Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутан летучесть

    Состав этановой фракции определялся из условия конденсации верхнего продукта водой. Для этого случая этановая фракция будет содержать 20% (мол.) пропана. В расчетах принимали, что бутановая фракция содержит до 1 % (мол.) пропана и бутана, пропановая — по 2% (мол.) смежных по летучести компонентов и пентановая —3% (мол.) бутанов. Для всех вариантов схем, приведенных [c.288]


    Как указывалось выше, в присутствии экстрактивного растворителя относительная летучесть близкокипящих компонентов различного химического строения резко возрастает, достигая значений, позволяющих проводить ректификацию. Так, методами обычной ректификации нельзя отделить м-бутан ( ип = —0,5°С) от бутена-2 ( кип = 0,9°С) из-за весьма малого значения коэффициента их относительной летучести (а = 1,012). В присутствии же, например, такого селективного растворителя, как фурфурол, их относительная летучесть возрастает до а = 1,7, и ректификация становится вполне возможной. [c.338]

    Разделение углеводородов в газофракционирующей секции может проводиться по двум вариантам. Первый вариант предусматривает последовательность выделения компонентов в порядке уменьшения их летучести. В этом случае все тяжелые углеводороды проходят последовательно этановую, пропановую и бутано-вые колонны. По второму варианту из сырья выделяют широкую гамму углеводородов с последующим фракционированием их в отдельных колоннах. В этом случае первой по ходу сырья является бутановая колонна, сверху которой отбирают этан, пропан и бутан, подвергающиеся дальнейшему разделению в про-пановой колонне на этан-пропановую фракцию и бутан, а остаток бутановой колонны поступает в следующую (пентановую) колонну для разделения на пентановую фракцию (головной погон) и гек-сановую фракцию (нижний остаток). Чистота пропана, бутанов и гексана, получаемых по второй схеме, достигает 98%. Пентано-вая фракция в изопентановой колонне фракционируется на н-пен-тан и изопентан (рис. 1). [c.19]

    При дистилляции многокомпонентных систем вводится условное понятие клк.чевых компонентов, определяющих ход процесса разделения. Ключевыми компонентами называются условно такие, которые определяют границу разделения смеси на две части все компоненты исходной смеси более летучие, чем легкий ключевой компонент, попадают только в дистиллят, а все компоненты менее летучие, чем тяжелый ключевой компонент, попадают только в кубовую жидкость. Легкий и тяжелый компоненты не обязательно должны быть смежными, непосредственно примыкающими друг к другу компонентами на шкале летучести. Между ними могут расположиться и другие компоненты промежуточной летучести, различным образом распределяющиеся между дистиллятом и остатком. Так, например, при разделении многокомпонентной смеси углеводородов (от метана до гептана включительно) при выборе в качестве легкого ключевого компонента пропана и тяжелого ключевого компонента -бутана в смеси может оказаться изобутан, летучесть которого лежит между летучестью ключевых компонентов. Этот компонент объединяют с близлежащим к нему ключевым компонентом (в приведенном примере с н-бутаном). [c.69]


    На рис. 95 приводится графический расчет числа теоретических тарелок в экстрактивно-ректификационной колонне для разделения бутан-бутиленовых смесей с использованием водного ацетона в качестве разделяющего агента [248]. Для построения кривой равновесия принято усредненное постоянное значение коэффициента относительной летучести ар=1,36. [c.248]

    Подобное же явление можно наблюдать для смеси различных углеводородов, содержащих четыре атома углерода в молекуле и входящих в состав бутан-бутиленовой фракции. Ниже приведен порядок расположения упомянутых углеводородов по их относительным летучестям при использовании фурфурола в качестве разделяющего агента, а также в его отсутствие  [c.185]

    Давление пара является мерой летучести СНГ. Установлено, что при любой данной температуре пропан (наиболее низкокипя-щнй жидкий СНГ) имеет наивысшее значение давления насыщенных паров, а бутан (наиболее высококипящий жидкий СНГ) — наименьшее значение давления насыщенных паров (табл. 10). [c.49]

    Пример ХГ. 2. 100 кмоль смеси, содержащей 10,8 мол. % пропана (А), 67,4 мол. % бутана (В) и 21,8 мол. /о пентана (С), подвергают простой перегонке при давлении 760 мм рт. ст., пока не испарится половина содержащегося в смеси бутана. Определить составы дистиллята (пары) и остатка. Относительные летучести по бутану алв = 4,55 авв = 1 асв = 0,2325. [c.362]

    Влияние третьего компонента на летучесть углеводородов с близкими телшературами кипения, но различной химической структурой можно видеть на примере данных рис. IV.20 [92], дающего кривые упругости паров изобутана, н-бутана и бутилена-1 как в чистом виде, так и в 3%-ном растворе в фурфуроле. Характерно, что в чистом виде при данной температуре упругости паров этих веществ возрастают в следующей последовательности -бутан, бутилен-1, изобутан, т. е. наибольшей летучестью обладает изобутан, наименьшей н-бутан, промежуточное положение занимает бутилен-1. [c.205]

    Пример 11.3. Нагретая до температуры начала кипения (при заданном давлении) четырехкомпонентная смесь пропан, изобутан, н-бутан и н-пентан подается в полную ректификационную колонну с целью получения практически чистого н-пентана в качестве нижнего продукта. Состав сырья и летучесть его компонентов приведены в табл. 11.3. Для упрощения техники расчета вместо констант фазового равновесия использовались усредненные коэффициенты относительных летучестей компонентов, взятые согласно уравнению (11.119) по отношению к наиболее тяжелому компоненту — к-пентану. [c.369]

    Технологические схемы ректификации многокомпонентных смесей в сложных колоннах. Рассмотрим наиболее простые технологические схемы процесса ректификации многокомпонентных смесей в сложных колоннах. При ректификации близкокипящих углеводородных смесей, в составе которых, имеется небольшое количество компонентов, летучесть которых заметно отличается от летучести остальных компонентов смеси, применяются колонны с одним боковым отбором продукта. Если в смеси содержится неболь--шое количество легколетучих компонентов, их отводят с дистиллятом. Остальные продукты разделения выводят с остатком и с боковым погоном в виде жидкости, отбираемой с одной из тарелок колонны, расположенной в ее концентрационной части. При этом в боковой погон попадает лишь небольшая часть легколетучего компонента. Таким условиям, в частности, отвечает разделение смеси бутанов с небольшим количеством пропана (рис. П-32, а) или разделение смеси этан — этилена с небольшим количеством метана. Аналогичным образом нри наличии в смеси небольшого количества тяжелолетучих компонентов их выводят из колонны с нижним продуктом, а остальные компоненты отводят с дистиллятом и боковым погоном в виде пара, отбираемого с одной из тарелок колонны, расположенной в нижней ее части. При этом в боковой погон попадает лишь небольшое количество тяжелолетучих компонентов. Такие условия могут встретиться, например, при разделении смеси пентанов с небольшим количеством бензиновых фракций. [c.108]

    Возникшая в последнее время потребность химической и нефтеперерабатывающей промышленности в практически чистых индивидуальных соединениях, получаемых из нефтяных фракций, например этилене, пропилене, пропане, изобутане, н-бутане, изопентане, н-пентане, смешанных гексанах, гептанах, бензоле, толуоле и ксилолах, стимулировала разработку специальных методов, позволяющих осуществлять разделение компонентов, обладающих приблизительно одинаковой летучестью. [c.102]

    В нефтеперерабатывающей промышленности принят ряд изменений в технологии производства бензинов. Так, большинство нефтеперерабатывающих компаний пошло по пути снижения содержания в бензинах компонентов с высоким показателем летучести. К последним относятся и-бутан, кислородсодержащие соединения, легкий прямогонный бензин и легкие продукты различных процессов, доля которых возрастает с ростом жесткости режимов работы установок. Суммарная доля таких компонентов может достигать 40% от общего объема товарных бензинов. Успешному решению проблемы способствовал ввод в эксплуатацию дополнительных мощностей процессов, таких, как алкилирование, каталитическая полимеризация и димеризация, а также снижение давления на установках процесса риформинга, переход к процессам с непрерывной регенерацией катализатора. Изменения в компонентном составе продукции в структуре технологического парка нефтепереработки сопровождались также увеличением содержания в бензинах ароматических углеводородов и изопарафинов, снижением доли низкооктановых н-парафинов. [c.354]


    При работе двигателя на сжатом природном газе (СП Г) межремонтный пробег в два раза выше, чем на бензине, и существенно меньше расход масла. Недостатком СНГ является необходимость использования специальных толстостенных баллонов. Сжиженные нефтяные газы (СНГ), содержащие преимущественно пропан и бутан, в качестве автомобильных топлив имеют ряд преимуществ перед сжатыми газами и поэтому в настоящее время находят более широкое применение. СНГ - качественное углеводородное топливо с высокими антидетонационными свойствами (ОЧ(И.М.) около 110), широкими пределами воспламенения, хорошо перемешивается с воздухом и практически полностью сгорает в цилиндрах. В результате автомобиль на СНГ имеет в 4 -5 раз меньшую токсичность в сравнении с бензиновым. При работе на СНГ полностью исключается конденсация паров топлива в цилиндрах двигателя, в результате не происходит сжижения картерной смазки. Образование нагара крайне незначительно. К недостаткам СНГ следует отнести высокую их летучесть и большую взрывоопасность. [c.656]

    С ацетоиитрилом. Одноступенчатое разделение бутан-бутиленовых смесей возможно и с другими экстрагентами (ацетонитрилом, фурфуролом и др.). Выделение бутадиена с водным раствором ацетонитрила начали применять за рубежом с 1962 г. Ацетонитрил — более эффективный экстрагент, чем ацетон и фурфурол. Замена ацетона на ацетонитрил позволила резко-увеличить производительность установок разделения фракций С4. По сравнению с ацетоном ацетонитрил создает значительно большее различие в относительной летучести углеводородов при разделении схмесей. Это позволяет использовать колонны меньших размеров, но с большим к. п. д. тарелок и получать более чистый продукт. [c.66]

    Остаток состоит в основном из бутана, пентана и гептана, однако очень небольшое количество пропана все же попадает в остаток. Равным образом и дестиллат, состоящий в основном из метана, этана и пропана, содержит небольшое количество бутана. Эти два компонента, пропан и бутан, являются типичными представителями тех пограничных компонентов, называемых ключевыми, между которыми как бы проходит граница раздела исходной системы. Один из этих пограничных компонентов, в рассматриваемом случае пропан, называется легким ключевым компонентом, а другой —тяжелым. Важно отметить, что легкий и тяжелый ключевые компоненты не обязательно должны быть смежными, непосредственно примыкающими друг к другу компонентами на шкале летучести. Между ними могут расположиться и другие компоненты промежуточной летучести, различным образом распределяющиеся между дестиллатом и остатком. Основное значение имеет лишь то, что все компоненты исходного сырья, более летучие, чем легкий ключевой компонент, попадают только в дестиллат, а все компоненты, менее летучие, чем тяжелый ключевой компонент, попадают только в нижний продукт. [c.442]

    Сжиженные нефтяные газы (СНГ), содержащие преимущественно пропан и бутан, в качестве автомобильных топлив имеют ряд преимуществ перед сжатыми газами, и поэтому в настоящее время находят более широкое применение. Автомобиль на СНГ имеет в 4-5 раз меньшую токсичность выхлопа в сравнении с бензиновым. К недостаткам СНГ следует отнести высокую их летучесть и большую взрывоопасность. [c.8]

    Пример 10А, Летучесть метана в газовой фазе системы метан — н-бутан [c.165]

    Разделение газа производится примерно следующим образом (рис. 40). После компримирования и отделения водорода абсорбционным способом фракция С4 стабилизируется. При этом отгоняются кипящие при —23° метилацетилен и пропан, образующие азеотропную смесь. Смесь углеводородов С4 затем ректифицируется в колонне, имеющей 100 тарелок. Здесь отделяется смесь из бутена-1 и бутадиена с некоторым количеством изобутана, изобутена и к-бутана (бутадиеновый концентрат), причем к-бутан частично уходит с дистиллятом, а частью остается в остатке. В остатке остаются оба бутена-2, часть к-бутана и гомологи ацетилена (С4). В этой связи интересно сопоставить температуры кипения отдельных изомеров в нормальных условиях (см. стр. 11 и 36) с летучестью в условиях экстрактивной перегонки (см. стр. 78). Остаток поступает в депента-низатор, где от него отделяются высшие углеводороды, а головной продукт, состоящий из бутена-2, [c.81]

    Недостаток процессов дегидрр1рования — невысокая (30— 40%) конверсия за проход, определяемая термодинамикой. Однако ири дегидрировании образуются малокомпонентные газовые смеси с удовлетворительными соотношениями показателей летучести. Пропаи-иропиле1ювая и бутан-бутиленовая фракции из-за высокой селективности процесса не содержат вредных примесей. Поэтому фракции можно использовать непосредственно для синтеза метил-грег-бутилового эфира, изо-пропанола, егор-бутаиола, как сырье для оксосинтеза и др. Парафины Сз—С4 возвращают (рецикл) иа дегидрирование после отделения их от продуктов синтеза. [c.159]

    Дегидрирование бутанов обычно производится последовательно. Сначала дегидрируется я-бутан с образованием к-бутенов (1- и 2-бутены), которые затем отделяются от к-бутана посредством экстракцимпюй перогонки, Второй ступенью является дегидрирование очищенных и-бутенов до 1,3-бутадиена. Концентрат, содержащий углеводороды С4, полученный при каталитическом дегидрировании и-бутана, в основном состоит из смеси 1-бутена, н-бутана и 2-бутенов, По значениям относительной летучести и минимальному числу теоретических тарелок, приведенным в табл. 13,. видно, что наиболее сложным является разделение н-бутана и низкокипящего изомера 2-бутена, Из приведенной в табл. 14 величины требуемого числа теоретических тарелок видно, что практически трудно произвести полное разделение этой смеси. Однако, используя комбинацию фракционной и экстракционной перегонок в присутствии растворителя, такое разделение возможно, В табл. 15 приведены значения летучести углеводородов С4 относительно 1,3-бутадиена в присутствии фурфурола, содержащего 4% воды. Путем фракционной перегонки на аппаратуре с большой разделительной способностью можно отделить 1-бутен от н-бутана и 2-бутенов, Затем к-бутан можно отделить от 2-бутенов посредством экстракционной перегонки. [c.111]

    Нестабильный авиабензин, полученный в результате каталитической очистки, не может быть применен для смешения и не является конечным товарным продуктом. Бензин содержит газовые углеводороды—пропан, бутан и др., что вследствие летучести легких фракций делает его физически нестабильным при хранении и применении. Кроме того, присутствие газовых углеводородов ведет к образованию газовых пробок в топливоподводящих линиях мотора во время эксплуатации последнего. [c.34]

    Бензины, получаемые из газа, отличаются большо11 летучестью и требуют стабилизации для удаления пропана и избыточного количесгва бутанов. [c.14]

    Бутан-пропановая смесь (жидкий пропан) по стандарту должна иметь упругость паров пе выше упругости паров пропана при 37,8° С. Температура испарения 95% (но объему) этой смеси должна быть такой же, как у бутана. В основном бутан-пропановая смесь применяется для бытовых нунед или используется для вторичного извлечения нефти. Состав смеси, применяемой для бытового отопления, изменяется в зависимости от времени года для обеспечения необходимой летучести, однако упругость паров коммерческого продукта редко превышает 8,792 кгс/см нри 37,8° С. [c.77]

    Разделение смеси на компоненты путем ректификации затрудняется в системах, в которых компоненты в чистом состоянии обладз7от близкими давлениями насыщенного пара или в которых образуется азеотропная смесь. В таких случаях нередко применяют методы, называемые азеотропной перегонкой и экстракционной (экстрактивной) перегонкой. Они основаны на добавлении к системе из двух компонентов третьего, который обладает различной растворяющей способностью по отношению к основным компонентам системы и в соответствии с этим неодинаково изменяет летучесть последних. В качестве примера азеотропной перегонки можно привести обезвоживание этилового спирта путем перегонки при добавлении бензола, а в качестве экстракционной — разделение бутан-бутиленовой смеси путем перегонкн при добавлении водного раствора ацетона. [c.324]

    Подобное же явление можно наблюдать для смеси различных углеводородов, содержащих четыре атома углерода в молекуле ГН входящих в состав бутап-бутиленовой фракции. Ниже приводится порядок распологкепия углеводородов бутан-бутиленовой фракции но их летучести в зависимости от присутствия фурфурола, используемого в качестве разделяющего агента. [c.164]

    В ректификационной колоине, отделяющей смесь этана, пропана и бутана от пентана, в качестве НК компонента принимается бутан, а ВК компонента — пентан и т. д. Этн условно принятые НКК и ВКК называют также ключевыми комнопентами. Подобного рода допущение исходит из положения, что если запроектирована колонна, л оторая обеспечит разделение с необходимой четкостью пропан от бутана, то тем более такая колонна обеспечит разделение смеси этана и пропана от смеси бутана и пентана, так как этап и пентап (в рассматриваемом примере) в значительно большей степени различаются по летучести, а следовательно, их легче отделить друг от друга, чем смесь ключевых компонептов. [c.191]

    Экстрактивная перегоика — второй метод разде [ения близкокипящих компонентов. При этом смесь перегоняют с третьим, малолетучим компонентом, присутствие которого увеличивает разницу в летучести разделяемых компонентов. Так, смесь толуола и метилциклогексана имеет относительную летучесть а = = 1,25 при наличии 50% (масс.) фенола в жидкой фазе а повышается до 1,75. В отличие от разделяющего компонента азеотропной перегонки, летучесть которого относительно велика и который уходит в виде дистиллята, разделяющий компонент экстрактивной перегонки обладает невысокой летучестью и уходит с остатком перегонки, что может оказаться экономичным, если концентрация компонента, уходящего в виде остатка, невелика. Экстрактивная перегонка, подобно азеотропной, применяется для выделения ароматических углеводородов, а также для разделения бутан-бу-тиленовых и бутилен-бутадиеновых смесей, получаемых в процессе дегидрирования к-бутана. В качестве экстрагентов применяют фурфурол, N-мeтилпиppoлидoн и др. [c.50]

    Метод испытания на летучесть, разработанный Ассоциацией потребителей природного газа (А5ТМ 01837), используется при максимальной температуре —38,3°С для испарения 95% пропана и 2,2 °С для испарения того же количества бутанов. Работы по уточнению метода показывают, что температура —38,3°С может быть принята в том случае, если объемная доля С4 и выше в анализируемой пробе не превышает 2,5%. Если содержание бутанов в пропане находится на уровне, например, 10% (В54250), температуру испарения необходимо повысить до —23,9 °С. Температурный предел 2,2 °С установлен для всех бутанов, в которых массовая доля пентанов и выше не превышает 2%, т.е. состава, типичного для коммерческих бутанов. [c.85]

    Газы крекинга или газы риформинга, получающиеся с современных установок термического крекинга под высоким давлением, обычно поступают на разделение в виде отбросных газов из газоотделителей крекинг-установок или в виде газов стабилизационных установок. В большинстве систем термического крекинга фракционировку проводят под давлением около 15 ат. В колоннах стабилизации, работающих под давлением 16,5— 17 ат, температуру в верхней части колонны поддерживают около 50—60°, а в кубе — около 210°, чтобы для охлаждения дефлегматора можно было пользоваться водопроводной водой. Иногда в процессе стабилизации отгоняют также фракцию С4, полностью дебутанизируя, таким образом, бензин. В этом случае устанавливают две колонны — депропанизатор и дебутанизатор. Отходящая из денропанизатора фракция Сз содержит около 60% всего количества пропапа и нропена, образовавшихся при крекинге остальная их часть находится в отбросных газах в смеси с метаном, водородом и углеводородами Сг, которые вследствие своих низких температур кипения и высокой летучести отгоняются в первую очередь. Во фракции С4 находится около 90% всего количества бутанов и бутенов, образовавшихся при крекинге. [c.174]

    В табл. 4 сопоставлены свойства гомологов метана с нормальной цепью. Из приведенных данных видно, что метан, этан, пропан и бутан при обычных условиях представляют собой газы они почти не имеют запаха. Пентан и следующие за ним углеводороды (вплоть до С16Н34) — жидкости с характерным бензиновым запахом и различной, постепенно снижающейся летучестью. Высшие предельные углеводороды — твердые нелетучие вещества, не имеющие запаха. Эта закономерность в изменении свойств по мере усложнения количественного состава в гомологических рядах углеводородов была открыта К- Шорлеммером. Ф. Энгельс отметил ее как один из наиболее ярких примеров проявления закона диалектики о переходе количественных изменений в качественные. [c.50]

    Сочетание фракционированной конденсации с низкотемпературной ректификацией. Для фракционировки природного газа, чаще более тощего,, применяется третий тип установок, в которых большие количества метана начала отделяются от этана и вышекипящих простым методом однократного частичного ожижения с расширительным или внешним охлаждением. При нормальном давлении метан и этап далеко отстоят друг от друга по температурам кипения ( — 161,4° и —88,3°), но ири повышенных давлениях и низких температурах разделение их сильно затрудняется вследствие ретроградного увеличения констант равновесия этана и вышекипящих углеводородов в этих условиях. Это приводит к резкому падению относительной летучести метана и малому извлечению этана при однократной конденсации. По такой схеме работает завод в Габе (США, штат Кентукки), выделяющий из тощего природного газа этан, пропан, бутан и более тяжелые углеводороды [20), (рис. IV. 13). Производительность завода по сырью 21 млн. газа в суткн. Природный газ под давлением 40 ата обезвоживается и затем охлаждается до температуры — 65- --75°, при этом конденсируется значительное количество этана и более тяжелых компонентов. Сконденсированная жидкость-отделяется в сепараторе 4, а остаточный газ после теплообмена с входящим сырьем компримируется и возвращается в газопровод. Ожиженные компоненты дважды испаряются в 5 и б ири последовательно снижающемся давлении и затем ректифицируются для выделения фракций этана и вышекипящих углеводородов. Холодные продуктовые потоки доводятся до обычной температуры теплообменом с конденсирующимися хладагентами этано-пропановой каскадной системы, которая покрывает недостачу холода в процессе. [c.174]

    Порядок расположения углеводородов бутан-бутеповоп фракции по их летучести [c.347]

    Это объясняется тем, что разделяемые компоненты смеси (изопентан и н -пентан) имеют очень близкие температуры кипения и, следовательно, мало отличаются по относительной летучести. Поэтому, если в изопентановой колонне температура куба ниже, то изопентан уходит с кубовым продуктом и в дистилляте его содержание незначительно, то есть отбор изопентана от потенциала, а, следовательно, и выход изопентановой фракции малы. В случае же завышения температуры куба происходит повышение содержания н-пентана в дистилляте и уменьшается чистота целевой изопентановой фракции. Таким же образом, если в дебутанизаторе температура низа ниже, то в кубовый продукт, являющийся сырьем изопентановой колонны попадает большое количество бутанов, которые затем оказываются в изопентановой фракции и понижают ее чистоту. Если температура в кубе дебутанизатора выше, то значительные количества изопентана уходят с пропан - бутановой фракцией и его содержание в целевой изопентановой фракции уменьшается. В работе [13] изучено влияние температуры куба предтоварной колонны на качество и энергоемкость ректификации действующей установки разделения алкилата в производстве изопропилбензола и найдено, что повышение температуры куба от 164 до 165 °С приводит к 2 - х кратному росту энергозатрат в кипятильнике и сокращению потока ИПБ - сырца от 6000 до 3500 кг/ч. [c.211]

    Применение экстрактивной и азеотропной ректификации целесообразно в тех случаях, когда увеличение относительной летучести значительно перекрывает дополнительные затраты иа приобретение разделяющего агента и расходы, связанные с возвратом его в процесс. Число таких процессов не так велико, однако некоторые из них имеют большое значение. Экстрактивную ректификацию начали применять для разделения бутанов от бутиленов и бутиленов от бутадиена во время второй мировой войны. Фирма Филлипс разработала процесс фурфурол — вода а фирма Шелл — процесс ацетон — вода На одном из заводов в качестве экстрагента фирма Шелл использовала ацетонитрил вместо ацетона для разделения смеси бутан — l-бyтeн однако больший, интерес для этого случая представляет все же использование ацетона .  [c.369]

    Во многих случаях предпочитают определять не химический потенциал компонента в смеси, а его летз есть. Определение летучести метана в спстеме метан — м-бутан было произведено для сравнения с определением химического [c.165]


Смотреть страницы где упоминается термин Бутан летучесть: [c.281]    [c.297]    [c.297]    [c.278]    [c.68]    [c.32]    [c.222]    [c.447]    [c.32]    [c.167]    [c.168]   
Технология нефтехимического синтеза Издание 2 (1985) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Бутан

Бутан Бутан

Бутанал

Летучесть



© 2025 chem21.info Реклама на сайте