Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк хроматом

    Мюр [981, 984] титровал горячий слабокислый раствор висмута раствором хромата или бихромата калия, устанавливая точку эквивалентности капельной пробой с нитратом серебра. Появление слаборозового окрашивания указывало на окончание титрования. Ошибка составляет 2%. Определению мешают хлориды, сульфаты, мышьяк, кальций и медь. [c.102]


    Соли Na, К, Сз, Mg, Са, Ва, 2п, С(1, Мп, N1, Си, РЬ, Ге(П), Ре (III), В1(1П), У(У), Мо(У1) и аммония при концентрациях 5 мг/мл не влияют на точность определения 2 мкг/мл Hg. Мышьяк (III) в концентрациях до 1 мг/мл не оказывает действия, при большей концентрации несколько снижает отсчеты (на 4% при 3 мг/мл и на 7% при 5 мг/мл). В анализируемом растворе должны отсутствовать сильные окислители (хроматы и перман ганаты), а также соли элементов (> 0,1—0,2 мг/мл), реагирующих с хлоридом олова (II) с выделением осадков (селен, теллур). [c.130]

    Определению мышьяка этим способом не мешает германий и небольшие количества сурьмы и олова. Мешают фосфаты, ванадаты, молибдаты и хроматы, а также галогениды, сульфиды, тио-сульфаты, сульфиты, цианиды, большие количества солей аммония. В связи с этим для определения мышьяка этим методом его предварительно отделяют от указанных всш,еств любым подходящим методом. [c.52]

    Иодометрию широко используют в аналитической практике для определения таких окислителей, как хроматы, гипохлориты, свободные галогены (хлор, бром), медь(П) и др., а также восстановителей— мышьяка (III), сульфитов, сульфидов и др. Такие ионы, как РЬ + и Ва +, которые осаждаются в виде нерастворимых хроматов, также можно определять иодометрическим способом по остаточному методу, после их предварительного осаждения избытком стандартного раствора хромата. [c.290]

    Пероксид водорода. В щелочной среде пероксид водорода используют для окисления хрома (III) до хромата, марганца (И) до диоксида марганца, мышьяка (III) до мышьяка(V), сурьмы(III) до сурьмы(V) и ванадия (IV) до ванадия(V). В то же время в кислых растворах этот реагент количественно превращает железо(II) в железо(III) и иодид-ион в молекулярный иод, но восстанавливает бихромат до хрома(III) и перманганат до марганца(II). Избыток пероксида водорода разлагается, если его кислый или щелочной раствор прокипятить несколько минут [c.317]

    К анодным замедлителям относятся такие окислители, как хроматы, бихроматы, нитриты, нитраты, которые пассивируют ряд широко распространенных металлов (железо, алюминий, цинк, медь), а также едкий натр, углекислый натрий, фосфатные соли, которые образуют на поверхности углеродистой стали нерастворимые продукты (соответственно, гидроокись и фосфаты железа). К катодным замедлителям относятся некоторые соединения мышьяка, висмута и др. Например, небольшая добавка мышьяковистого ангидрида резко снижает скорость коррозии углеродистой стали в серной кислоте. [c.134]


    При приготовлении содовой вытяжки в раствор могут частично перейти ионы алюминия, цинка, никеля, меди и олова. Однако открытию анионов мешают только ионы никеля и меди. Их удаляют, нагревая раствор, нейтрализованный уксусной кислотой до слабощелочной реакции, для создания определенной щелочности раствора добавляют еще две капли 2 н. щелочи. После нагревания выпадает осадок гидроокисей никеля и меди, который отделяют центрифугированием. Если нужно открыть ацетат-ион, то его необходимо открывать до введения уксусной кислоты в этот раствор. Можно также испытуемый раствор, содержащий окрашенные ионы, например хроматы или перманганаты, восстановить, пропуская в подкисленный раствор сероводород. При этом хромат-ион переходит в хром (HI), а перманганат-ион переходит в марганец (И) и выделяется элементарная сера. Если присутствуют арсениты, то выделяется желтый осадок сульфида мышьяка. Если присутствует арсенит-ион, то пятисернистый мышьяк можно выделить только в сильнокислом растворе, соответствующем 6н. НС1. [c.303]

    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]

    Никель осаждается количественно из аммиачных растворов, неполностью — из слабокислых растворов и совсем не осаждается из сильнокислых растворов. (Следовательно, для количественного отделения меди от никеля необходимо лишь поддерживать достаточно высокую концентрацию кислоты.) Сильное мешающее влияние при определении никеля оказывают серебро, медь, мышьяк и цинк, которые, однако, можно удалить осаждением сероводородом. Присутствие железа (И) и хроматов нежелательно [29], они могут быть удалены осаждением в виде гидроксидов. [c.299]

    Осаждение хромата таллия (1). В виде хромата таллий (I) осаждают в аммиачном растворе, отделяя его от цинка, никеля, кобальта и селена (IV). В цианидной среде таллий отделяется этим способом от кадмия, меди, ртути (II) и серебра в среде, содержащей аммиак и перекись водорода, — от мышьяка (III) и сурьмы (III). [c.1022]

    Написать выражение ПР для следующих соединений сульфида мышьяка(И1), иодида свинца(П), хромата серебра. [c.75]

    Полное отделение хрома от других элементов требуется в редких случаях. Обычно отделение хрома от целого ряда элементов достигается при выщелачивании сплава водой при этом хром в виде хромат-иона переходит в раствор. Однако следует иметь в виду, что в растворе будут находиться также ванадий, молибден, уран и мышьяк. Большинство элементов переменной валентности мешают объемному определению хрома. [c.150]

    Хроматы при этом восстанавливаются в соли хрома (HI) арсенаты превращаются в арсениты, которые в присутствии концентрированной соляной кислоты улетучиваются в виде хлорида мышьяка (Н1) целиком или по крайней мере в большей части. [c.203]

    Раньще в качестве сельскохозяйственных ядов применяли главным образом неорганические вещества. В настоящее время находят широкое применение более эффективные и менее вредные для человека и сельскохозяйственных животных органические препараты. Однако и неорганические яды не утратили своего значения и используются в значительных количествах. Наиболее распространенными неорганическими пестицидами являются соединения фтора — кремнефториды натрия, калия, аммония, цинка, магния, фторид натрия соединения мышьяка — арсениты натрия и кальция, парижская зелень, арсенаты кальция, цинка, марганца, натрия, свинца соли бария, например хлористый барий соединения меди — медный купорос и основные сульфаты меди, бордосская жидкость, хлорокись меди синильная кислота и цианиды, в частности цианплав свободный цианамид и цианамид кальция хлораты магния и кальция хлорная известь, железный купорос, сера, сода, известь, фосфиды цинка и алюминия, хроматы цинка и другие. [c.20]


    Целый ряд неорганических реактивов и соединений использован для чувствительных и надежных методов определения следов металлов, например марганца — в виде перманганата, хрома — в виде хромата, титана — с перекисью водорода, ванадия — с перекисью водорода или с фосфорновольфрамовой кислотой, мышьяка и других металлов — по образованию молибденовой сини, висмута и платины — с иодидом, золота и теллура —в виде коллоидных металлов и т, п, [c.83]

    Многие ингибиторы непосредственно влияют на катодный и анодный процессы. Катодные ингибиторы коррозии повышают перенапряжение выделения водорода в растворах кислот (соли и окислы мышьяка, висмута, желатин, агар-агар, декстрин и многие органические вещества), а в ряде случаев уменьшают наводороживание металла (например, промышленные ингибиторы 4М, ПБ-5идр.). Анодные ингибиторы в основном уменьшают скорость анодного растворения вследствие пассивации поверхности (окислители — кислород, нитриды, хроматы). [c.32]

    Отделение от сурьмы и олова. При анализе сплава таллия с этими металлами его растворяют в азотной кислоте, таллий переходит в раствор в виде TINO3, а олово п сурьма образуют малорастворимые метакислоты [615, 900], Отделение от мышьяка. Отделение можно осуществить отгонкой мышьяка в виде АзСЦ [453] или осаждением 1аллия в виде хромата или тионалидата. [c.68]

    Белый мышьяк применяют в промышленности для осветления стекла, консервирования мехов, изготовления пиротехнических средств, для очистки газов от сероводорода (мышьяково-содовым способом) и для других иелей. Его смеси с хроматами используют для инициирования реакций полимеризации . В основном же белый мышьяк перерабатывают на мышьяковые препараты, применяющиеся в сельском хозяйстве в качестве ядов кишечного действия для борьбы с вредителями растений — насекомыми и грызунами, а также для борьбы с малярийным комаром 2-34 Дрсенит натрия применяют в качестве зооцида. [c.653]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Производство дифенила описано S ott oM Пары бензола пропускают через металлический змеевик, погруженный в свинцовую баню, нагретую до 600—650°. По выходе из змеевика пары пробулькивают через расплавленный свинец и попадают в другой такой же змеевик, пофуженный во вторую с-вин-цовую баню, температура которой 750—800°. Полученный таким образом дифенил пропускают с большой скоростью через водяной холодильник. Согласно другому методу пары бензола пропускают через реакционную камеру, нагретую при 800° и содержащую контактные вещества, уменьшающие отложение угля Такими веществами являются сернистые кобальт, железо, медь, молибден,, мышьяк, олово или цинк хлористые никель или сурьма хромово-калиевые квасцы или же металлы селен, мышьяк, кремний, сурьма или молибден. Кроме того для такой дегидрогенизации были предложены следующие катализаторы трудноплавкие окислы, ванадаты, хроматы, вольфраматы, молибдаты, алюминаты, цин-каты таких металлов, как кальций, магний, титан, церий, цирконий, торий и бериллий [c.210]

    Причина, по которой реакция на мышьяк с Ag l считается мало пригодной (Шорт, 1934), заключается в том, что такие же красные и сходные по форме кристаллы, как Ag3As04, серебро дает и с рядом других красящих ионов, например хромат и бихромат серебра. [c.37]

    Эти методы имеют ограниченное применение, так как многие ионы препятствуют определению. Помимо перечисленных, весовому опредёле-т нию мешают железо, висмут, сурьма (III), мышьяк (III), фториды, бромиды, иодиды, оксалаты, ацетаты, цитраты, родапиды, фосфаты, молибдаты, хроматы, вольфраматы и большие количества нитратов. На результаты объемного определения влияют все ионы, которые окисляют подид или восстанавливают иод. [c.156]

    Точные результаты получаются при определении хрома методом, основанным на восстановлении хромата иодистоводородной кислотой и титровании выделяющегося при этом иода раствором тиосульфата натрия. Этот метод, однако, не получил такого широкого распространения, как метод, описанный в разделе Титрование сульфатом железа (II) и перманганатом , так как железо, медь, мышьяк, ванадий и молибден, которые в состоянии высшей валентности выделяют иод в кислых растворах иодида калия, должны отсутствовать. [c.597]

    Общие замечания. Магний почти всегда осаждают в виде фосфата магния и аммония MgNH4P04 6Н2О и взвешивают после прокаливания в виде нирофосфата магния Mg2P207. Так как многие другие элементы образуют нерастворимые фосфаты, то осаждение магния, как правило, должно проводиться после обычных отделений сероводородом, аммиаком, сульфидом аммония и оксалатом аммония. Надо иметь в виду, что при выполнении этих осаждений большее или меньшее количество магНия может быть потеряно (см. стр. 694), особенно в тех случаях, когда присутствуют большие количества мышьяка или фосфора, или если осаждение аммиаком и оксалатом аммония проводится только однократно. Магний можно осаждать в виде фосфата в присутствии хромат-ионов. [c.719]

    Имеются работы, предусматривающие отделение силикатов и других мешающих примесей [1—6] алюминий отделяют растворением в щелочи или осаждением 8-орто-оксихинолином (методика № 9) сульфаты осаждают в виде Ва804 (методики №38, 67, 79) хроматы, арсенаты и фосфаты часто осаждают в виде серебряных солей [4—7], так как AgF прекрасно растворим в воде, а хромат, арсенат и фосфат серебра практически нерастворимы фосфат и мышьяк осаждают карбонатом цинка [8]. Фторси-ликат из шлама извлекают раствором хлорида аммония (методика № 84). [c.31]

    Наводороживание зависит от температуры, времени поляризации, состава электролита. При электролизе кислых растворов титан и железо поглощают больше водорода, чем при электролизе щелочных растворов. Присутствие в электролите сила-нов, сульфоксидов, гидроксиаминокислот, хроматов снижает поглощение водорода металлами. Сероводород, фосфин, соединения мышьяка, селена, теллура, сурьмы являются промоторами наводороживания, так как затрудняют рекомбинацию атомов водорода и удаление его с поверхности. [c.10]

    При обработке поверхности магния химическим способом часто употребляют хроматы, обычно с добавкой азотной кислоты (способ BS), или сульфаты (квасцы, сульфат магния и др.). В других вариантах используют селенистую кислоту или вещества, содержащие мышьяк. В некоторых случаях прибегают к фосфатам или титанатам ими же пользуются и после предварительного травления фторидами. Однако, если обработка поверхности ве--дется без применения тока, получаются относительно тонкие покровные слои. Даже если они затем дополнительно покрываются органическими соединениями, зачастую это не обеспечивает на-дежной защиты при длительном воздействии агрессивной среды. Поэтому способы анодных покрытий считаются более важными. В этих способах применяют щелочные электролиты без добавок или более сложные растворы, содержащие фториды, фосфаты, хроматы и перманганаты. Используют также слабокислые электролиты, содержащие хроматы. [c.551]

    Методом потенциометрического титрования можно определять кислотность растворов танина, кислотные числа масел, жиров и т. д. Окислительно-восстановительное потенциометрическое титрование применяется в методах перманганатометрии, хромато-метрии, цириметрии и в методах восстановления солями железа (И), титана (HI), мышьяка (III) и др. Можно также титровать два восстановителя в одном и том же растворе например, соли железа (И) и олова (II) титровать перманганатом калия. При этом более энергичный восстановитель окисляется в первую очередь. Например, потенциометрически титруют раствор витамина С 0,01 н. иодом по крахмалу в качестве индикатора. [c.607]

    Отделение от мышьяка. Отделение можно осуществить отгонкой мышьяка в виде Л5С1з [453] или осаждением таллия в виде хромата или тионалидата. [c.68]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    Хроматы и бихроматы обладают фунгицидным действием и их все шире применяют для изготовления невыщелачиваемых антисептиков древесины (вместе с солями цинка, меди, мышьяка и фтора). В ГДР выпускают специальные доналит-патроны, содержащие смеси соединений фтора и Сг(У1). Благодаря фунгицидному действию хроматы и бихроматы применяют и для борьбы с вредителями в сельском хозяйстве. [c.13]

    Окисление дихроматом может быть использовано при определении и других элементов. Как уже от.мечено выше, хлориды и бромиды окисляются до свободных элементов, которые можно выделить из раствора нагреванием. Иод остается в растворе в виде иодата [5.1428, 5.1451]. Это используется при определении его в биологических. материалах 15.1452], хотя имеются сообш,ения о том, что окисление иода протекает неполно [5.1453]. Серу, фосфор, мышьяк, сурьму и металлы можно окислить хроматом до высших степеней окисления и определить их в растворе [5.1426]. Можно идентифицировать азотсодержащие функциональные группы по продуктам их окисления хроматом [5.1454]. Условия окисления с использованием хромовой кислоты или хроматов приведены в табл. 5.34. [c.233]

    В состав шихты некоторых эмалей входят токсичные вещества (соединения свинца, мышьяка, сурьмы, меди, бария, цинка, кадмия, молибдена, хроматы, фториды, кремнефториды, манга-наты, борная кислота и др.), попадание которых в организм даже в незначительных количествах (доли грамма) приводит к тяжелым отравлениям и заболеваниям. Использование этих веществ должно быть строго регламентировано. Многие вещества (едкие и углекислые щелочи, соединения хрома, марганца, окислители, окислы кобальта, никеля, меди) оказывают раздражающее действие на кожу и вызывают заболевания глаз. Даже в нетоксичных соединениях в качестве примесей могут содержаться ядовитые вещества. Поэтому в составных отделениях эмалеприготовительных цехов необходимо строго соблюдать правила гигиены. [c.453]


Смотреть страницы где упоминается термин Мышьяк хроматом: [c.271]    [c.83]    [c.286]    [c.64]    [c.464]    [c.539]    [c.256]    [c.847]    [c.132]    [c.310]    [c.203]    [c.205]    [c.95]    [c.248]   
Методы разложения в аналитической химии (1984) -- [ c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Хромато

Хроматы



© 2025 chem21.info Реклама на сайте