Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация углеводородов щелочными металлами

    И. П и о т р о в с к и й К. Б., К вопросу о влиянии эфиров на полимеризацию диеновых углеводородов щелочными металлами , в кн. Тезисы докладов IX конференции по общим вопросам химии и физики высокомолекулярных соединений, М., 1956, стр. 51. [c.535]

    При полимеризации диеновых углеводородов щелочными металлами добавки эфиров, способных образовывать комплексы с литийорганическими соединениями, [c.535]


    Исторически щелочные металлы явились первыми возбудителями полимеризации диеновых углеводородов [15, 16]. В ряде исследований было установлено, что при полимеризации в углеводородной среде микроструктура полибутадиенов определяется природой применяемого щелочного металла (табл. 2). [c.179]

    Каталитическая полимеризация. Из известных методов каталитической полимеризации для получения жидких каучуков с концевыми функциональными группами пригодна практически только полимеризация или сополимеризация диолефиновых и олефиновых углеводородов под влиянием щелочных металлов или их металлорганических соединений. [c.413]

    Диеновые углеводороды (бутадиен, изопрен), стиролы в присутствии щелочных металлов претерпевают превращение в высокомолекулярные соединения (анионная полимеризация), например  [c.736]

    Полимеризация бутадиена Щелочные или щелочноземельные металлы и небольшое количество галоидопроизводных углеводородов, например, этиленхлорид позволяет полимеризацию проводить спокойно и равномерно 1173 [c.477]

    Изложенные выше представления о металлоорганическом механизме полимеризации стирола имеют достаточно прочное экспериментальное обоснование, так как полимеризация непредельных углеводородов легко протекает под действием заведомых металлоорганических соединений щелочных металлов, например  [c.205]

    Высказано предположение, что высокая активность рассмотренных выше каталитических систем Циглера обусловлена реакцией щелочного металла с ненасыщенным углеводородом — активатором, которая происходит в присутствии галогенидов титана и приводит к образованию промежуточных веществ, способных реагировать с соединениями титана. В результате этой реакции возникают неустойчивые алкил- (или алкенил)-три- (или ди)-хлориды титана. Такие соединения быстро распадаются. При этом титан восстанавливается до валентности ниже трех. В этом валентном состоянии атомы титана образуют координационные соединения с этиленом и инициируют полимеризацию этого мономера. Хотя щелочные металлы сами способны снижать валентное состояние титана, этот процесс, по-видимому, облегчается при образовании алкилгалогенидов титана. Чрезвычайно высокая активность системы, в которой в качестве активатора был использован ацетилен, очевидно, обусловлена тем, что восстановление титана протекает значительно легче, когда заместителями в титанорганических соединениях, образующихся при взаимодействии с активатором, оказываются ненасыщенные радикалы с повышенной электронной плотностью. [c.175]


    Типичные катализаторы анионной полимеризации — щелочные металлы, нек-рые их органич. и неорганич. Производные (алкилы, алкоксиды, арилы, амиды), аналогичные соединения металлов II группы, а также комплексы полициклич. ароматич. углеводородов со щелочными металлами, содержащие в качестве компонента анион-радикал (табл. 2). [c.477]

    Промышленный интерес представляет цепная полимеризация диеновых углеводородов под влиянием катализаторов или инициаторов. В качестве катализаторов используются щелочные металлы, металлоорганические соединения, в качестве инициаторов—органические и неорганические перекиси. [c.84]

    Промышленный интерес представляет цепная полимеризация диеновых углеводородов под влиянием катализаторов или инициаторов. В качестве катализаторов используются щелочные металлы, металл  [c.88]

    Систематическому изучению А. п. ненасыщенных соединений положили начало исследования 20-х годов Циглера и С. В. Лебедева. В одной из первых работ, относящихся к этому циклу, Циглер выдвинул представление о подобных реакциях как о последовательном металлорганич. синтезе. Такая концепция в принципе совпадает с современным взглядом на сущность полимеризации, инициированной щелочными металлами и металлалкилами. С. С. Медведев и А. Д. Абкин в 1936 обнаружили высокую устойчивость промежуточных соединений, возникающих при натриевой полимеризации бутадиена, и указали, что механизм этого процесса отличен от радикального. Тем не менее в 30-х и даже в начале 40-х годов еще существовала точка зрения о радикальном механизме процессов, инициированных щелочными металлами. Она была окончательно отброшена при появлении новых экспериментальных фактов о строении полимеров и составе сополимеров, образующихся в анионных системах. Как впервые установила А. И. Якубчик с сотр., полимеры диеновых углеводородов, полученные под действием различных щелочных металлов, значительно отличаются по своей структуре друг от друга и от полимеров, образующихся при радикальном инициировании. Весьма важным для понимания механизма полимеризации под влиянием щелочных металлов оказались результаты, полученные в 1950 Уоллингом, Мэйо и сотр. сополимеры стирола с метилметакрилатом, образующиеся при использовании таких инициирующих агентов, принципиально отличаются по своему составу от сополимеров, синтезированных с помощью радикальных и катионных инициаторов. Именно к этому времени относится выделение А. п.в самостоятельный раздел химии полимеров.Периодом особенно интенсивного развития исследований по А. п. (вовлечение значительного числа разнообразных мономеров, расширение круга инициаторов, создание фундамента теории соответствующих процессов) являются последние 10—15 лет. В эти годы в области теории и практики А. п. сложились крупные школы химиков в Советском Союзе (С. С. Медведев и сотр., А. А. Коротков и сотр.) и за рубежом (М. Шварц, М. Мортон в США, Шульц, Керн в ФРГ, Байуотер и Уорсфолд в Канаде и др.). [c.72]

    Однако, к этому времени уже назревало открытие полимеризации под действием щелочных металлов. Еще в 1899 г. Кондаков [231 наблюдал полимеризацию диизопропенила над натрием, но ошибочно объяснил это, как образование какого-то натрового соединения [17] и не придал своему наблюдению значения. Л. М. Кучеров в 1908 г. отметил [24] полимеризующее действие натрия на изопрен, но своевременно не опубликовал своих наблюдений. Таким образом идея полимеризации действием щелочных металлов уже имела все предпосылки и неудивительным было предложение Метькюа и Стренджа [25] о применении натрия для полимеризации углеводородов ряда дивинила. С этого момента в литературе наблюдается большой поток предложений о применении разных веществ в качестве катализаторов полимеризации. [c.22]

    Развиваемые выше представления о механизме стереорегулирования в процессах полимеризации диеновых углеводородов катализаторами на основе переходных металлов могут быть также использованы при рассмотрении реакций образования полидиенов в присутствии щелочных металлов или соответствующих им ме-таллорганических соединений, особенно соединений лития (табл. 8). [c.126]

    Одним из наиболее простых является полимеризация диена на щелочном металле в среде полярного растворителя. Так как в полярном растворителе константы роста цепи одного порядка с константой инициирования, то при достаточном избытке щелочного металла возможно выделение первичных продуктов, содержащих 2—10 звеньев мономера. В качестве мономеров употребляют днолефнновые гл пинпларол атпчсские углеводороды. Для увеличения повер.хности щелочного металла его обычно используют в виде дисперсии в парафине или вазелине. Чем больше полярность растворителя, чем больше отношение металл мономер, тем меньше звеньев мономера содержит катализатор [2]. [c.413]


    Опыты П. Сабатье и его сотрудника Сандэрана возбуждают заслуженное внимание и представляют наиболее интересный пример неорганического синтеза нефти. Смесь непредельного углеводорода, с водородом подвергается (в присутствии катализатора — никеля) нагреванию нри температуре не свыше 180°. Происходит процесс гидрогенизации ненасыщенных углеводородов. В результате получается светло-желтая жидкость удельного веса 0,790, состоящая из предельных углеводородов и напоминающая по своим свойствам пенсильванскую нефть. При несколько измененных условиях опыта получаются и другие результаты так, если пропускать ацетилен без водорода над никелем при температуре 200°С, получается вещество, богатое ароматическими углеводородами. При вторичном пропускании этого последнего над никелем получается смесь нафтенов, т. е. нефть типа бакинской. Здесь, очевидно, мы имеем процесс полимеризации и образования под влиянием катализаторов циклических соединений. Вертело доказал, что полимеризация ацетилена (С2Н2) дает бензол (СаНе) при температуре размягчения стекла. Далее в литературе встречаются указания, что углеводороды могут получаться и при других реакциях. Например, еще в 1863 г. была известна возможность непосредственного получения ацетилена при пропускании водорода между угольными концами вольтовой дуги, но тогда на это не обратили должного внимания. Еще Вертело указал, что щелочные металлы, реагируя с СО2, образуют карбиды, или ацетиды и кислород, который потом уходит из сферы реа- [c.302]

    Возможно, аналогичными реакциями объясняется полимермзующее действие щелочных металлов на углеводороды (ср., например, полимеризацию изопрена в присутствии натрия с образованием натрий-изопренового каучука). Такой процесс может заключаться в последовательных конденсациях, которые схематично изображены нижеследующими формулами  [c.196]

    В соответствии с изложенным, катализаторами анионной полимеризации являются ве1цества основного характера, металлоргани-ческие соединения н металлы, легко превращающиеся в положительно заряженные ионы. Типичные примеры катализаторов анионной полимеризации — амид натрия (ЫаЫНг), щелочные металлы (Ь1, N3, К, РЬ, Сз) и их алкилы, комплексы щелочных металлов с ароматическими углеводородами (нгфтил-Na, нафтил-К). [c.41]

    В качестве эмульгаторов при эмульсионной полимеризации чаще всего применяют мыла олеаты, пальмитаты, лаураты щелочных металлов, натриевые соли ароматических сульфокислот, например натриевую соль диизобутилнафталинмоносульфокислоты (некаль). Молекула эмульгатора представляет собой длинную неполярную углеводородную цепь, содержащую полярную группу — карбоксильную или сульфогруппу. Эмульгаторы снижают поверхностное натяжение на границе раздела фаз углеводород — вода, облегчая тем самым эмульгирование мономера в воде. Создание поверхностной пленки эмульгатора на каплях мономера способствует стабилизации эмульсии. [c.118]

    Многие металлоорганические соединения способны инициировать полимеризацию ненасыщенных соединений. Из них особое значение имеют металлоорганические соединения щелочных металлов, цинкорганические и кадмийорганические соединения (например, диэтилцинк, диизобутилцинк) и магнийорганические соединения. Полимеризацию под действием металлоорганических соединений обычно проводят в растворах. Наиболее распространенными растворителями являются алифатические и ароматические углеводороды (гексан, гептан, декалин, бензол, толуол). [c.148]

    В отличие от триоксана, полимеризация мономерного формальдегида ускоряется в присутствии веществ как кислого характера (протонные и льюисовские кислоты, карбонилы металлов УЦ1 группы), так и основного (амины, амиды, имиды, четвертичные аммониевые основания, оксиды, гидроксиды и соли щелочных металлов, алкилфосфины и т. д.), а также соли высщих карбоновых кислот, металлы и сплавы. Для получения качественного высокомолекулярного продукта требуется мономер высокой степени чистоты (суммарное содержание примесей не выще 0,05%). Тепловой эффект реакции достаточно велик (63 кДж/моль), что на практике требует системы теплосъема. Полимеризацию мономера проводят, пропуская газообразный продукт через раствор с катализатором, т. е. в системе газ — жидкость. Хотя высокомолекулярный продукт может быть получен и в полярных растворителях (спирты и даже вода), на практике применяют насыщенные углеводороды (парафины, ароматические, алициклические). Чистый гомополимер сравнительно легко подвергается термоокислительной деструкции, например при сушке или при формовании изделий, причем этот процесс начинается с концевых групп. Для придания большей термической и химической устойчивости к макромолекулам в а, -положении присоединяют различные функциональные группы. Повышение предела термической устойчивости в зависимости от природы этих групп растет в ряду [21] гидроксильные <формильные <фенилуретановые <сложноэфирные < С простые эфирные. [c.193]

    Дальнейший ход процесса описывался как радикальная полимеризация. Однако уравнение ( -42) справедливо только для атомарного парообразного металла. В настоящее время несомненно, что основным типом взаимодействия щелочных металлов с ненасыщенными мономерами является перенос электрона на мономер. Для диеновых углеводородов это приводит к образованию анионорадикала [c.341]

    Основное отличие алфиновых катализаторов от обычных алкилпроизводных щелочных металлов состоит в значительно больших скоростях процесса, которые могут быть достигнуты при их применении, и в большей стереоспецифичности. У диеновых углеводородов это проявляется в увеличении содержания 1,4-трансзвеньев (до 75%) по сравнению с полимеризацией под влиянием [c.400]

    Систематические исследования углеводородов как кислот и оснований были начаты только в связи с углублением наших знаний о кислотно-основном взаимодействии на основе теорий Бренстеда, Лоури, Льюиса и Измайлова. В виде общей концепции учение об углеводородах как кислотах и основаниях развивается Шатенштейном и сотрудниками [ПО]. Можно смело сказать, что как собственные оригинальные исследования Шатенштейна, так и литературный материал, обобщенный им в этой области [ПО, стр. 107—247 305—389], представляют существенный вклад в теорию, освещающую механизм химических превращений углеводородов. Необходимость в таком освещении возрастала по мере накопления экспериментальных достижений, связанных прежде всего с открытием многочисленных реакций изомеризации, полимеризации, крекинга и алкилирования углеводородов. В своих работах Шатенштейн рассматривает случаи образования карбанионов и ионов карбо-ния реакции углеводородов со щелочными металлами и основаниями, с одной стороны, и с кислотами и кислотоподобными веществами — с другой солеобразность щелочноорганических соединений и комплексов углеводородов с кислотами изотоп- ный обмен водорода между углеводородами как кислотами и основаниями механизм реакций изомеризации, алкилирования [c.352]

    Было также предюжено получать диолефины нагревДнием смеси ацетиленовых и олефиновых углеводородов, взятых в молярных соотношениях, в течение некоторого оптимального периода времени в присутствии таких катализаторов, как, например, безводные гидроокиси щелочных металлов Если при этом увеличить или давление, или время реакции, или температуру, то в одну стадию можно получить, уже продукты полимеризации диолефинов. В качестве примера можно привести такой случай смесь ацетилена и пропилена, взятых примерно в молекулярных отношениях, пропускают при давлении от 3 до 15 ат через змеевик из толстостенной трубки или через автоклав, нагретый до 350— 450°. Змеевик имеет регулировочный вентиль при входе, а также вентиль при выходе, с помощью которого газы можно выпускать при любом давлении по желанию. Выделяющиеся газы охлаждают, причем диолефины конденсируются. Неизменившийся газ повторно пропускают через аппарат. Если для увеличения давления примерно до 30 ат вводят индиферентный газ в качестве разбавителя, ТО выход диолефина, в данном случае изопрена, как указано в патенте, возрастает до 85% от теории. Если вся операция производится в автоклаве, и нагревание продолжается 10—15 час. при 55—65 ат, то диолефин претерпевает полимеризацию с образ-эванием каучукоподобных веществ и промежуточных продуктов, которые могут быть применены в качестве составной части лаков, или же для замены скипидара. [c.178]

    Щелочные металлы, например натрий, в сочетании с четыреххлористым титаном или соединениями других переходныхметаллов IV—VI групп, служат эффективными сокатализаторами при полимеризации и сополимеризации этилена. При этом в смеси или химической комбинации со щелочным металлом используют активатор [206]. Пригодные активаторы получаются из ацетиленовых углеводородов или углеводородов, содержащих двойную связь (кроме этилена). Щелочной металл в комбинации с активатором действует как восстанавливающий агент, способный снижать валентность переходного металла. [c.115]

    В состав эффективных катализаторов для полимеризации этилена, приготовленных in situ, наряду с комбинацией четыреххлористого титана и щелочного металла входит и активатор [206]. В качестве активаторов используют ацетилен, замещенные ацетилены, углеводороды с двойной связью, например производные этилена, циклические олефины, такие, как циклогексен и диолефины. 0 1тимальное соотношение активатора, щелочного металла и четыреххлористого титана равно 1 1 0,2. Уменьшение относительного содержания щелочного металла и активатора в катализаторе приводив к значительному снижению скорости полимеризаций этилена. При увеличении относительного содержания активатора или комбинации активатора и щелочного металла заметного повышения скорости полимеризации не наблюдается. [c.175]

    Историческая справка. Задолго до формулирования представления об А. п. как о процессе особого типа были установлены факты полимеризации различных соединений под действием щелочных металлов и их производных. Первые наблюдения о полимеризации под действием щелочных металлов были сделаны еще в 19 в. русскими учеными А. А. Кракау и Л. И. Кондаковым. В 1908 Л. М. Кучеров отметил полимеризующее влияние металлич. натрия на изопрен эти данные были опубликованы в 1913. В 1910 Мэтьюсом и Стренджем был взят первый патент на полимеризацию диеновых углеводородов, инициированную натрием. Гарриес в 1911 и Шленк с сотр. в 1914 описали процессы щелочной полимеризации изопрена, 1-фенилбутадиена-1,3 и стирола. В 1920 Штаудингер исследовал образование полимера при действии метилата натрия на формальдегид. [c.72]

    Получение. Атактич. П. получают радикальной полимеризацией в массе, эмульсии и суспензии, реже— в р-ре. Полимеризация в массе — основной производственный способ получения листовых материалов, особенно из метилметакрилата (см. Метилметакрилата полимеры. Органическое стекло). Для инициирования полимеризации широко используют перекиси, азосоединения, а также УФ- и у-облучение. Анионной полимеризацией в присутствии в основном металлоор-ганич. катализаторов в неполярных растворителях, щелочных металлов в жидком аммиаке, комплексов ароматич. углеводородов с щелочными металлами или др. получают изотактич. П. в присутствии металлоорганических катализаторов в полярных средах или каталитической системы А1(С2Н5)з — Т1С14 в толуольных р-рах при темп-рах ниже О °С — синдиотактические полпмеры. [c.91]


Смотреть страницы где упоминается термин Полимеризация углеводородов щелочными металлами: [c.75]    [c.591]    [c.228]    [c.87]    [c.66]    [c.602]    [c.260]    [c.122]    [c.355]    [c.13]    [c.14]    [c.263]    [c.551]    [c.93]    [c.75]    [c.712]   
Общая технология синтетических каучуков Издание 3 (1955) -- [ c.349 , c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация углеводородов

Полимеризация щелочными металлами



© 2025 chem21.info Реклама на сайте