количественную оценку относительной химической стойкости материала и поэтому являются наиболее распространенным методом испытания. Очевидно, что чем полнее и совершенней лабораторные коррозионные испытания воспроизводят эксплоатационные условия работы, тем они ценнее, поэтому при выборе метода коррозионных испытаний в лабораторных условиях необходимо хорошо знать эксплоатационные условия работы материала и предъявляемые к нему требования. [c.69]

    Качественная оценка коррозии металлических материалов производится разными методами, которые позволяют судить о характере и распределении продуктов коррозии, изменении внешнего вида металлической поверхности, строении отдельных прокорродировавших мест, выяснять грубую структуру защитных пленок на металле, изучать глубокие внутренние изменения металла при коррозии и т. д., поэтому качественная характеристика коррозионного разрушения в дополнении к количественной оценке имеет большое значение при коррозионных испытаниях. [c.70]


    В начальный период серьезные трудности вызывала коррозия аппаратуры, особенно в нижней секции сепаратора, где могло происходить расслаивание жидкой фазы. В реакторе, теплообменниках и сепараторе полу-заводской установки скорости потоков, предусмотренные проектом, приблизительно совпадали с принятыми в обычной заводской практике во всех этих узлах системы были помещены образцы для коррозионных испытаний. Этими образцами обнаружена коррозия, которая могла быть объяснена только действием сероводорода, так как фтористый водород не вызывает коррозии при температурах выше точки конденсации. Фтористый водород в продукте не обнаружен. Так как для качественного определения применялись методы, разработанные для контроля процессов фтористоводородного алкилирования, это позволяет утверждать, что продукты автогидроочистки [c.152]

    Основным методом оценки коррозионной агрессивности реактивных топлив в настоящее время является испытание топлива на медной пластинке при 50 и 100° в течение 3 ч. (ГОСТ 632—52). Этот метод позволяет качественно- установить присутствие в топливе активных сернистых соединений и элементарной серы, но он не чувствителен к высокомолекулярным меркаптанам и органическим кислотам. [c.7]

    Принятые методы коррозионных испытаний разделяют на качественные к количественные. Первые методы испытания не могут охарактеризовать полностью коррозионный процесс они позволяют лишь установить некоторые предпосылки [c.35]

    При проведении коррозионных испытаний пользуются различными качественными и количественными показателями коррозии. [c.8]

    Коррозионная стойкость сварных соединений из стали 20, выполненных электроконтактной сваркой, исследовалась как на образцах соединений, так и на отрезках труб с полномасштабным стыком. Данные испытаний на замедленное разрушение (при наводороживании) на образцах, вырезанных из сварных соединений, и на целых стыках труб свидетельствуют об удовлетворительной коррозионной стойкости качественных соединений, выполненных электроконтактной сваркой [153]. [c.44]

    Исследование выносливости стали Д в естественной обратимой эмульсии с бурящейся скважины, эмульгированной КО СЖК и СаСЬ и содержащей 40 % соды, показало высокую эффективность этой среды. Условный предел коррозионно-усталостной прочности в ней составил 210 МН/м , т. е. снизился только на 20 % по сравнению с испытаниями на воздухе. При этом следов коррозии на поверхности образца во время испытаний не обнаружено, а излом имел три отчетливые зоны — зарождения, развития трещины и хрупкого долома. В промышленных условиях инвертная эмульсия остается довольно стабильной и качественной. [c.104]

    Испытания в кипящей серной кислоте показали, что качественное влияние легирующих элементов на коррозионную стойкость ниобия в этой среде такое же (рис. 68), как и при испытаниях в соляной кислоте, однако количественное влияние элементов неодинаково (рис. 69). Ti, V и Zr, уменьшают стойкость ниобия в кипящей серной кислоте, хотя начальные присадки V и Zr (до 5 ат.%) и Ti (до 10 ат.%) еще не оказывают влияния на стойкость ниобия. Это имеет значение как средство удешевления сплава без понижения его коррозионной стойкости (например, введение Ti в количестве 10 ат.% 18% по массе). Та, как и Мо, уменьшает скорость коррозии ниобия, причем Та более интенсивно, чем Мо. [c.69]

    Ускоренные лабораторные испытания проводятся для сравнения коррозионной стойкости металлов. Если необходимо повысить скорость коррозии, то усиление влияющих факторов не должно вносить качественных изменений в процесс коррозии. В жидкой среде ускорение процесса достигается повышением скорости движения среды или изменением концентрации компонентов, повышением температуры среды, насыщением ее воздухом, кислородом и т. д. При ускоренных испытаниях, воспроизводящих атмосферные условия, допускается повышать температуру до верхнего предела, существующего в природных условиях, увеличивать влажность путем повторной конденсации, повышать интенсивность ультрафиолетового излучения, ограничивая инфракрасное излучение, и т. д. [c.91]

    В заключение необходимо отметить, что, как следует из литературы, характер кинетических диаграмм коррозионно-усталостного разрушения во многих случаях качественно отличается от З-образных кривых, полученных при испытаниях в воздухе или инертной среде (рис. 49, кривая 1), [c.98]

    В том случае, если окружающая среда не приводит к коррозионному растрескиванию данного металла при статическом или квазистатическом нагружении, реализуется механизм так называемой "чистой коррозионной усталости. Тогда кривая скорости роста усталостной трещины при испытании в коррозионной среде в зависимости от амплитуды коэффициента интенсивности напряжений качественно такая же, как и в воздухе (см. рис. 49, кривая 2), но при низких и средних значениях она располо- [c.98]


    Коррозионно-усталостное разрушение сталей с катодными покрытиями сопровождается понижением их электродных потенциалов от стационарных значений до (-600) (—650 мВ), т.е. почти до их уровня у незащищенных разрушающихся сталей. Приложение напряжения к никелированным сталям из-за нарушения сплошности оксидных пленок вызывает сдвиг их потенциалов в отрицательную сторону до 10 мВ, Качественно характер изменения электродного потенциала химически никелированных образцов при испытании в коррозионной среде такой же, как на рис, 27. Длительность II периода также возрастает с повышением прочности стали. Интенсивное понижение потенциала на Ml участке соответствует моменту потери покрытием сплошности, проникновению коррозионной среды к основному металлу и развитию в нем локализованных процессов коррозионной усталости. Спонтанное разрушение образца сопровождается скачкообразным понижением потенциала на IV участке. Характер изменения электродных потенциалов и кинетика процесса разрушения хромирован- [c.178]

    Сравнительно больщие размеры образцов для испытаний в море выбираются в связи с тем, чтобы максимально уменьшить влияние краев образца. Так же как и при атмосферных испытаниях, когда критерием коррозионной стойкости выбрано изменение механических свойств металла, образцы целесообразно вырезать из прокорродировавших листов, а не испытывать готовые образцы. Наряду с обычными листами часто испытывают клепаные листы, листы с приклепанными уголками и т. п. Образцы этого типа качественно более точно характеризуют поведение элементов конструкций, хотя и не могут дать количественных результатов. К испытаниям образцы необходимо готовить так же тщательно, как и для лабораторных исследований. [c.211]

    Сопоставление результатов, полученных на ударно-эрозионной установке и в магнитострикционном вибраторе, сделанное Л. А. Гликманом [94], показало, что качественно они совпадают. Количественно же результаты отличаются, что, по мнению автора, связано с различием в механических условиях испытаний. Однако можно предположить, что оказало влияние и различие в коррозионных средах, так как в ударно-эрозионной установке использовалась водопроводная вода, а в магнитострикционном вибраторе — искусственная морская вода. [c.320]

    Если эксплуатационные характеристики оборудования, подтвержденные паспортом завода-изготовителя и соответствующими испытаниями, отвечают требованиям процесса, то безопасность его эксплуатации будет зависеть только от устойчивости технологического процесса, т. е. от стабильности его параметров, исключающей случайные, даже непродолжительные во времени отклонения на недопустимые величины. При этом весьма важно качественное постоянство сырья и вспомогательных материалов. Нередки случаи, когда именно по этой причине в аппаратах образуются взрывоопасные концентрации или они подвергаются ускоренному коррозионному разрушению. [c.15]

    Критерии оценки коррозионной стойкости материалов могут быть качественные и количественные. Качественным критерием является оценка изменений, произошедших в ходе коррозионных испытаний с внешним видом испытуемых образцов и коррозионной средой. Оценка изменений внешнего вида образца может быть визуальной или проводиться с применением микроскопов — определяется изменение морфологии поверхности металла и ее окраски. Об изменениях в коррозионной среде судят по нарушению ее цветности и появлению в ней нерастворимых продуктов коррозии. Разновидностью качественных методов являются индикаторные методы, основанные на изменении цвета специально добавляемых в коррозионную среду реактивов под действием продуктов растворения испытуемого материала. В практике испытаний сталей таким реактивом часто является смесь ферро- и феррицианида калия, в результате взаимодействия которой с ионами двухвалентного железа образуется турбулевая синь — ярко окрашенные области синего цвета. Качественным индикатором при исследовании коррозии алюминия и его сплавов является ализарин, окрашивающий зоны преимущественного растворения в красный цвет. [c.141]

    Проведенные нами ранее [1] коррозионные испытания (в расплаве AI I3—Na l) конструкционных материалов, необходимых для изготовления электролизера алюминирования [2], носили качественный характер. Эти исследования позволили отобрать не- [c.41]

    К качественным способам оценки коррозии относятся 1) визуальный осмотр образца исследуемого металла после воздействия агрессивной среды (при этом необходимо также наблюдать за изменениями, происходящими в растворе) 2) микроскопическое наблюдение 3) фотографирование коррозии исследуемого образца (что позволяет также исследовать кинетику коррозионного процесса) 4) исследования с применением индикаторов. При применении последнего метода для коррозионных испытаний черных металлов поверхность образца смачивают раствором так называемого ферроксил-индикатора (1 л воды, 1 г КзРе(СЫ)б-2Н20, 10 г агар-агара, несколько капель фенолфталеина, 10 г КаС1) на участках металла, играющих роль анодов, появляется голубое окрашивание вследствие образования Рез[Ре(СН)б]г, а на катодных участках в связи с наличием в индикаторе фенолфталеина — розовое окрашивание. Для алюминиевых сплавов в качестве индикатора применяют раствор ализарина. [c.7]

    Качественные способы определения активных сернистых соединений широко распространены в практике производства и применения нефтепродуктов. Популярность этих способов объясняется их простотой и быстротой 1[роизводства пспытання. Однако по результатам подобных испытаний нельзя судить о пригодности или непригодности того или иного продукта, так как коррозионность нефтепродуктов, как уже было сказано выше, зависит не только от активных соединений серы, но от всей суммы сернистых соединений. [c.384]

    Основными факторами, учитываемыми обычно [6] при разработке и исследовании ингибиторов, являются 1) строение и свойства органического соединения 2) характер его взаимодействия с металлической поверхностью 3) состав и специфика контакта коррозионной среды с защищаемым объектом. До настоящего времени не установлено однозначной зависимости между различ-ны.ми характеристиками этих факторов и защитной эффективностью ингибиторов коррозии вследствие чрезвычайной чувствительности ингибирующего действия к изменяющимся условиям эксперимента.. Теоретическими критериями создания ингабитороБ коррозии под напряжением, с нашей точки зрения, могут служить количественные и качественные показатели их адсорбируемости на металлической подложке и влияния на кинетику электродных реакций в совокупности с данными коррозионно-механических испытаний, проведенными в ингибированных коррозионных средах при действии на металл нафузок, по характеру и зчяч15ниям близких к реальным. [c.180]

    Качественно это можно показать на следующем примере. Предположим, что трещина находится с одной стороны гладкого образца на растяжение квадратного сечения, т. е. фактически имеем образец с односторонним надрезом. Предположим также, что выращенная коррозионная трещина на круглом образце на растяжение имитирует надрез на образце с односторонним надрезом квадратного сечения. Тогда уравнение К1—ай яау1 У для образца с односторонним надрезом [73] может быть использовано для расчета семейства кривых, выражающих зависимость Кг от глубины трещины для различных общих уравнений напряжений. Такое семейство кривых показано на рис. 23 для образца с квадратным сечением, площадь сечения которого была равна площади сечения круглого образца на растяжение диаметром 6,5 мм, который обычно используется для испытаний на КР. Таким образом, уровни напряжений на рис. 23 похожи на уровни напряжений для круглого образца диаметром 6,5 мм. [c.178]

    Многими советскими и зарубежными авторами качественно установлено смещение электродного потенциала металла в процессе коррозионной усталости в отрицательную сторону. Автором совместно с А.М.Крох-мальным [118] изучен характер изменения электрохимических свойств сталей при коррозионно-усталостном разрушении. Показано, что условный предел коррозионной вьжосливости образцов железоуглеродистых сплавов в 3 %-ном растворе Na I по сравнению с испытаниями в воздухе резко понижается и его абсолютная величина при базе 5-10 циклов находится в интервале 20—50 МПа и мало зависит от исходной прочности сталей. Предел выносливости армко-железа и сталей 20 и 45 в воздухе соответственно составлял 150 220 и 250 МПа. [c.50]

    В атмосферных условиях и в условиях повышения влажности ненагру-женные детали из мартенситных нержавеющих сталей не подвергаются заметной коррозии. Однако исследования коррозионной стойкости при повышенных температурах (образцы нагревали до 250 или 350°С, окунали в 3 %-ный раствор МаС1 и переносили во влажную камеру, где при 50°С выдерживали 22 ч. Затем цикл повторялся. База испытаний составляла 30 суточных циклов) с периодическим смачиванием 3 %-ным раствором МаС1 показали, что эти стали подвержены точечной коррозии. Общим иеж-ду исследованием выносливости сталей при повышенных температурах и периодическом их смачивании коррозионной средой, определением коррозионной стойкости без приложения к образцам внешних нагрузок при повышенных температурах и периодическом смачивании является то, что в обоих случаях металл поверхностных слоев образцов подвержен усталости вследствие резко циклического изменения температуры с большим градиентом. Определение коррозионной стойкости сталей при периодическом смачивании коррозионной средой может дать качественную картину влияния химического состава и структуры стали на ее коррозионно-механическую стойкость при повышенных температурах. [c.109]

    Приведенные результаты находятся в качественном соответствии с полученными ранее данными А.В.Рябченкова [20], который показал, что после азотирования при 600°С в течение 2 ч условный предел коррозионной выносливости стали 30 при Л/ = 10 цикл нагружения увеличивается примерно в два раза в водопроводной воде и в 0,04 %-ном растворе Na I, незначительно снижаясь с увеличением агрессивности коррозионной среды. Азотированная при 600°С в течение 0,5-5 ч сталь 45 при N = Ю цикл в растворе Na I имеет предел выносливости не намного ниже, чем в воздухе. Использование тлеющего разряда для проведения процессов химико-термической обработки, в частности азотирования, позволяет значительно сократить продолжительность насыщения и улучшить свойства получаемых диффузионных слоев [ 222]. Нами проведено исследование влияния ионного азотирования на выносливость стали в воздухе и в растворе Na I [223]. Для испытания применяли гладкие образцы диаметром 5 мм. Ионное азотирование выполняли на лабораторной установке МАДИ К-2 мощностью 1,2 кВт. [c.172]

    Щелевой коррозией принято называть коррозию металлов в зазорах, образуемых однородными металлическими поверхностями или металлической поверхностью и любым другим неметаллическим твердым телом [2]. Такой вид коррозии имеет место в конструктивных зазорах и щелях, под биологическим обрастанием, под защитными покрытиями и различными осадками в застойных зонах под диэлектриками [245—248]. Для проведения испытаний на щелевую коррозию создают различные по конструкции макропары, позволяющие моделировать щелевые условия коррозии [248]. Эти пары помещают в выбранную коррозионную среду и производят измерения. Показатели склонности металла к щелевой коррозии могут быть качественными и количественными. Количественно щелевую коррозию изучают преимущественно весовым методом. Простейшей парой, позволяющей качественно изучать щелевую коррозию, является пара, образуемая линзой, помещенной на поверхности -металла (рис. 83, а). Щель образуется между поверхностью линзы и образцом. Изменяя кривую линзы, можно создавать щели разной [c.147]

    Выбор количества образцов для испытаний зависит от условий проведения испытаний, т. е. от того, будут ли образцы сниматься с испытания через определенные промежутки времени или испытываться непрерывно до конца выбранного срока, и от способа оценки коррозионной стойкости металла. При непрерывных испытаниях и качественной оценки коррозии, осушеств-ляемой внешним осмотром, достаточно двух параллельных образцов. При количественной оценке коррозии число образцов зависит от требуемой точности измерений и может быть равно 10—12. При проведении атмосферных испытаний необходимо помнить, что однажды испытанные образцы нельзя испытывать вторично, так как состояние их поверхности существенно отличается от первоначального. [c.203]

    Улетучивание золы. Превращение золы, особенно УгО,, в летучие соединения теоретически возможно несколькими способами. УгОд при высоких температурах вступает в реакцию с хлором, образуя летучие соединения, такие, как УСЦ, У0С1д, У0С1з и т. д., имеющие низкие температуры плавления — около 100—200° [6]. Поэтому уже предлагалось добавлять к топливу соединения, содержащие хлор. Некоторые качественные испытания на стендовой установке для сжигания под высоким давлением показали незначительную летучесть У2О5. Однако применение этого способа иа практике трудно осуществимо вследствие коррозионного действия образующейся соляной кислоты. [c.351]


Смотреть страницы где упоминается термин Коррозионные испытания качественные: [c.6]    [c.162]    [c.92]    [c.117]    [c.391]    [c.141]    [c.17]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Испытания коррозионные

Испытания металлов на коррозионную качественные

Качественные методы и показатели коррозионных испытании

Коррозионные испытания Качественные методы оценки коррозии

Толщина покрытий. Определение толщины покрытия. Методы определения толщины пленки без разрушения покрытия. Методы с разрушением покрытия. Пористость. Качественные испытания Испытание электрофорезом. Количественные методы. Гравиметрические методы. Метод определения микропористости электронным микроскопом. Адгезия. Твердость и износостойкость. Эластичность (хрупкость). Коррозионная стойкость. Влияние последующей обработки. Влияние чистоты обработки поверхности. Влияние процесса анодирования. Электрические свойства. Оптические свойства Теплоизоляционные свойства. Механические свойства НАНЕСЕНИЕ ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ



© 2025 chem21.info Реклама на сайте