Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернистый серной кислоте

    Сульфокислоты, сульфиновые, сернистая, серная кислоты и их производные [c.223]

    Химические сдвиги и константы спин-спинового взаимодействия для ядер в сульфокислотах, сульфиновых, сернистой, серной кислотах и их производных 6 в м. д. относительно ТМС, 3 в Гц) [c.223]

    Бромистые алкилы можно получать [109] при взаимодействии спиртов с 48%-ной бромистоводородной кислотой в присутствии серной кислоты. Бромистоводородную кислоту для этого можно получать из элементарного брома, воды и сернистого ангидрида [ПО], [c.192]


    Естественный парафин освобождают от масла отмывкой жидким пропаном или другими растворителями (ацетон, дихлордиэтиловый эфир и т. п.) при охлаждении. Менее значительные примеси можно удалить промывкой парафина-сырца спирто-бензольными смесями или жидким сернистым ангидридом. После этого парафин в большинстве случаев очишают концентрированной серной кислотой и отбеливают землями или активированным углем. Хорошим средством для очистки оказалась разбавленная (около 8%) азотная кислота, которой обрабатывают парафины при несколько повышенной температуре [49]. [c.447]

    Сернистые компоненты природного газа, и в первую очередь НгЗ, служат прекрасным сырьем для производства серы. Из сероводорода природного газа получают наиболее чистую и дешевую серу, потребность в которой постоянно растет. По количеству расходуемой серы и разнообразию сфер ее применения, она наряду с солью, известью, углем и нефтью относится к основным сырьевым материалам для химической промышленности. В 70-х годах 85% добываемой в мире серы перерабатывалось в серную кислоту, 60% серной кислоты шло на производство удобрений. Поэтому современные процессы очистки природного газа связаны с производством серы и очищенного воздуха . [c.169]

    В нефтеперерабатывающей промышленности олеум (раствор триоксида серы 80з в серной кислоте) используют для доочистки н-парафинов от ароматических углеводородов, очистки нефтепродуктов от сернистых и непредельных органических соединений. [c.114]

    Ускоренный метод определения серы в нефтепродуктах заключается в сжигании навески нефтепродукта в потоке воздуха с последующим улавливанием образовавшихся сернистого и серного ангидридов раствором перекиси водорода с серной кислотой. Навеску испытуемого продукта, помещенную в лодочку, сжигают в трубчатой печи, в которой может быть достигнуто полное сжигание тяжелых нефтепродуктов. [c.185]

    В зависимости от назначения масел и условий их работы допустимое содержание серы может колебаться в значительных пределах. Следует иметь в виду, что в процесса окисления сернистые соединения могут образовывать сульфоновую и серную кислоты, которые вызывают коррозию металлических деталей и [c.67]

    Опубликованы также детальные указания по применению других сульфирующих агентов, включая серные кислоты (98 и 100%) и серный ангидрид, растворенный в сернистом ангидриде [81]. В одном промышленном процессе используется моногидрат кислоты с последующим добавлением 20%-пого олеума до концентрации олеума переднем 13%[53]. Имеются также технические данные и патенты по сульфированию алкилированных [c.534]


    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    Примерно до 1930 г. очистка серной кислотой была почти универсальным методом очистки для всех видов нефтепродуктов, особенно для крекинг-бензинов, керосина и масляных дистиллятов. Крекинг-дистиллят обрабатывался серной кислотой для того, чтобы обеспечить его стабильность против окисления (которое ведет к образованию смол и порче цвета), а также, если нужно было, — для уменьшения содержания сернистых соединений. Однако сернокислотная очистка сопровождалась суш ественными потерями нефтепродуктов в результате полимеризации и растворения в кислоте. [c.223]

    Небольшое время контакта при очистке рекомендуется для того, чтобы свести к минимуму те реакции, которые не связаны с удалением сернистых соединений. Необходимая глубина сероочистки достигается очень быстро [41, 56]. На рис. 1У-3 приведены зависимости между содержанием серы и потенциальных смол, потерями от полимеризации и временем контакта, наблюдавшиеся при очистке крекинг-дистиллята иранской нефти 96 %-ной серной кислотой при 4—10° С (расход кислоты 2 о вес. на дистиллят). [c.232]

    Сернистые соединения, содержащиеся в легких нефтяных дистиллятах, в какой-то степени, но-видимому, являются продуктами разложения более тяжелых и более сложных серусодержащих комплексов, которое произошло нрп перегонке или крекинге. В нефтяных дистиллятах были обнаружены следы элементарной серы, сероводород, меркаптаны, сульфиды, дисульфиды и тиофены, а также продукты, по своей природе относящиеся к сульфатам, сульфокислотам, серной кислоте и сероуглероду [161]. Удаление из нефтепродукта сернистых соединений ст( ь различных классов связано с целым рядом проблем. [c.248]

    Содержание серы в керосине не должно превышать 0,2%, так как при сгорании сернистых соединений на ламповом стекле образуется белый полупрозрачный налет. Объяснить возникновение такого налета можно травлением стекла трубки серной кислотой (или сульфокислотами) с образованием сульфатов (сульфонатов) натрия отложением соответствующих солей аммония (из аммиака, содержавшегося в воздухе), выделением солей калия и кальция, содержащихся в материале фитиля. Предположение о вытравливании подтверждается тем фактом, что ламповые стекла, которые используются в течение длительного времени, покрываются налетом в значительно меньшей степени, чем новые. Это объясняется тем, что наиболее активные соединения постепенно вытравляются и смываются с поверхности стекла. [c.465]

    Эти свойства приобретаются в результате удаления кислородных, азотистых и сернистых соединений, а также химически активных углеводородов путем глубокой очистки масел. Последняя почти всегда производится при помощи серной кислоты. Очищающее действие кислоты имеет как химическую (реакции сульфирования и окисления), так и физическую природу (селективное растворение смол, асфальтенов, азотистых и сернистых соединений). [c.559]

    Обработка нефтяных дистиллятов серной кислотой обычно производится для того, чтобы растворить нестабильные окрашивающие вещества и сернистые соединения, а также для осаждения асфальтенов. Когда условия очистки становятся более жесткими (например при очистке масляных дистиллятов большим количеством концентрированной кислоты) или когда при производстве белых масел работают с дымящей кислотой, весьма заметным становится протекание реакций сульфирования, в результате чего образуется значительное количество нефтяных сульфокислот. Одновременно интенсивно происходят побочные реакции, главным образом окисление объем этих реакций увеличивается в зависимости от содержания серного ангидрида в кислоте иногда можно подавлять эти реакции, поддерживая низкую температуру. [c.571]

    Сероводород HjS Пятиокись фосфора, хлористый кальций Сернистый газ SOj Концентрированная серная кислота [c.153]


    На рис. 37 показана упрощенная схема экстракции изобутена. Исход-ный продукт — фракция С4, содержащая от 10 до 35% изобутена, экстрагируется в условиях противотока 65%-ной серной кислотой. Свежая фракция С4 поступает в колонну 2, где встречается с уже содержащей изобутен серной Л кислотой при этом часть изобутена аб- Г сорбируется. Готовый экстракт в колонне 3 продувкой водяным паром освобождается от изобутена, который поступает на очистную установку, где освоболедается от сернистого ангидрида, полимерпых продуктов и т. д., а затем перегоняется. [c.79]

    Смешанные богатые газы (при переработке упоминавщихся 250 м час угольной пасты образуется около 15 000 м 1час богатого газа на жидкой фазе процесса и 5000 ж /час а паровой) подвергают алкацид-пой очистке при давлеиии около 2 ат и дополнительно щелочной промывке для полного удаления остаточного сероводорода. Небольшие количества сероводорода в объединенных богатых газах получаются частично в результате расщепления сернистого карбонила и меркаптанов, еще содержащихся в богатых газах жидкой фазы после предварительной алкацидной очистки (см. стр. 33 оригинала), и частично за счет сероводорода, добавляемого для осернения катализатора бензинирования. Извлекаемый сероводород снова используется для осернения катализатора, а избыток перерабатывается на серную кислоту или элементарную серу. [c.43]

    Очистка серной кислотой применяется для удаления ряда ненасыщенных углеводородов, смолистых, азотистых и сернистых-создинений. Очистка щелочью используется для удаления кислородных соединений, сероводорода, меркаптанов, а также для удаления серной кислоты и продуктов ее взаимодействия с углеводорб-дa ш. [c.10]

    Для очистки отходящих газов от сернистого газа в контактном сернокислотном производстве используют озоно-каталитнческий способ. Степень очистки газа по этому способу достигает 90%. При зтом сернистый ангидрид утилизируется в виде серной кислоты, гспользуемой в осиовпом производстве. Процесс очистки этим способом отличается простотой апиаратурпого оформления. [c.212]

    Материал для исследования получался нами фракционированием нефтей Грузии из различных скважин. Фракции 60—95°, 95-122°, 122—150° и 150—200° не давали качест-векпу1я реакщпо иа непредельные углеводороды, т. е. не реагировали И1Г с бромной водой, ни со слабым щелочны.м раствором перманганата калня. Исследуемые фракции промывались 73%-НОЙ серной кислотой, 10%-ным раствором щелочи, затем водой, сушились над хлористым кальцием и перегонялись в присутствии металлического натрия. Предварительная обработка бензино-лигроиновых фракций 73%-ной серной кислотой, щелочью и затем перегонка над металлическим натрием преследовали цель освободиться от нежелательных сернистых, кислородных и азотистых соединений, которые в качестве примесей могли присутствовать в исследуемых фракциях. Если бензино-лигроииовьте фракции не подвергаются предварительно такой обработке, то указанные выше неуглеводородные компоненты будут удаляться во время деароматизации фракции и последующей за ней промывкой щелочью и перегонкой над металлическим натрием. [c.151]

    Материал для исследования получался нами фракционированием норийской нефти из скважин №№ 22, 23, 25, 27 н 31. Выделенные фракции 60—95°, 95—122°, 122—150° и 150— 200° давали отрицательную реакцию на непредельные углеводороды. С целью удаления некоторых сернистых, азотистых и кислородных соединений, присутствующих в качестве примесей в исследуемых фракциях, они подвергались обработке 73%-НОЙ серной кислотой, 10%-пым раствором щелочи и водой, сушились над хлористым кальцием, а затем перегонялись в присутствии металлического натрия. [c.166]

    В результате сгорания сернистых соединений образуртся 80а и 80з. Серный ангидрид 80з сильнее, чем ЗОз, влияет на нагарообразование, износ и коррозию в двигателе. Увелггчение выхода 80з происходит при неполном сгорании топлива. При наличии 80з в продуктах сгорания повышается точка росы и тем самым облегчается конденсация серной кислоты на стенках гильз цилиндров и усиливается их коррозия. При воздействии на масло серной кислотой получаются смолистые продукты, образующие затем нагар, который характеризуется повышенной плотностью п абразивностью. Интенсивность сернистой коррозии зависит от конструкции двигателей [16]. Быстроходные дизели сильнее подвергаются сернистой коррозии, чем стационарные тихоходные. Последние имеют толстые стенки цилиндров и соответственно более высокие температуры их [c.38]

    Диены, содержащиеся в сырье, образуют сложные продукты взаимодействия с серной кислотой и остаются в кислотной фазе, рс збавляя кислоту, что увеличивает его расход. Поэтому диеновые углеводороды не должны содержаться в сырье. К сырью С — а/килирования предъявляются также повышенные требования по сс держанию влаги и сернистых соединений. Если сырье каталитического крекинга не подвергалось предварительной гидроочистке, тогда бутан — бутиленовую фракцию крекинга — сырье С — алкили — рования обычно очищают щелочью или в процессах типа Мерокс от сернистых соединений. [c.142]

    Сероводород, получаемый с гидрогенизационных процессов переработки сернистых и высокосернистых нефтей, газоконденсатов и установок аминной очистки нефтяных и природных газов, обычно используют на НПЗ для производства элементной серы, инс-гда для производства серной кислоты. [c.165]

    Детергенты (detergents) являются поверхностно-активными веществами, обладающими моющими свойствами, защищающими поверхность деталей от прилипания и скопления на них продуктов окисления. Анионными детергентами обычно бывают маслорастворимые алкилбензолсульфонаты, фосфонаты и другие аналогичные соединения. Некоторые сульфонаты имеют щелочные свойства и являются эффективными нейтрализаторами кислых продуктов окисления. По щелочности, которая характеризует эффективность присадок, сульфонаты делятся на нейтральные (10-30 мг КОН/г), щелочные (30- 100 мг КОН/г), и очень щелочные (100 - 300 мг КОН/г). В состав очень щелочных присадок могут входить диспергированные окиси, гидроокиси и карбонаты металлов. Щелочные присадки необходимы в маслах для дизелей, с целью нейтрализации серной кислоты, которая образуется при сгорании сернистого дизельного топлива. [c.32]

    Процесс Комиико основывается на абсорбции SO2 водным раствором сульфита аммония н десорбции сернистого ангидрида добавкой серной кислоты к раствору с образованием сульфата аммония в качестве побочного продукта (удобрение). [c.195]

    В практике нефтеочистки ранее наблюдались большие потери с образованием смолистых осадков при обработке дистиллятов смазочных масел концентрированной серной кислотой. Потери значительно снижались, если обрабатывались масляные дистилляты, полученные при перегонке под высоким вакуумом, когда крекинг незначителеп или вовсе отсутствует. Хотя нельзя сказать, что причины образования смолистых осадков прн действии концентрированной серной кислоты на вышекипящие нефтяные дистилляты стали внолпе понятны, несомненно, однако, что этот суммарный результат включает реакции серной кислоты с непредельными углеводородами, незначительное сульфирование углеводородов, содержащих в молекуле ароматические кольца, реакцию или растворение сернистых соединений, нафтеновых кислот, азотистых оснований и, возможно, других загрязнений. [c.98]

    Сера и большое число соединений серы, включая сероводород, полу-хлористую серу 82012, двухлористую серу 3012, сернистый ангидрид ЗОз, бисульфиты, серный ангидрид ЗО3, серную кислоту, хлористый сульфурил, хлористый тионил, меркаптаны и тиоцианаты, легко вступают в реакцию с олефиновыми углеводородами. Реакции с самой серой, как доказано, большей частью сложнее и труднее для исследования, чем реакции с сернистыми соединениями. Это происходит вследстпие того, что при той температуре, при которой сера вступает в реакцию, обычно при 140°, молекула серы состоит из шести или восьми атомов, и во многих случаях выделяется сероводород, который может затем вступать в реакцию с олефинами, образуя меркаптаны, в свою очередь способные к реакции присоединения к олефинам. Дальнейшее усложнение возникает благо даря склонности сернистых производных к полимеризации. [c.343]

    Была предложена очистка крекинг-керосинов серной кислотой при низких температурах [3,3° С] для улучшения цвета и удаления серы [45]. Такой процесс с последующей повторной перегонкой для уменьшения образования полимеров и потерь, описанной Педжеттом [40], был внедрен в заводском масштабе для очистки бензина с большим содержанием тиофе-новых сернистых соединений [14, 22]. [c.353]

    Средние эфиры, образующиеся при взаимодействии серной кислоты с олефинами, содержащимися в крекинг-дистиллятах, растворимы пе только в кислотной, но и частично в углеводородной фазе. Растворимость средних эфиров в углеводородной фазе возрастает с ростом молекулярного веса соответствующего оле-фипа. Средние эфиры с трудом поддаются гидролизу и, следовательно, не отмываются щелочью при защелачиванип. Однако средние эфиры нестабильны и при длительном хранении разлагаются. Наблюдалось выделение сернистого газа и смолообразование в крекинг-бензинах, обработанных серной кислотой. Средние эфиры также легко разлагаются при нагревании [24], так что крекинг-дистиллят, прошедший сернокислотную очистку, после вторичной перегонки обычно вновь требует защелачивания. В нефтезаводской практике вторичную перегонку очищенных крекинг-дистиллятов зачастую ведут под вакуумом, что предотвращает разложение средних эфиров и связанные с этим явления (напрп-мер, порчу цвета) [25]. [c.225]

    Олефины с третичным углеродным атомом образуют полимер при нагревании их раствора в слабой кислоте. Так, нанример, при нагревании раствора изобутилена в 63%-пой серной кислоте образуется довольно четкая смесь диизобутилена и триизобути-лена [27]. С увеличением концентрации кислоты за счет образования спирта возрастает полимерообразоваппе, полимер образуется даже без нагрева кислотного экстракта. Одновременно происходит изомеризация, и смесь ди- и триизобутилена становится все менее четкой. Наконец при очень высокой концентрации кислоты наступают реакции гидрополимеризации (так называемой сопряженной полимеризации, см. гл. И), происходят окислительно-всстановительные реакции между полимером и кислотой, в результате которых образуется углерод и выделяется сернистый газ. Кислота в этом процессе может быть восстановлена путем насыщения обычной ионсодержащей солью. [5]. [c.226]

    Разбавленная серная кислота, например 75%-ной концентрации, заполимеризует диолефины и удалит вещества, портящие цвет нефтепродукта, но не сможет обеспечить очистки дистиллята от серы [12, 40—45]. Удаление олефинов из бензина вызывает уменьшение октанового числа, в то время как очистка от сернистых соединений улучшает приемистость бензина к тетраэтилсвинцу. Таким образом, суммарный эффект очистки в отношении октанового числа может оказаться равным нулю [46]. В нефтезаводской практике наблюдались случаи, когда в результате сернокислотной-очистки у крекинг-дистиллята, полученного из парафинового сырья, октановое число снижалось, а у крекинг-дистил-лята, полученного из ароматизированного газойля, октановое число повышалось. [c.229]

    Прп сернокислотной бчистке удаление сернистых соединений из очищаемой фракции происходит как в результате селективного растворения последних в кислоте, так и в результате определенных химических реакций между кислотой и сернистыми соединениями [47—49]. Изменение концентрации влияет как па растворяющую способность серной кислоты по отношению к сернистым соединениям, так п па интенсивность соответствующих реакций. Результаты обработки крекинг-дистиллята калифорнийской нефти примерно одинаковым количеством серной кислоты различной концентрации приведены в табл. 1У-2 [50]. [c.229]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Тщательная обработка серной кислотой или экстракция двуокисью серы с последующей мягкой сернокислотной обработкой удаляют ароматику и следы прочих вредных нримесей. Основной делью очистки является разрушение или удаление всех углеводородов нестабильного или ароматического характера, всех соединений кислорода и вообще всех веществ кислого характера, всех веществ, склонных к смолообразованию, всех соединений азота, поскольку они вызывают нестабильность цвета и большей части соединений серы, так как нри сгорании они образуют сернистый газ, вызывающий отложения на ламповых стеклах. [c.467]

    Отработанную серную кислоту после алкилирования изопа-рафипов и очистки масляных дистиллятов часто подвергают термическому разложению с перемешиванием для получения сернистого ангидрида (который возвращают в сернокислотный цех) [c.570]

    Специфическим видом износа деталей двигателей вкутреянего сгорания является коррозионный износ, характерный для работы двигателей на низкотемпературном режиме. Такой износ вызывает серная кислота, обраЗ ующаяся из продуктов сгорания сернистого топлива в дизелях, соляная я бромистоводородная кислоты, образующиеся при сгорании хлор- или бромсодержащих выно-сителей ТЭС, которые содержатся в этилированном бензине коррозионный износ также интенсифицируют органические кислоты, накапливающиеся в работающем моторном масле. Дитиофосфаты цинка существенно не влияют на коррозионный износ в двигателях (как правило он несколько возрастает [39, с. 7.62]). Основной путь снижения коррозионного износа — введение в моторные масла щелочных присадок, нейтрализующих коррозионно-агрессивные продукты. [c.165]

    Сравнивая данные, приведенные в табл. 12 и 14, можно заметить, что величины констант диссоциации кислот изменяются в очень широких пределах. В частности, константа диссоциации циановодорода много меньше, чем уксусной кислоты. И хотя обе эти кислоты — слабые, все же уксусная кислота значительно сильнее циановодорода. Величины первой и второй констант диссоциации серной кислоты показывают, что в отношении первой ступени диссоциации Н2504 — сильная кислота, а в отношении второй — слабая. Кислоты, константы диссоциации которых лежат в интервале 10- —10 иногда называют кислотами средней силы. К ним, в частности, относятся ортофосфорная и сернистая кислоты (в отношении диссоциации по первой ступени). [c.243]


Смотреть страницы где упоминается термин Сернистый серной кислоте: [c.494]    [c.71]    [c.106]    [c.264]    [c.369]    [c.231]    [c.236]    [c.35]    [c.386]   
Технология серной кислоты (1971) -- [ c.458 , c.459 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота сернистая



© 2025 chem21.info Реклама на сайте