Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смола на металлы и сплавы

    Благодаря разнообразным и ценным свойствам эпоксидных смол и их различных композиций, они находят широкое применение в лакокрасочной промышленности, в,качестве клеев (например, для склеивания металлов взамен заклепочного соединения), в электротехнике, машиностроении, приборостроении, в ремонтном деле и т. д. На практике широко используется скрепление разных металлов, сплавов (как замена оловянного припоя), склеивание металлов со стеклом, целлулоидом, склеивание фарфора и т. д. Эпоксидные лаки и эмали применяются для покрытия аппаратуры, работающей в условиях высокой влажности, больших температур. Ими покрывают стенки резервуаров для хранения и транспортировки щелочей, бензола, бензина, нефти и т. д. Это очень важно для борьбы с коррозионными разрушениями металлических и неметаллических материалов, а также для декоративных целей. [c.248]


    Графитовые материалы — пористые (пористость достигает 25—30%) и хрупкие. Лх можно пропитывать металлами, сплавами или синтетическими смолами. Пропиткой повышают износостойкость, прочность и газонепроницаемость материала. [c.268]

    Круг материалов, получаемых при непосредственном участии химии, чрезвычайно велик. Сюда относятся металлы и сплавы, удобрения, лекарства, краски, взрывчатые вещества, пластические массы, искусственное волокно, цемент, стекло, топливо, смазочные материалы, каучук, синтетические жиры, искусственные смолы самых разнообразных назначений, полупроводниковые материалы, парфюмерия, ароматические вещества, кожа, молоко, хлеб и т. д. Заглядывая в глубь веков, М. В. Ломоносов еще в 1749 г. писал Широко распростирает химия руки свои в дела человеческие. Куда ни посмотрим, куда ни оглянемся, —всюду бросаются перед очами нашими успехи ее приложения . [c.6]

    Важной особенностью карбоксильных катионитов является возрастание энергии связи фиксированных ионов к противоионам с ростом величины положительного заряда последних. Исключение составляют ионы водорода энергия связи карбоксильного катионита с протонами столь велика, что даже разбавленными кислотами легко могут быть вытеснены все катионы металлов, независимо от величины их заряда. С повышением содержания в смоле карбоксильных групп на единицу массы катионита различие в сорби-руемости катионов одновалентных и многовалентных металлов резко возрастает. Это облегчает хроматографическое разделение смесей разновалентных металлов, что весьма существенно для практического использования карбоксильных катионитов в анализе минералов и сплавов. [c.64]

    При проведении электрохимических измерений возникает необходимость изготовления микроэлектродов, размеры которых лимитируются величиной ячейки и заданной плотностью тока. В ряде случаев изготовление микроэлектродов сопряжено с трудностями. Наиболее часто в электрохимических исследованиях применяют торцовый микроэлектрод, представляющий собой тонкую металлическую проволоку из исследуемого металла или сплава, запрессованного в стекло либо в другие непроводящие ток изоляционные материалы (фторопласт, эпоксидные смолы и т. п.). Образец нужного диаметра получают волочением предварительно прокатанной проволоки. Однако происходящие в результате подобной обработки искажения кристаллической структуры металла, возникновение наклепа, внутренних напряжений и т. п. сказываются в дальнейшем на электрохимическом поведении исследуемого электрода. Известно, например, что такие важные электрохимические параметры, как ток обмена, емкость двойного слоя и др. зависят от способа изготовления и предшествующей обработки металлического электрода. [c.71]


    При хранении топлив Т-1, ТС-1 в наземных резервуарах в течение 6—7 лет в северной зоне и в течение 4—5 лет в южной зоне изменение кислотности не превышает 0,8 мг КОН/100 мл топлива, содержание фактических смол — 7 мг/100 мл (табл. 37). Несколько интенсивнее накапливаются смолистые вещества при хранении дизельных топлив. В процессе хранения интенсивно идет накопление кислых смолистых веществ, десорбируемых ацетоном и этанолом. Эти данные относятся к хранению стандартных топлив при коэффициенте заполнения резервуаров 0,9. Топлива хранились без движения. На скорость образования смолистых веществ большое влияние оказывают вода, металлы, свет. Среди металлов наибольшее смолообразование вызывают медь и ее сплавы. Однако Б процессе хранения большие массы топлива с медью и с ее сплавами практически не контактируют. Нефтепродукты хранятся обычно в резервуарах из низкокачественных сталей, которые по сравнению со сплавами меди оказывают меньшее влияние на об- [c.90]

    Диспергирование с помощью ультразвуковых колебаний, т. е. колебаний с частотой выше 20 000 в секунду, не улавливаемых человеческим ухом, является эффективным лишь в том случае, когда диспергируемое вещество обладает малой прочностью. К таким веществам следует отнести смолы, серу, графит, гипс. Применяя ультразвук, можно получать также дисперсии легких металлов и их сплавов в органических жидкостях. Ультразвук может быть с успехом использован и при пептизации свежеприготовленных осадков. [c.251]

    Содержатся справочные сведения по физико-химическим и физическим методам анализа потенциометрии, кондуктометрии, амперометрии и полярографическому анализу, спектроскопии, фотоколориметрическому, нефелометрическому и турбодиметрическому анализам, пламенной фотометрии, флюоресцентному анализу, рефрактометрии, хроматографии на бумаге и ионообменных смолах. Приведены схемы анализа сложных веществ природного происхождения и искусственно полученных веществ (резины, пластмасс, различных нефтепродуктов), методы определения функциональных групп органических соединений, сведения по техническому анализу металлов и сплавов и др. [c.384]

    Кроме применения сплавов титана для изготовления деталей арматуры в промышленности применяется антикоррозионное покрытие на основе титановых порошков. В этом покрытии титановый порошок, состоящий из кристаллов с сильно развитой поверхностью, которые обладают высокой коррозионной стойкостью, применен как наполнитель, а вяжущее вещество — эпоксидная смола. Новое антикоррозионное покрытие по сравнению с известными имеет следующие преимущества высокую коррозионную стойкость, химическую устойчивость, высокую адгезию к металлу, что обеспечивает отличную сцеп-ляемость с защищаемой поверхностью, механическую прочность, долговечность, определяемую противодействием титанового порошка старению эпоксидной смолы. [c.75]

    При больших сериях отливаемой скульптуры смолу заливают в медные разборные формы, служащие постоянно и изготовляемые следующим способом. В кусковой форме из гипса между кусками прокладывают кинопленку с таким расчетом, чтобы она выступала над их поверхностью. В подготовленную таким образом форму заливают воск для получения модели. По затвердевании воска гипсовую форму разбирают, а восковая модель оказывается разделенной на соответствующие куски кинопленкой. Далее на восковую модель наносят проводящий слой, погружают в ванну и наращивают слой металла толщиной в 5—10 мм. Благодаря наличию проложенной кинопленки откладывающийся при наращивании металл на модели разделен на куски, соответствующие кускам гипсовой формы. Получается разборная металлическая форма, что дает возможность отливать в ней скульптуру из пла стических масс в большом количестве. Кожух для разборной формы изготовляют из гипса или. отливают из алюминиевого сплава. [c.112]

    Поливинилформаль, совмещенный с фенолоформальдегидной смолой резоль-ного типа, может использоваться в качестве клея для соединения алюминиевых сплавов с различными материалами и металла с деревом. [c.253]

    Для кремнийорганических жидкостей типична низкая температура замерзания, химическая инертность к металлам, сплавам, пластмассам, многим органическим смолам и каучукам даже при нагревании до 150°, повышенная по сравнению с органическими жидкостями сжимаемость (до 14%), высокие диэлектрические свойства. В присутствии кислорода воздуха при температуре до 200° жидкости не изменяют цвета. В закрытом или эвакуиров анном пространстве они не изменяются и при значительно более высоких температурах. Добавление ингибиторов (соединений, препятствующих окислению) позволяет достигнуть такой же устойчивости жидкостей и в присутствии кислорода воздуха. Они растворяются во многих ароматических и хлорированных углеводородах, но ие смешиваются с большинством органических полимеров. [c.20]

    Учитывая, что даже при самых благоприятных условиях срок эксплуатации растворов химического золочения все же невелик, особенно большое значение приобретает вопрос о регенерации отработанных растворов и промывных вод. В них, помимо основного компонента — золота, будут также присутствовать примеси составляющих сплава, на который наносили покрытие, восстановитель (для указанного выше случая — сернокислый гидразин и продукты его разложения). Применение для извлечения золота ионообменной смолы типа АВ-17 сопровождается сорбцией не только этого металла, но и примеси никеля, так что при последующем сжигании смолы получают сплав, содержащий около 10 % N1. Для регенерации 10 л раствора, содержащего 2 г/л Аи и 1,7 г/л N1, требуется около 67 г смолы [153]. Чтобы достигнуть возможно более полного извлечения золота, раствор последовательно пропускают через несколько колонок, заполненных смолой. Безвозвратные потери золота при этом составляют около 0,1 %. В очищенном от золота растворе разложение оставшегося сернокислого гидразина проводят при 90—95 °С, погрузив в него никелевую пластину. Скорость разложения восстановителя составляет около 50 г/(м -ч). Для повышения экономичности процесса регенерации предложено использовать активированные угли марки ЦНИЛХИ, отличающиеся большей селективностью по отнощению к золоту по сравнению с никелем [72, с. 91]. [c.226]


    Пропитку материалов (изделий) можно проводить каменноугольными смолой или пеком, синтетическид1и смолами, металлами и их сплавами, а также смазками и т. п. [c.48]

    Наибольшее распространение в промьипленноп практике получили пропитывание углеграфитовых материалов синтетическими смолами, металлами и сплавами ме-таллов, органическими и галлоидньши смазками. [c.200]

    Таблицы Башфорта и Адамса [25 послужили основой для разработки различных методов определения значешй статического или равновесного поверхностного натяжения Ор расш1авленных металлов, сплавов, силикатов, вязких смол, коллоидных растворов, а также растворов типа флотационных пульп, содержащих малые количества медленно диффундирующих поверхностно-активных веществ и мелкие капельки масляной фазы, взвешенные в водной среде. Определение о производится по форме меридионального сечешя симметричных покоящихся капель жидкости или образованных в ней пузырьков газа. Метод является бесконтактным, статическим, а полученные значения С1 абсолютными. [c.27]

    Хорошие результаты были получены при пропускании паров крекируемого сырья через расплавленное олово или расплавленный свинец (метод Меламида). Предлагались также железные или медные сетки, алюминиевые, хромированные илп луженые медные трубы. Очень хорошие результаты были получены при крекинге сланцевой смолы в ретортах из хромоникелевой стали (Кожевников, 1936 г.). В качестве катализаторов для крекинга различными авторами были предложены Разнообразные металлы и сплавы. Были испробованы почти все элементы периодической системы и их соединения. Установлено, что все металлы так или иначе благоприятствуют разрыву С—С-связи, дегидрированию и полному разложению на углерод и водород. Некоторые металлы проявляют свое избирательное влияние на отдельные стадии крекинга например, Си и Pd способствуют дегидрированию в олефины, Fe, Со и Ni—полному разложению углеводородов на углерод и водород. [c.309]

    При нагревании лантаноиды взаимодействуют с азотом, серой, углеродом и другими неметаллами. Галогены окисляют их уже на холоду. С большинством металлов лантаноиды образуют сплавы (чаще всего типа интерметаллидов). Вследствие близости свойств лантаноидов их разделение осуществляется с большим трудом. В настоящее время редкоземельные элементы разделяют при помощи ионообменных смол и последующей экстракции соединений органическими растворителями. Металлические лантаноиды восстанавливают из хлоридов ЭС1з при помощи металлического кальция. [c.323]

    Из всех ноливинилацеталей формвар имеет наиболее высокие прочность, теплостойкость и твердость. Формвар растворим в муравьиной и уксусной кислотах, в диоксане, феноле, хлорпроизводных углеводородах. Поливи-нилформаль хорошо сочетается с феноло-формальдегидной смолой, повышая адгезию сплава к стеклу и металлу и несколько увеличивая упругость пленки. Сплавы применяются в качестве электроизоляционных покрытий и связующих в производстве стеклотекстолитов. [c.821]

    Для водных сред, например для защиты подводных стальных конструкций и сооружений в прибрежном шельфе, а также для внутренней защиты резервуаров, тоже применяют в основном цилиндрические аноды, конструкция которых описана в разделе 8.5.1. Кроме таких материалов как графит, магнетит и ферросилид, дополнительно используют еще и аноды из сплавов свинца с серебром, а также платинированный титан, ниобий или тантал. Впрочем, такие аноды обычно выполняют не сплошными, а в форме труб. В конструкциях из сплавов свинца с серебром это делают ввиду большой массы анодов и сравнительно малой плотности анодного тока в случае платинированных вентильных металлов коррозионному износу и без того подвергается только платиновое покрытие. К тому же трубчатая форма позволяет получить большую площадь поверхности и тем самым больший анодный ток. На подсоединения анодоа из сплавов свинца с серебром распространяются рекомендации, приведенные в разделе 8.5.1. Однако можно припаивать кабель и непосредственно к материалу анодов при помощи мягкого припоя, если обеспечена особо эффективная разгрузка кабеля от растягивающих напряжений. В случае титана это невозможно. Такие аноды должны быть снабжены (в отдельных случаях тоже привариваемым) резьбовым соединением, изготовленным также из титана. В этом случае кабель свинчивается с кабельным наконечником, который тоже может быть изготовлен из титана. Все соединение окончательно заливается литой смолой. Иногда и всю трубу заполняют подходящей заливочной массой. Ввиду плохой электропроводности титана целесообразно в случае сравнительно длинных анодов с большой нагрузкой осуществлять подвод тока параллельно на обоих концах. [c.210]

    Разработана [29] фосфатирующая грунтовка АК-209 (бывшая ВГ-5), представляющая собой суспензию пигментов в растворе синтетических смол в смеси органических растворителей и в кислотном разбавителе. Грунтовка является однокомпонентной и предназначается для грунтования поверхностей алюминиевых сплавов, сталей, никелевых сплавов и других металлов, эксплуатируемых при температуре до 300 °С. Отличительной особенностью этой грунтовки является повышенная теплостойкость и высокие защитные свойства. Системы покрытий с крем-нийорганическими эмалями КО-88 и КО-811 по грунтовке [c.151]

    Применение. Газообразный В. применяют для синтеза NHз, СН3ОН, высших спиртов, углеводородов, НС1 и др., как восстановитель при получении мц. орг. соединений, в т.ч. пищ. жиров. В металлургии В. используют для получения металлов, создания защитной среды при обработке металлов и сплавов, в нефтепереработке-для гидроочистки нефтяных фракций и смазочных масел, гидрирования и гидрокрекинга нефтяных дистиллатов, нефтяных остатков и смол. В. применяют также в произ-ве изделий из кварцевого стекла и др. с использованием водородно-кислородного пламени (т-ра выше 2000 °С), для атомно-водородной сварки тугоплавких сталей и сплавов, для охлаждения турбогенераторов, как восстановитель в топливных элементах. [c.401]

    СВЧ Мм применяют в радиоэлектронике, для изготовления волноводов, фазовращателей, преобразователей частоты, модутяторов, усилителей и т п Специфич требованиями к М м для СВЧ диапазона являются высокая чувствительность к управляющему магн полю, высокое уд электрич сопротивление, малые электромагн потери, высокая т-ра Кюри Наиб распространены никелевые, никель-медно-марганцевые ферриты-шпинели, иттриевый феррит-гранат, легированный РЗЭ Применяют металлич сплавы Fe-NI, Ре-А1, Ре А1 Сг Их используют гл обр для создания поглотителей кющности в разл изделиях СВЧ техники Композиционные СВЧ М м используют для создания экранов для защиты от СВЧ полей Металлич наполнителями являются Ре, Со, N1, сплавы сендаст, связующими - разл полимерные смолы и эластомеры Жидкие М м, или магн жидкости, представляют соЬой однородную взвесь мелких (10 -10" мкм) ферромагн частиц в воде, керосине, веретенном масле, фтор-углеводородах, сложных эфирах, жидких металлах Магн жидкости применяют для визуализации структуры постоянных магн полей и доменной структуры ферромагнетиков, 1243 [c.626]

    МЕТАЛЛОПЛАСТЫ, принятое в СССР назв, металлич. листовьи материалов с одно- и двусторонним полимерным покрытием. Выпускают в виде отдельных листов, непрерывных полос, лент и фольги толщиной 0,3-1,5 мм изготовляют из Со, стали (малоуглеродистой, углеродистой), сплавов Fe, Al, Ti или др. металлов, термопластов (ПВХ, полиамидов, политетрафторэтилена, полистирола, поливинилового спирта, полиэтилена) или реактопластов (феноло-формальд. и эпоксидных смол, полиуретанов или др.). Полимерное покрытие может также содержать тонкодисперсные мииер. наполнители, пластификаторы, стабилизаторы, красители, Толщина покрытия от неск, нм до 1 мм. [c.47]

    МЕТАЛЛОПОЛИМЕРЫ, металлонаполненные полимеры или пористые металлы, пропитанные полимерными ком-позицюгми. Наполнителями служат порошки, волокна и ленты, получаемые практически из любых металлов или сплавов (чаще всего Ре, Со, №, Лg, 5п, А1, Со, Ве, РЬ, 2п, 2г, Сг, Т1, Та), коррозионностойкие аморфные металлич. сплавы ( металлич. стекла ), металлизир. порошки и волокна неорг. или орг. природы. Металлич. порошки (микросферы, нитевидные кристаллы, чешуйки и частицы неправильной формы) имеют размер частиц 10-10 нм, размер волокон в поперечном направлении составляет 10 — 2 10 нм, ширина и толщина лент-соотв. 3-5 мм и (1-4)-10 нм. Металлами наполняют полиамиды, политетрафторэтилен, ПВХ, полиэтилен, эпоксидные, феноло-формальд. и полиэфирные смолы, кремшшорг. полимеры и полиимиды. [c.48]

    Формованные О. м. применяют для изготовленая огнеупорных кладок стен, сводов, подов и др. конструкций коксовых, мартеновских и доменных печей, печей для выплавки разл. сплавов, при футеровке ядерных реакторов, МГД-генераторов, авиационных и ракетньк двигателей неформованные-для заполнения швов при кладке формованных огнеупоров, нанесения защитных покрытий на металлы и огнеупоры. Огнеупорные массы из огнеупорного порошка, связываемого кам.-уг. смолой, р-римым стеклом или полимерным связуюыщм, используют преим. для изготовления рабочего слоя подов и откосов сталеплавильных печей и футеровки конвертеров огнеупорный бетон, состоящий из огнеупорного наполнителя, вяжущего и добавок (затвердевает при т-ре ниже 600 °С),-для изготовления монолитных конструкций, заменяющих кладку из формованных О. м. Разновидностью огнеупорных бетонов являются пластичные обмазки (т.наз. торкрет-массы), содержащие орг. или фосфатные вяжущие и послойно наносимые под давлением сжатого воздуха (торкретирование) на внутр. пов-сть тепловых агрегатов. [c.330]

    Один из недостатков насадок, изготовленных из металлов или сплавов, состоит в том, что они подвергаются коррозии. Поэтому рекомендуется применять насадки из никеля или нержавеющей стали. При высокой температуре металлические насадки могут оказывать каталитическое воздействие на перегоняемые вещества (например, дегидрирование некоторых сесквитерпеновых углеводородов). В этих случаях предпочтительнее использовать насадку из керамики или стекла. К насадкам такого типа, помимо вышеупомянутых колец Рашига или стеклянных шариков, относятся так называемые седла Берла из фарфора. Однако все эти насадки имеют низкую эффективность например, ВЭТТ для седел Берла размером 4 мм составляет только 5—6 см в зависимости от выбранной пропускной способности [8]. Более выгодны цилиндры, изготовленные из стеклянной ткани (например, из изоляционного шланга, используемого в электротехнике). Шланг из стекловолокна надевают на подходящий стержень, например на стеклянную палочку, и разрезают на куски нужной длины (например, 4 мм при диаметре 4 мм). Стеклоткань обжигают в пламени для удаления из нее пропитки из искусственной смолы. По сравнению с металлической насадкой насадки из стекла имеют ряд недостатков. Во-первых, стеклянные частицы очень хрупки и легко ломаются, во-вторых, стеклянная насадка имеет большую динамическую задержку, чем аналогичная насадка из металлической сетки. Детальное описание способа изготовления стеклянной насадки приведено в работе [129]. [c.247]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    Соляная кислота быстро разрушает болылинство металлов, поэтому выбору материалов для изготовления аппаратуры должно уделяться большое внимание. Для работы с соляной кислотой пригодны специальные сплавы, такие как дюрихлор, хлориметы и хастеллои. Чистый тантал не корродирует под действием соляной кислоты при любых ее концентрациях и температуре примерно до 177 С. Из неметаллических материалов можно применять кислотоупорные кирпич, керамику и фарфор, стекло, эмалированную сталь, каучук (нат ральный н синтетический для работы в условиях низких температур), пластмассы (полихлорвинил, полиэтилен, полистирол, фенопласты с наполнителем и фтороуглеводороды), а также различные графиты и угли. Уголь и графит широко применяются в производстве труб для влажного и сухого НС1 при температурах до 400° С. Карбейт — материал на основе угля или графита, пропитанных смолой, — широко используется для изготовления тсплообл1еп1[ого оборудования. [c.137]

    Если в каучуко-фенольные адгезивы вместо одноатомных фенолов ввести двухатомные (например, резорцин или б-метилре-зорцин), обладающие большей реакционной способностью (вследствие большей концентрации гидроксильных групп), получаются композиции с лучшими эксплуатационными характеристиками. Так, при механическом взаимодействии резорциновых смол с каучуками изготовлен клей ФРАМ-30 с высокими адгезионными свойствами к дюралюминию , стали, меди, серебру и другим металлам и сплавам, а также к химически обработанному фторопласту. [c.202]

    Рябчиков Д И, Цитович И К Ионообменные смолы и их применение М, Наука , 1962, 186 с Савицкий Е М Новые металлические сплавы М, Знание , 1967, 46 с Савицкий Е М, Бухаиов Г С Металловедение сплавов тугоплавких и редких металлов М, Наука 1971, 354 с Сажин Н П Развитие в СССР металлургии редких металлов и полупроводниковых материалов М, Цветметинформация , 1967, 136 с Салдадзе К М, Пашков А Б, Титов В С Ионообменные высокомолекулярные соединения М, Госхимиздат, 1960, 356 с [c.336]

    Двойные смеси, применяемые для приготовления осветительных составов, при горении должны пзлучать максимальное количество световой энергии. Этому условию наиболее удовлетворяют смеси, состоящие из окислителей и металла. В качестве окислителей применяют нитраты, перхлораты п др., а из металлов — магний, алю- миний, или их сплавы, реже цирконий и др. Осветительный состав из компонентов Ba(NOз)2 + Мд — смола можно рассматривать, как состоящий из двух двойных смесей Ва(М0д).2 - - Mg и Ва(КОз)2-Ь + смола. Первая смесь обеспечивает необходимый световой эффект, а вторая смесь служит замедлителем горения. [c.34]

    Прежде всего следует напомнить, что осветительный состав обычно представляет собой механическую смесь окислителя, горючего и цементирующего (флегматизирующего) вещества. В качестве окислителей применяются нитраты бария, калия и др. Перхлораты, и в особенности хлораты, применяются реже. В качество горючих применяются алюминий, магний, цирконий, сплавы металлов. И наконец, в качестве цементирующих (флегматизирующпх) вешеств употребляются смоли и масла. [c.59]


Смотреть страницы где упоминается термин Смола на металлы и сплавы: [c.374]    [c.640]    [c.806]    [c.88]    [c.29]    [c.425]    [c.326]    [c.443]    [c.23]    [c.48]    [c.806]    [c.469]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.142 , c.143 , c.146 , c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы сплавы

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте