Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллические структуры с водородными связями

Рис. 14-18. В кристалле льда каждый атом кислорода связан водородными связями с двумя другими атомами кислорода (с использованием своих атомов водорода) и еще с двумя атомами кислорода (с использованием их атомов водорода). Координация атомов-тетраэдрическая, и структура напоминает кристаллическую структуру алмаза. Рис. 14-18. В кристалле льда каждый <a href="/info/27605">атом кислорода</a> <a href="/info/1332899">связан водородными связями</a> с двумя другими атомами кислорода (с использованием своих <a href="/info/1117693">атомов водорода</a>) и еще с двумя атомами кислорода (с использованием их <a href="/info/1117693">атомов водорода</a>). Координация атомов-тетраэдрическая, и <a href="/info/1895456">структура напоминает</a> <a href="/info/2548">кристаллическую структуру</a> алмаза.

    Образование при помоши водородных связей каркасной кристаллической структуры льда (рис. 14-18) приводит к тому, что лед имеет меньшую плотность, чем жидкая вода при температуре плавления. В процессе плавления льда эта каркасная структура частично разрушается, и жидкая вода оказывается более плотной, чем лед. Теплота плавления льда составляет всего 5,9 кДж моль хотя энергия его водородных связей оценивается в 20 к Дж моль . Это указывает, что при плавлении льда разрушается [c.620]

    Фтористый водород в жидком и газообразном состояниях значительно ассоциирован вследствие-образования сильных водородных связей ( Nf. разд. 2,8). Энергия водородных связей в HF составляет 42 кДж/моль, средняя степень полимеризации в газовой фазе при температуре кипения 4. В кристаллическом состоянии НР имеет цепеобразную структуру  [c.470]

    Изучение рассеяния рентгеновских лучей в жидкостях с многоатомными молекулами показывает, что не только относительное расположение молекул в некоторой степени упорядочено, но и их взаимная ориентация не вполне хаотична. Это, по-видимому, справедливо даже по отношению к таким симметричным молекулам, как U в- случае же несимметричных полярных молекул, например воды, имеет место вполне закономерная взаимная ориентация соседних молекул воды с образованием временных водородных связей между ними. Интересно, что преобладающая кристаллическая структура жидкой воды при повышенных температурах соответствует не структуре обычного льда, которая тоже имеется в жидкой воде, а более плотной структуре, относящейся к структуре льда так же, как относятся друг к другу две кристаллические модификации кремнезема—кварц и тридимит. [c.162]

    Структура воды. Как уже указывалось, молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейшей упаковки. При плотнейшей упаковке молекул Н2О лед имел бы плотность 2,0 г/см , тогда как в действительности плотность льда равна 0,9 г/см  [c.156]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]


    Какую роль играют водородные связи в образовании кристаллической структуры льда Какое влияние они оказывают на свойства льда  [c.641]

    Наиболее важной темой этой главы являются межмолекулярные силы. В табл. 14-1 и 14-3 представлены различные кристаллические структуры и их свойства, которые следует обсудить подробно. Чрезвычайно важно, чтобы учащимся стали понятны такие термины, как вандерваальсовы (лондоновские) силы и водородная связь. [c.577]

    Изучалась структура комплексов нормальных алканов с мочевиной [146]. Водородные связи соединяют молекулы мочевины в спирали, образующие стенки гексагональных каналов, в центре которых располагаются молекулы углеводородов. Образование комплекса сопровождается изменением кристаллической струк- [c.73]

    Оксобораты водорода — белые кристаллические вещества. Ортоборат водорода (в растворе ортоборная кислота) имеет слоистую решетку, в которой молекулы Н3ВО3 связаны в плоские слои за счет водородных связей, а сами слои соединены друг с другом (на расстоянии 0,318 нм) межмолекулярными силами. Поэтому в твердом состоянии Н3ВО3 — чешуйки, жирные на ощупь. Структура одного слоя кристалла Н3ВО3 показана ниже  [c.447]

    На практике выделение -парафинов может проводиться как в результате сорбции измельченным твердым карбамидом, обычно применяемым в виде суспензии в растворителе, так и путем смешения нефтепродукта с гомогенны. раствором карбамида, в результате чего из смеси выделяется белый сметанообразный осадок, после фильтрования и сушки превращающийся в кристаллическое вещество. Кристаллы комплекса обладают гексагональной структурой, в которой молекулы карбамида располагаются спиралеобразно и связываются за счет водородных связей между атомами кислорода и азота смежных молекул, повернутых друг относительно друга на 120° и образующих круглый в сечении канал. Важнейшая особенность структуры комплексов — строго фиксированный диаметр этого канала, лежащий в пределах (5-=-6)-10" мкм. Внутри канала легко могут располагаться линейные молекулы парафина (эффективный диаметр молекулы (3,8- -4,2)-10 мкм] и практически не размещаются молекулы разветвленных парафинов, ароматических углеводородов (эффективный диаметр молекулы около 6- 10 мкм) и т. д. Этим свойством карбамидный комплекс напоминает цеолит. По другим признакам аддукт близок к химическим соединениям. Так, карбамид реагирует с углеводородами в постоянном для каждого вещества мольном соотношении, медленно возрастающем с увеличением длины цепочки, причем для различных гомологических рядов эти соотношения также несколько отличаются. Величины мольных соотношений, хотя и представляющие собой дробные числа (табл, 5.23), напоминают стехио-метрические коэффициенты в уравнении закона действующих масс. С возрастанием длины цепочки увеличивается и теплота образования аддукта. Эго, в частности, проявляется в том, что высшие гомологи вытесняют более низкие 1.3 -аддукта. [c.315]

    Конечно, хотелось верить, что Джерри просто заврался, но отмахнуться от его возражений я не мог. Если не считать Лайнуса, Джерри знал о водородных связях больше всех в мире. Он много лет изучал в Калифорнийском технологическом институте кристаллические структуры небольших органических молекул, и я не мог утешать себя тем, что он не понимает существа нашей работы. Он занимал стол в нашем кабинете уже шесть месяцев, и я еще ни разу не слышал, чтобы он судил о том, в чем не разбирался. [c.109]

    Как мы уже отмечали, тип строения вещества определяется прежде всего тем, какие связи соединяют его структурные единицы,—межмолекулярные или межатомные. Мы рассматриваем в этой главе молекулярные соединения, построенные из структурных единиц, связанных сравнительно слабыми межмолекулярными связями, включая в определенных случаях водородные связи. Благодаря этому в твердом состоянии все они -имеют кристаллическую структуру. Твердые молекулярные соединения, построенные из молекул, связанных ван-дер-ваальсовскими связями, называются молекулярными кристаллами. В молекулярных твердых растворах в структуру молекулярных кристаллов входят разные молекулы. Заметим, что с химической точки зрения твердые молекулярные растворы — это молекулярные соединения. [c.20]

    Известно, что по своей структуре жидкости занимают промежуточное положение между газами, в которых расположение молекул хаотично, и кристаллами, где частицы находятся на определенных расстояниях друг от друга в узлах кристаллической решетки. В жидкостях сохраняются некоторые элементы упорядоченной структуры. Например, считается, что вода частично сохраняет структуру льда, в котором каждая молекула имеет водородные связи с четырьмя соседними молекулами. [c.179]


    В(ОН)з - кристаллическое вещество, т. ал. 171 С, имеет слоистую структуру, в которой молекулы прочно объединены водородными связями [c.346]

    Бернал и Фаулер (Англия), впервые проделавшие тщательное рентгеноструктурное исследование воды, установили в 1933 г., что и воде остаются фрагменты структуры льда — кристаллические островки (см. стр. 278) для воды это явление выражено более резко, чем для большинства других жидкостей. Для большей части молекул в жидкой воде сохраняется тетраэдрическое окружение, которое они имели в структуре льда среднее координационное число молекул в жидкой воде близко к четырем — при 2, 30 и 83° С оно равно соответственно 4,4 4,6 и 4,9. Большая часть водородных связей, соединяющих молекулы Н О в решетке льда, сохраняется и в воде доля разорванных водородных связей при О, 25, 60 и 100° С составляет соответственно 9, 11, 16 и 20%. [c.279]

    Юхневич [155] обсуждает противоречия, возникающие при попытке объяснить поведение воды в разных условиях изменениями ее структуры. В самом деле, большинство методов анализа не позволяют установить природу связей в воде и ее структуру эти методы, скорее, помогают понять поведение воды в отдельных избранных системах. В некоторых работах воду, удаляемую нз неорганических материалов при температуре ниже и выше 100 °С, называют минусовой водой и плюсовой водой соответственно На основе данных рентгеноструктурного анализа кристаллогидратов была сформулирована концепция о структурной воде , так как этот метод позволяет локализовать положение атомов в элементарной ячейке. Удаление воды из кристалла сопровождается изменением его структуры. Чидамбарам [28 ] исследовал водородные связи в некоторых кристаллогидратах методами рентгеноструктурного анализа, дифракции нейтронов и ЯМР. Он показал, что если молекула воды удерживается в кристаллической структуре водородными связями и угол с вершиной у донорного атома кислорода, связанного с акцепторными атомами, отличается по величине от угла Н—О—Н, характерного для газовой фазы, то при этом более вероятно образование нелинейных водородных связей, а не деформация угла Н—О—Н. [c.11]

    Электронографическое исследование, так же как и нейтронографическое, позволяет фиксировать атомы водорода в структурах. Но, кроме того, с его помощью удалось установить повышенную полярность атома водорода в соответствующих связях, что позволило трактовать водородные связи как донорно-акцепторное взаимодействие. Интересный результат электронографического исследования борной кислоты, который, впрочем, имеет общее значение, состоит в обнаружении перескоков атома Н с одной позиции на другую, в результате чего в структуре фиксируется некий усредненный слой с двумя полуато-мами водорода в симметричных позициях. В борной кислоте атомы Н не лежат точно на прямой О... О, что, по-видимому, обусловлено жесткостью валентного угла О—В—О. Другими словами, поскольку энергия водородной связи в большинстве случаев мала (порядка 3— 8 ккал1моль) и не может изменить всю систему связей в кристаллической структуре, водородная связь, как правило, приспосабливается к реально существующей структуре вещества. Однако добавление к имеющейся системе межатомных сил дополнительно направленных связей, каковыми являются Н-связи, может препятствовать, в частности, плотнейшей упаковке ионов и тем самым понижать симметрию кристалла. Например, фтористый калий имеет высшую категорию симметрии, а фтористый аммоний — среднюю и т. д. [c.167]

    ЛИШЬ около 30% имеюшихся в нем водородных связей. Жидкая вода не состоит из изолированных, несвязанных между собой молекул напротив, она содержит области, или кластеры, молекул, связанных водородными связями. Таким образом, в жидкой воде частично сохраняется структура водородных связей кристаллического льда. По мере повышения температуры кластеры разрушаются, и объем жидкости продолжает уменьшаться. Но при дальнейшем повышении температуры начинает сказываться тепловое расширение. Поэтому жидкая вода имеет минимальный молекулярный объем, т.е, максимальную плотность, при 4°С. [c.621]

    Если в молекуле содержится гидроксильная групна (нанример, в спиртах, фенолах, карбоновых кислотах), то атомы кислорода гидроксильных групп двух молекул могут тесно сблизиться из-за образования водородных связей. Водородные связи относятся к числу химических связей средней силы, но, когда их миого, оин способствуют образованию прочных димерных или полимерных структур. Общеизвестными примерами являются а-синральная структура дезоксирибонуклеиновой кислоты и других природных полимеров и алмазонодобная структура кристаллического льда. Водородные связи образуются не только между двумя группами -ОН, но и между -ОН и кислородом карбонильной группы С=0, азотом аминогрупны -КНг и т.д. [c.115]

    Полосы в средней области ИК-спектра целлюлозы II указаны в табл. 6.53. В этой области проявляются в основном те же полосы, что и в спектре целлюлозы I. Различия в интенсивности и положении касаются лишь нескольких полос, связанных с колебаниями ОН- или СНг-групп. Из этого следует, что обе модификации целлюлозы различаются положением гидроксиметиленовой группы, а также структурой водородных связей. Относительно диффузный характер полос в спектрах целлюлозы II может быть объяснен тем, что эта модификация содержит больше неупорядоченных областей. Образцы с более высокой степенью кристалличности дают такие же четкие спектры, как и целлюлоза I в них полосы при 1370 и 1030 см- расщепляются на компоненты при 1375 и 1365 см и 1035 и 1020 СМ соответственно [1067]. Спектры мерсеризованного хлопка [698] или пленок из регенерированной вискозы содержат широкую полосу при 1120 см . В спектре же кристаллической целлюлозы II вместо этой полосы появляется максиму.м при 1107 см".  [c.404]

    Соединения металлов с водородом, называемые гидридами, являются преимущественно ионными, В гидридах щелочных металлов, например КН или NaH, происходит перенос отрицательного заряда к атому водорода. Гидриды щелочных металлов обладают кристаллической структурой типа Na l (см. гл. 1). В соединениях ВеН , MgHj и AIH3 обнаруживается своеобразный тип связей с мостиковыми атомами водорода. В кристаллах этих соединений каждый атом Н равноудален от двух соседних атомов металла и образует между ними водородный мостик. Во всех случаях, когда на атомах Н имеется избыточный отрицательный заряд, он используется для образования второй связи с еще одним атомом, если у последнего имеются неиспользованные возможности образования связей. Отрицательно заряженные атомы Н имеются и в NaH, но в данном случае [c.318]

    Водородная связь. Взаимодействие между молекулами может происходить благодаря наличию водородных связей. Эта связь обусловлена способностью атома водорода, непосредственно связанного в молекуле с атомом сильно электроотрицательного элемента (Р, О, N и в меньшей степени С1, 5 и др.), к образованию еще одной химической связи с подобным атомом другой молекулы. При этом возникает водородная связь. Например, молекулы карбамида, находящегося как в тетрагональной, так и в гексагональной кристаллической структуре, связаны между собой водородными связями за счет того, что атом кислорода одной молекулы карбамида образует связь с атомом водорода аминной группы соседней молекулы карбамида  [c.45]

    Ассоциация молекул и структура жидкостей и твердых тел. Молекулы таких жидкостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)з, (Н.,0)2, (СНзОН)2, трнмеры, тетрамеры и т. д., пока тепловое движение не разрушит образовавшегося кольца или цепочки молекул. Когда тепловое движение понижено, через водородные связи создается кристаллическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две докорные Н-связи и через два атома Н —две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты, и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (ближний порядок). Эта структура делает воду уникальным по свойствам растворителем. Ассоциация через водородные связи приводит к аномально высоким значениям диэлектрической проницаемости таких жидкостей, как НС , НзО, метанол и др. Водородные связи типа —СО...Н—N1 — [c.139]

    Молекулярные твердые соединения построены из молекул, соединенных друг с другом лишь ван-дер-ваальсовыми силами, включая в определенных случаях водородные связи, и состав этих веществ есть сумма составов всех молекул, вошедших в его структуру. Они образуют молекулярные кристаллы, структурными единицами которых служат молекулы. Молекулярные твердые соединения образуются в результате отвердевания, т.е. фазового превращения вещества, когда имеет место лишь межмолекулярное взаимодействие и не происходит разрыв существующих или образование новых химических связей. При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, образуя настолько плотную упаковку, насколько позволяет конфигурация. молекул /69/. [c.107]

    Наиболее ярко водородная связь проявляется в ассоциированных жидкостях. Через водородные связи может создаваться кристаллическая структура растущего кристалла при уменьшении интенсивности теплового движения в кристаллизующейся системе. Необходимо отметить наличие, наряду с межмолекулярной, также и внут-римолеку/ ярной водородной связи, характерной для некоторых молекул, обладающих одновременно акцепторными и донорными группами. [c.97]

    Мы видим, что аморфные вещества не являются разупорядо-ченными кристаллическими веществами. И, таким образом, кристаллическая модель не может отражать природу аморфных веществ, так же как кристаллическая решетка не может содержать никакой информации о структуре аморфных веществ. Кристаллическая модель твердого вещества не отражает существования направленной составляющей связи, соединяющей структурные единицы твердого вещества. Между тем давно известно, что природа кристаллов определяется в конечном счете именно этим фактором. В самом деле, тип кристаллической структуры определяется характером межатомной связи и кристаллические структуры издавна классифицируются по типу связи ковалентной, водородной или ионной, металлической, молекулярной — ван-дер-ваальсовской. При этом различают координационные, каркасные, слоистые, цепочные и островные структуры. [c.162]

    Повышение температуры приводит к некоторому увеличению количества ионов, ибо в обычных условиях ионогенные молекулы в полимерах диссои ч рованы не полностью. В хорошо очищенных полимерах основным источником ионов являются процессы диссоциации с образованием положительно заряженных ионов. Для ряда полимеров, имеющих водородные связи, ионная проводимость может реализоваться и в результате самоионизации молекул. Процессы ориентации и кристаллизации таких полимеров приводят к тому, что водородные связи образуют длинные цепочки, через которые реализуется подвижность положительно заряженных ионов. Для кристаллических полимеров, содержащих малопроницаемые области молекулярной упорядоченности, движение ионов и диффузия примесей происходят по удлиненным путям в местах наибольшей дефектности структуры. В связи с этим увеличение числа дефектов в кристаллических полимерах приводит к росту g и коэффициента диффузии D. Для полимеров, имеющих надмолекулярные структуры, движение ионов в основном происходит через поверхности раздела внутри сферолитов и поверхностные слои на границах сферолитов. [c.201]

    Термическая дегидратация и конденсация. Многие кристаллические фазы, содержащие в решетке гидроксильные группы, при нагревании соединяются в новые структурные элементы, образуя мостики из атомов кислорода и отщепляя воду. Реакция конденсации осуществляется за счет перемещения протона по водородной связи соседних групп ОН. Реакционноспособные группы ОН есть, например, в кристаллических кислотах, гидроксидах металлов, кислых и основных солях, а также во многих силикатных структурах. Примерами таких реакций могут служить дегидратация борной кислоты, дегидратация гидроксида магния, конденсация гидрофосфата натрия (в результате реакции образуется дифосфат, структурные единицы которого состоят из двойных тетраэдров фосфата с мостиковым атомом кислорода), конденсация силикатов [в результате более сложной твердофазной реакции из серпентина (слоистой структуры присоединёния) при отщеплении воды образуются ортосиликат магния (островковая структура) и диоксид крем-ЛИЯ (объемная структура)]  [c.434]

    В действительности дело обстоит гораздо сложнее, чем это указано в уравнении (15.2). Из разд. 11.3, ч. 1, известно, что жидкая вода пронизана водородными связями. Существование каркаса из водородных связей обусловливает многие специфические свойства воды, например ее высокую полярность, а также высокие температуры плавления и кипения. Много исследований было посвящено выяснению того, каким образом ионы встраиваются в сложную структуру жидкой воды. Экспериментальные исследования показывают, что ионы Н могут частично существовать в воде в виде ионов гидроксония. Действительно, можно выделить соли состава HjO l , НзО СЮ и другие, в кристаллической рещетке которых несомненно имеется ион НзО . Но поскольку молекулы воды связаны друг с другом прочными водородными связями, ион НзО в растворе тоже связан водородными связями с другими молекулами воды. Это делает возможным существование ионов, показанных на рис. 15.3, которые были обнаружены экспериментально. [c.72]

    Эта повышенная прочность обусловлена двумя главными причинами 1) взаимодействием молекул через водородные связи и 2) углом между свя зями в молекуле воды благодаря хр -гибридизации внешних электронных обо лочек атома кислорода близким к 109,5° (тетраэдрическому углу), в то время как в молекулах остальных гидридов из-за отсутствия гибридизации углы близки к 90°. Благодаря яр -гибридизацпи и тетраэдрическому углу атом кислорода каждой молекулы Н2О в структуре льда связан двумя связями череа заполненные лр -орбитали с атомом водорода двух соседних молекул воды Одновременно каждая молекула воды еще двумя связями своих атомов водорода соединена с двумя другими молекулами воды, В результате коорди национное число кислорода в структуре льда равно четырем и каждая молекула воды окружена четырьмя ближайшими соседями. Все водородные связи между молекулами энергетически равноценны, и кристаллическая структура льда напоминает структуру алмаза, если атом углерода мысленно заменить на [c.29]

    Тетраэдрическое расположение четырех электронных пар вокруг атома кислорода обусловливает кристаллическую структуру льда (рис. И 1.37). Атомы кислорода в рещетке льда образуют структуру типа алмаза, а атомы водорода располагаются асимметрично на линиях, соединяющих атомы кислорода, ближе к тому атому, с которым осуществляется ковалентная связь. При плавлении льда не все водородные связи [c.207]

    Строение жидкой воды. Как уже указывалось (см. стр. 260), молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейше упаковки. Если произвести расчет, обратный описанному на стр. 10, и исходя из определенного рентгенографически радиуса молекулы Н2О в структуре льда (1,38 А) подсчитать плотность воды, соответствующую плотнейшей упаковке, то мы получим значение 2,0. Эта величина более чем в два раза превышает плотность льда, которая равна 0,9. [c.279]

    Заметное отклонение структуры молекулярного кристалла от плотнейшей упаковки происходит при наличии между молекулами водородной связи, например у льда. Искажение валентных углов здесь требует значительных затрат энергии. Этим объясняется рыхлая структура льда. Энергия кристаллической решетки молекулярного кристалла выражается тепловым эффектом его сублимации. Эта величина для разных веществ колеблется от долей единицы до нескольких десятков кДж/моль и более, что значителы о ниже, чем энергии решетки других типов кристаллов. [c.137]


Смотреть страницы где упоминается термин Кристаллические структуры с водородными связями: [c.167]    [c.30]    [c.515]    [c.619]    [c.122]    [c.331]    [c.118]    [c.109]    [c.472]    [c.354]    [c.635]    [c.279]    [c.343]   
Валентность и строение молекул (1979) -- [ c.131 , c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная связь—фактор кристаллической структуры

Водородные связи

Кристаллическая структура

Кристаллические структуры кристаллы с водородными связями

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте