Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая сера, состав

    В данной книге подробно описаны процессы первичной переработки природных газов на ГПЗ. Из вторичных процессов в книге рассматриваются производства газовой серы и сопутствующие им вспомогательные процессы, так как они входят в состав ГПЗ, где производится очистка газов от сероводорода. [c.6]

    В таб.т. 7 приведен химический состав газовой серы. [c.239]


    Химический состав газовой серы [c.239]

    Элементарная сера, полученная из сернистых газов, так называемая газовая сера согласно ГОСТ 1223—41 должна иметь следующий состав (в %) " [c.10]

    Состав полученной газовой серы (в %) [c.117]

    Серу и н-бутан, взятые в весовом отношении 1 1, нагревают порознь до 570° и пропускают через змеевик, температуру которого поддерживают на том же уровне. Время пребывания в реакционной зоне составляет 2 сек., после чего -продукты реакции быстро охлаждают до 80°, впрыскивая в них жидкую воду. Вслед за этим температуру газа снижают до обычной И его компримируют до 12 ат. Выходящая из реакционной печи газовая смесь имеет следующий состав (в % вес)  [c.506]

    Задача 8.1. Производительность печи для обжига колчедана 30 т/сут. Колчедан содержит 42,4% серы. Воздуха расходуется на 60% больше теоретического. Выход сернистого газа составляет 97,4%. Вычислить а) массовую долю (в процентах) РеЗг в колчедане б) объем (з метрах кубических) и состав газовой смеси, выходящей из печи за час в) массу огарка РегОз и г) массу непрореагировавшего РеЗг. [c.132]

    Г азы регенерации поступают в конвертер 5. Состав поступающего в конвертер газа H S 1,25 СО, 3...4% об. давление 5...5,5 МПа температура 220...230°С. Для окисления сероводорода в элементную серу в конвертер подается воздух. В результате экзотермической реакции взаимодействия сероводорода с кислородом воздуха, температура в зоне реакции возрастает до 270...300°С. В конвертере происходит образование серы. Полученная в зоне реакции парообразная сера уносится газовым потоком, охлаждается в аппарате воздушного охлаждения 6 до 140...150°С и поступает в сероуловитель 7, где пары серы и воды конденсируются, затем при температуре 125...130°С и давлении [c.135]

    Окислительная регенерация закоксованных катализаторов представляет собой совокупность химических реакций, происходящих при взаимодействии кислорода с коксом, в результате которых кокс удаляется в виде газообразных продуктов окисления - оксидов углерода, паров воды, а в некоторых случаях и оксидов серы. К настоящему времени накоплены обширные сведения, указывающие на то, что окисление кокса на катализаторах протекает с образованием и разложением кислород-угле-родных комплексов, т. е. по стадийному механизму. В то же время кинетические закономерности отдельных продуктов окисления существенно различны для разных катализаторов. Это объясняется различием в свойствах удаляемого кокса, условиями выжига (содержание кокса, температура и состав газовой фазы). Кроме того, в большинстве случаев значительное влияние на закономерности удаления кокса оказывает поверхность регенерируемых катализаторов. [c.14]


    Объемный расход G и объемный состав газового потока связаны со степенью превращения диоксида серы х следующими соотношениями  [c.316]

    В прошлом вредное влияние серы ставилось в зависимость от характера сернистых соединений, входяш,их в состав топлива. Все сернистые соединения делились на 1) содержащие активную или корродирующую серу и 2) содержащие неактивную серу. Сернистым соединениям первой группы приписывались все вредные последствия применения топлив с повышенным содержанием серы. Как показали наши и ряд других работ, деление на активную и неактивную серу необоснованно. Сера и все сернистые соединения, входящие в состав топлива, в условиях двигателя являются активными, так как при сгорании их в двигателе образуются ЗОг и 50з, которые в свою очередь в присутствии паров воды способны образовать кислоты, вызывающие коррозию цилиндро-поршневой группы. Впервые это было обнаружено при исследовании запуска двигателя. Более поздними работами доказано наличие газовой сернистой коррозии и при установившемся режиме работы двигателя. [c.135]

    Коррозия может быть химической, т. е. развиваться вследствие непосредственного химического воздействия компонентов топлива на детали из наиболее активных металлов, например действие некоторых меркаптанов серы на медь, входящую в состав сплавов, кадмий или серебро, из которых выполнены покрытия некоторых деталей топливной аппаратуры [2—4]. Для применения сернистых топлив характерны также коррозионные износы цилиндро-поршневой группы двигателей и выпускной системы коррозионно-агрессивными продуктами сгорания. Агрессивные окислы серы могут непосредственно воздействовать на металлы выпускной системы при высокой температуре газовая коррозия), но значительно более опасна электрохимическая коррозия кислотами (серной кислотой), образующимися при конденсации паров воды в остывающем или непрогретом двигателе (при [c.179]

    Вторая серия опытов осуществлялась с применением газовой смеси, имеющей состав, об. % 72,6-86,8 -С 1, 6,7-12,9-4 2,1-3,4 - Щ 0,2-0,5 - 0,2-0,6 0,14),6- 4  [c.56]

    Основной отличительной особенностью этой серии хроматографов является то, что они состоят из ограниченного числа различных самостоятельных функциональных блоков и узлов, объединенных общим стилем конструктивного и технологического исполнения. Все блоки и узлы хроматографов серии Цвет-100 (термостаты, газовые блоки, электронные блоки, детекторы) унифицированы и полностью взаимозаменяемы, поэтому не требуют дополнительной наладки или настройки при включении в состав той или иной модели хроматографа. Каждый блок или узел имеет определенное назначение, что позволяет исключить из состава конкретных моделей хроматографа элементы, не используемые в требуемом режиме его работы. [c.62]

    Определить состав газовой смеси, состоящей из диоксида серы, I с .оксида и диоксида углерода, если при пропускании 20 лее через раствор щелочи объем уменьшился до 8 л, а плотность ее по гелию равна 10,4. [c.44]

    Двуокись углерода, двуокись серы, сероводород и хлор обладают значительной растворимостью в воде это их свойство необходимо учитывать при анализе газовых смесей, в состав которых входят перечисленные компоненты. [c.15]

    В саже-газовой смеси образуются сероуглерод и сероводород, часть которых в дальнейших стадиях, в частности в холодильнике смешения, окисляются до сернистого газа и элементарной серы. Образовавшиеся сернистые соединения адсорбируются сажевыми частицами и накапливаются на их поверхности. Содержащиеся в сырье циклические сернистые соединения (производные тиофена, тиофана и др.) могут частично сохраниться и входить в состав сажевой частицы. [c.240]

    Состав типичных саж приведен в табл. 10. В основном они состоят из карбоида, но могут содержать сорбированные вещества битумного характера. Несомненно присутствуют химически связанные водород и кислород. В состав могут также входить сера (до 0,1%)) и азот (до 0,1 7о)- При низкотемпературном окислении в газовой и водной среде содержание кислорода увеличивается до 12%. [c.68]

    Состав газовой смеси зависит от сырья, используемого для получения двуокиси серы. Ниже приведены некоторые составы газовых смесей, по лучаемых из различного сырья. [c.75]

    Таким образом, рассмотрение нефтей Западной Сибири показывает, что все их многообразие — это следствие действия двух основных факторов степени окисленности ОВ во время осадконакопления и степени окисления нефтей в залежах. Конечно, многие из наблюдаемых изменений в составе можно объяснить с других позиций. Например, можно попытаться объяснить переход от нефтей первой группы к нефтям второй влиянием миграционных процессов. Действительно, при зтом должно уменьшиться количество серы, азота, микроэлементов, в том числе ванадилпорфиринов, асфальтенов, смол, и увеличиться доля УВ, в том числе низкомолекулярных. Это было неоднократно доказано лабораторными экспериментами. Но все эти параметры жестко взаимосвязаны с другими показателями состава, которые параллельно меняются при переходе от нефтей первой группы к нефтям второй. Их изменение невозможно объяснить влиянием процессов миграции, катагенеза и т.д. Эксперимент показывает, что валентность ванадия, изотопный состав углерода и серы, отношения нч/ч, п/ф, 6/5, /и-ксилол/о-ксилол, 2 ксилолов/этилбензол остаются стабильными, а некоторые из них изменяются в обратном направлении. Так, бензины, перешедшие в газовую фазу, [c.129]


    Соединения серы — токсичны, усложняют добычу, транспортирование и переработку газов. То же касается диоксида углерода, который входит в состав большинства сероводородсодер-жащих газов. Ниже приводятся свойства кислых компонентов, природных газов и серосодержащих соединений установок производства газовой серы, обобщенных по данным [13—16]. [c.26]

    Сырая сера грязно-желтого цвета, полученная в модельных опытах, содержала от 12 до 31% влаги и, в пересчете на сухое вещество, 0,18—2,15% водорастворимых веществ, 0,32—5,7% не растворимых в кипящем растворе МазЗОд и 93,8—99,5% 3 (по разности). Источником нерастворимых примесей были загрязнения, введенные с окрашенным исходным раствором. Две пробы высушенной серы, подвергнутые анализу по ГОСТ 127—51 на газовую серу, показали состав, приведенный в табл. 7. [c.117]

    Для приготовления раствора полисульфида ЫагЗг используют горячий раствор сернистого натрия (70°), обычно второй щелок, получаемый при выщелачивании плава сернистого натрия. Этот щелок имеет уд. вес 1,264 г см и приблизительно следующий состав (в %) 20— N328, 2 — ЫагЗгОз, 2,5 — МагСОз, 1,5 — N32804. В нем растворяют сте-хиометрическое количество молотой комовой или газовой серы. Применение тонкоизмельченной серы нежелательно, так как при этом увеличивается выделение сероводорода. К раствору полисульфида прибавляют медленно (во избежание сильного его вспенивания и выброса) раствор бисульфита натрия до нейтральной реакции. Получение полисульфида и нейтрализацию его бисульфитом осуществляют в стальном варочном котле, снабженном паровым змеевиком и мешалкой, вращающейся со скоростью 30 об/мин. Полученный разбавленный раствор тиосульфата фильтруют и перерабатывают на кристаллический продукт теми же приемами, которые применяются в сульфидном методе. [c.375]

    Благоприятное влияние на десульфуриза-цию офлюсованных окатышей оказывает замена известняка доломитом, так как сульфат магния начинает диссоциировать при более низкой температуре, чем сульфат кальция. Прн удалении сульфатной серы состав газовой фазы существенной роли не играет. Большое влияние на десульфуризацию окатышей оказывает крупность известняка и окатышей. Наилучшие условия для удаления серы создаются, когда известняк представлен частичками крупностью 0,05—0,04 мм. При уменьшении размера окатышей с 16 до Ю мм степень дес льфуризацин возрастает на 20—25 %. [c.221]

    Существует два основных метода охлаждения реагирующей смеси между стадиями адиабатического процесса. С конструктивной точки зрения проще всего смешивать реагенты с байпасной частью исходной смеси. Не обязательно использовать холодное сырье можно вводить в реактор холодное инертное вещество, разбавитель нли смесь какого-либо иного состава. Например, в процессе окисления двуокиси серы используется подача холодного воздуха. В любом случае недостатком такого метода является то, что реагирующая смесь, в которой уже достигнута некоторая степень превращения, разбавляется пепрореагировавшим веществом. Альтернативным методом является охлаждение в промежуточном теплообменнике, где состав реагирующей смеси совсем или почти не меняется. Для каталитических реакций скорость процесса в отсутствие катализатора пренебрежимо мала поэтому, скажем, из реактора с неподвижным слоем газовый поток можно направлять во внешний теплообменник, а затем возвращать в следующий адиабатический слой без заметного изменения степени полноты реакции. В гомогенно-каталитическом процессе реакция может происходить и в теплообменнике, тогда теплообменник можно рассматривать как неадиабатический трубчатый реактор. [c.216]

    Проведенная до сих пор обработка имеет несколько ограниченную применимость вследствие сделанных допущ ений, на которых основано уравнение (7.1). Тем ]1е менее, вывод о практическом достижении для достаточно высоких колонн условия квазиста-ционарностп имеет огромное значение. Действительно, при рассмотрении конкретного процесса, для которого, например, сопротивление массопереносу в газовой фазе незначительно или заметно изменяется состав жидкой фазы вдоль оси колонны, расчеты могут быть основаны на предположении, что уравнение (7.6) локально удовлетворяется по всей колонне. Это значительно упрощает и облегчает рассмотрение любой практической задачи. Наконец, рассмотрим процесс в кинетическом режиме. При Р— серия преобразований приводит к уравнениям (7.19) и (7.20), справедливым при любых значениях М. Отсюда, по уравнению (7.21) [c.84]

    Состав газовой среды оказывает большое влияние на скорость окисления железа и стали. Особенно сильно влияют кислород, соединения серы и водяные пары, о чем свидетельствуют приведенные ниже данные о зависимости относительной скорости коррозии (%) стали с 0,17% С от состава газовой среды при 900° С (по Гатфилду). [c.128]

    Состав газовой смеси,% Коэффициент избытка воздуха Температура в слое катализатора, С Скорость подачи смеси в реактор, м /ч Продопжитепьность контакта, сек Выход серы в расчете на исходный Н,5, % от теоретического [c.127]

    Диаграмма состояния серы схематически представлена на рис. 3.67. При нагревании жидкой серы изменяется ее молекулярный состав. Вблизи точки плавления жидкая сера имеет светло-желтую окраску и малую вйзкость она состоит из молекул 5в. Дальнейшее нагревание (примерно выше 160 °С) вызывает превращение желтой легкоподвижной жидкости в малоподвижную темно-коричневую массу, вязкость которой достигает максимума при 187 °С, а затем снижается. При температуре выше 300 °С 1кидкая сера, оставаясь темно-коричневой, снова становится легкоподвижной. Эти аномальные изменения обусловлены тем, что разорвавшиеся кольца Зз превращаются в цепочечные структуры, смыкающиеся концевыми атомами серы, причем нагревание приводит к постепенному уменьшению длины цепей. При температуре кипения пар серы содержит 59% (об.) Зе, 34% Зе, 4% З4 и 3% За. После кипения пар серы меняет свою окраску, что обусловлено постепенным смещением равновесия в газовой фазе от За к 3  [c.444]

    Выбор жаростойкого силава обусловливается также характером и состя вом газовой среды. Так, хромистые и хромонпке-левые стали обладают хорошей стойкостью в окислительных средах, восстановительная же газовая среда действует на лих неблагоприятно. Особенно неблагоприятно влияют при высокнх температурах на стали, содержащие никель, сернистые соединения пнкел образует с серой сульфид, дающий с металлическим никелем эвтектику, обладающую низкой температурой плавления, В условиях действия сернистых соединений при высоких температурах, как было указано, пригодны стали, легированные алюминием, хромом и кремнием. [c.238]

    Состав орвды такхе окааивает большое влияние на скорость газовой коррозии металлов. Особенно сильно влияют кислород, соединения серы и водяные парн. [c.17]

    Для того, чтобы выбрать подходящий тип пылеулавливающей устаиовки, необходимо знать характеристику газов и объем очищаемого газа. Темзпература и химический состав газов, а также тип улавливаемых частиц являются определяющими факторами при выборе установки и коиструкционных материалов. Необходимо учитывать и точку росы газов, которая может быть чрезвычайно вышка в случае оксида серы.( / 1), а инопда определяют минимальную рабочую температуру, например в случае применения рукавных фильтров. Высокая точка росы может оказаться преимуществом, поскольку она очень часто определяет оптимальную рабочую температуру для электростатичеоких фильтров, улавливающих дымы с высоким электрическим сопротивлением. В таком случае в газовый поток иногда добавляют ЗОз для повышения точки росы, и требуемое ее количество необходимо рассчитать. [c.58]

    Очень часто сложные вещества представляют собой не совокупности одинаковых молекул, а системы, содержащие наряду с обычными молекулами также продукты их ассоциации и диссоциации. Так, например, чистая вода представляет собой на самом деле равновесную систему, состоящую из различных ассоциатов молекул НаО, индивидуальных молекул НдО, ионов ОН3 и ОН . В этом и многих других случаях происходящее при изменении условий смещение равновесия не приводит к изменению общего состава вещества, что позволяет подтверждать на подобных примерах закон постоянства состава. Лишь в некоторых случаях имеет место изменение общего состава сложного вещества при смещении установившегося ранее равновесия. Так, например, чистая серная кислота представляет собой систему, содержащую наряду с молекулами Н2504 (вернее ассоциатами этих молекул) продукты диссоциации — трехокись серы и воду в эквивалентных соотношениях однако в связи с большей летучестью трех-окиси серы при установлении равновесия с газовой фазой жидкость несколько обедняется трехокисью серы и таким образом состав ее изменяется до тех пор, пока содержание Н2504 в нем не достигнет 98,3 массовых долей в %. Получившееся устойчивое вещество можно было бы назвать нестехиометрическим соединением, однако здесь ясно, что мы имеем дело с раствором стехиометрического соединения, состав которого изменяется вполне законно. Подобным же образом получаются так называемые нестехиометрические соединения в кристаллическом состоянии. Так, например, если двуокись какого-либо элемента [c.20]

    В газовой смеси, состоящей из оксида серы (IV и кислорода с относительной плотностью tio водороду, равной 24 часть оксида серы (IV) прореагировала, и образовалась газовая смесь с отгшсительной плотностью по водороду на 25% больше, чем плотность исходной смеси. Рассчитайте состав равновесной смеси в объемных процентах. [c.171]

    После сжигания 73,6 г халькопирита СиРеЗа в 400 л воздуха (н. у.) образовались СцаЗ, оксид железа (I И) и диоксид серы. Определить процентный состав образовавшейся газовой смеси. [c.13]

    В медном концентрате содержатся моносульфид меди и железный колчедан. При обжиге концентрата в присутствии кокса железный колчедан окисляется до диоксида серы и моноксида железа, который образует силикат железа (II) и переходит в шлак, а моносульфид меди — до Си З, образующего так называемый штейн. Для обжига 6 т медкого концентрата, содержащего 80% моносульфида меди и 20% железного колчедана, израсходовали 10 ООО м (н. у.) воздуха. Определить состав образовавшейся газовой смеси. [c.43]

    При обжиге киновари HgS газовая фаза состоит из паров ртути, двуокиси серы кислорода и азота Определить объемный состав газо1 ой фазы, если неко" торый объем ее, приведенный к и. ., равен 10 л, а масса этого объема 27,59 г. [c.50]

    Такие же результаты по выщелачиваемости тяжелых металлов из бетонов получены в работе [70]. В качестве объекта исследований использовали гальваношлам, образующийся при очистке сточных вод гальванопроизводства и зачистки гальванических ванн Каневского завода газовой аппаратуры. Указанный шлам представляет собой пастообразную массу от темно-серого до темно-коричневого цвета с плотностью от 1,16 до 1,24 г/см- и влажностью (в пересчете на несвязанную воду) 28—36 %. В своем составе он содержит тяжелые металлы, высококоллоида.,тьную бентонитовую глину и мелкодисперсный кварцевый песок. Содержание в нем физической глины колеблется в пределах 2-8 %, содержание песка в пересчете на 5102 — в пределах 14—20 %, остальное приходится на тяжелые металлы и солевые фракции (главным образом, хлориды и сульфаты) pH отходов колеблется в пределах 3,2-7,9. Характерный фракционно-дисперсный состав гальваношламов приведен в табл. 13. [c.43]

    Благодаря быстрому развитию регистрационной газовой и жидкостной хроматографии появилась возможность разработки новых экспрессных методов определения качества нефтепродуктов. С помощью регистрационной газовой и жидкостной хроматографии можно быстро определять фракционный состав, температуру кристаллизации, давление насыщенных паров, содержание ароматических углеводородов, нафтеновых кислот и их солей, общей серы и сероводорода, суммы водорастворимых щелочных соединений, тетраэтилсвинца, фактических смол, йодное и люминоме-трическое число и др. Возможности применения хроматографических методов для быстрого анализа нефтепродуктов хорошо иллюстрируются работой [50]. Показано, что фракционный состав топлив может быть легко определен на отечественном газовом хроматографе Цвет-2 с пламенно-ионизационным детектором. Для бензинов и реактивных топлив применен режим линейного программирования температуры термостата колонок со скоростью 10 °С/мин. Анализ занимает 15—20 мин. [c.338]

    Газовую составляющую конденсатов этого типа характеризуют прежде всего большие значения отношения С С (10—70). Метан имеет легкий и.с.у. (5 С 5—6 %). Среди бутанов часто доминирует изобутан. Отношение /-С составляет 10—15. Поскольку этот тип конденсатов может быть получен в результате биодеградации нефтей, образовавшихся из восстановленного и окисленного ОВ, эти два подтипа всегда легко можно выделить по характерным особенностям состава жидкой фазы. Нефти из восстановленного ОВ дадут конденсаты с легким изотопным составом углерода и серы, низким п/ф и нч/ч 1. Для бензиновых УВ отношение 6/5 1. Примером могут служить конденсаты пластов группы А Федоровского, Востокинского, Лянторского и Самотлорского месторождений. Соответственно нефти из окисленного ОВ дадут конденсаты, по ряду признаков жидкой фазы очень близкие к кон-денсату-1 (и.с.у., индивидуальный состав нафтенов и аренов, отношения нч/ч и п/ф). В газах конденсатов этого подтипа С /С до 100. Примером могут служить конденсаты верхних нефте- и газоносных горизонтов северных районов (месторождения Уренгойское, Соленинское, Пелят-кинское и др.). [c.115]


Смотреть страницы где упоминается термин Газовая сера, состав: [c.19]    [c.60]    [c.115]    [c.46]    [c.253]    [c.253]    [c.224]    [c.155]   
Справочник сернокислотчика Издание 2 1971 (1971) -- [ c.297 ]




ПОИСК







© 2025 chem21.info Реклама на сайте