Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формование химических волокон из раствора

    Приготовление прядильной массы. Получение вязких концентрированных растворов (7—25%-ных) высокополимеров в доступных растворителях (щелочь, ацетон, спирт и пр.) или перевод смолы в расплавленное состояние — обязательное условие для осуществления процесса прядения или, правильнее сказать, формования химических волокон. Только в растворе или в расплавленном состоянии могут быть созданы условия, позволяющие снизить энергию взаимодействия макромолекул и после преодоления межмолекулярных связей ориентировать молекулы вдоль оси будущего волокна (рис. 90). [c.208]


Рис. 127. Прядильная машина для формования химического волокна по мокрому способу из раствора Рис. 127. <a href="/info/309191">Прядильная машина</a> для <a href="/info/308821">формования химического волокна</a> по <a href="/info/201473">мокрому способу</a> из раствора
    В связи с развитием ракетостроения, самолетостроения и других отраслей новой техники и освоением космоса возникла острая потребность в жаростойких волокнистых материалах. Традиционные природные и химические волокна, в том числе термостойкие, уже не удовлетворяли этим требованиям. Создание новых типов волокон сводилось к получению жаростойких соединений и приданию им формы волокна. К тому времени, когда появилась потребность в этих материалах, было известно большое число, преимущественно неорганических, соединений, обладающих высокой термической стойкостью. К ним относятся углерод, карбиды, нитриды, некоторые металлы и сплавы, окислы отдельных элементов и др. Таким образом, задача сводилась к разработке способов получения волокнистых материалов из новых видов сырья. Превращение жаростойких соединений в волокна представляло собой новую, сложную научно-техническую проблему. Обычные методы формования химических волокон из расплавов и растворов полимеров в большинстве случаев оказались непригодными. Возникла потребность в разработке новых способов получения волокон, зачастую из низкомолекулярных соединений. Эта задача была успешно решена. [c.11]

    Сухой способ формования применяется при получении волокна из полимеров, растворимых в легколетучих органических растворителях. Формование волокна происходит в результате испарения растворителя при повышенной температуре. Тонкие струйки раствора полимера, вытекающие из фильеры, пропускают через закрытую камеру (шахту), где они затвердевают в виде элементарных волоконец, которые собираются вместе в нить, наматываемую на быстро вращающийся цилиндр—бобину. Сухим способом производится формование ацетатного волокна, а в ряде случаев и некоторых синтетических волокон, например из сополимеров винилхлорида и акрилонитрила, полиакрилонитрильного волокна. На рис. 233 приведена схема формования волокна по сухому способу. Основное количество органического растворителя испаряется в закрытой (капсюлированной) шахте. Отсасываемая из шахты паровоздушная смесь содержит до 40 г/ж паров растворителя, который должен быть уловлен (рекуперирован). Без улавливания растворителя формование химического волокна сухим способом не может быть рентабельным. Поэтому на заводах химических волокон имеются специальные установки для улавливания летучих растворителей методом адсорбции или абсорбции. [c.672]


    При формовании волокна из расплава полимера тонкие струйки расплава из отверстий фильеры попадают в пространство, где они охлаждаются и затвердевают. Если формование волокна производится из раствора полимера, то могут быть применены два метода сухое формование, когда тонкие струйки поступают в обогреваемую шахту, где под действием циркулирующего теплого воздуха растворитель улетучивается и струйки затвердевают в волокна мокрое формование, когда струйки раствора полимера из фильеры попадают в так называемую осадительную ванну, в которой под действием различных содержащихся в ней химических веществ струйки полимера затвердевают в волокна. [c.410]

    В заключение следует подчеркнуть, что несмотря на многие свои преимущества метод формования полипропиленового волокна из раствора полимера пока не получил в промышленности химических волокон сколько-нибудь значительного распространения. [c.238]

    Для получения так называемой созревшей вискозы раствор ксантогената очищают от различных механических примесей на рамных фильтр-прессах и выдерживают определенное время (24— 60 ч, процесс созревания вискозы) при установленной постоянной температуре (14—17°С). Во время созревания происходит изменение химических и коллоидных свойств вискозы, раствор становится менее вязким, уменьшается стабильность и увеличивается способность к коагуляции. В результате частичного омыления ксантогената понижается степень этерификации целлюлозы. Пузырьки воздуха, попавшие в растор, медленно выделяются из него происходит обезвоздушивание. Обычно вискоза содержит целлюлозы 6— 9%, едкого натра 6—7,5%, серы 2,2— 2,3% и воды 80—83%. После фильтрации и обезвоздушивания подготовленный прозрачный желтоватый раствор ксантогената подается сжатым воздухом или при помощи зубчатого насоса в прядильный цех на процесс формования (прядения) волокна. Зубчатый насос, забирая определенное количество вискозы, продавливает ее через фильтр. Затем вискоза при 45— [c.210]

    При формовании из расплава струйки расплавленного полимера, охлаждаясь, затвердевают и превращаются в волокна. Если формование производится из раствора полимера в сравнительно легколетучем растворителе, волокна образуются в результате испарения растворителя из струек прядильного раствора, обдуваемых воздухом ( высыхание струек). Такой метод образования волокна носит название сухого формования. Прядильные растворы полимеров в труднолетучих растворителях перерабатывают в химические волокна методом так называемого мокрого формования. По этому методу волокна образуются из струек прядильного раствора под действием веществ, содержащихся в жидкой осадительной ванне (раствор реагентов), в которую поступают струйки. Обычно формование волокна из струек происходит в результате разбавления растворителя, при этом полимер как бы выпадает в осадок. В некоторых процессах мокрого формования компоненты прядильного раствора вступают в химическое взаимодействие с компонентами осадительной ванны, при этом состав образующихся волокон может отличаться от состава растворенного полимера. [c.443]

    Этот метод, как указывалось ранее, основан на наполнении химических волокон карбидообразующими элементами и последующей термической обработке. Карбидообразующий элемент должен находиться в волокнистом материале либо в виде окисла, либо в виде соединения, способного превращаться в окисел при низкотемпературной обработке. При последующей высокотемпературной обработке происходит науглероживание окисла за счет углерода волокна до образования карбида. Возможны два способа введения карбндообразующих элементов в волокно. По одному из них карбидообразующие соединения вводятся в прядильный раствор при формовании получают волокно с равномерно распределенными в нем добавками. Применение этого метода рассмотрено выше на примере получения 51С-волокна и смешанного углерод-кремне-земного волокна. По второму варианту готовое химическое волокно пропитывается растворами карбидообразующих элементов, обычно водны.мн растворами солей, хотя, конечно, не исключено использование органических растворителей. Волокно должно обладать сродствол к растворителю с тем, чтобы было достаточно сорбированной соли для последующего получения карбида. В случае применения водных растворов солей с pH ие менее 7 наиболее приемлемым является вискозное волокно. При использовании в качестве исходного материала полиакрилонитрильного или углеродного волокон можно для пропитки применять растворы солей или расплавы солей с кислой реакцией. [c.346]

    Сухое формование карбоцепных волокон аналогично формованию ацетатного волокна. При использовании мокрого метода формования карбоцепных волокон в отличие от формования вискозного волокна не происходит химических реакций между компонентами прядильного раствора и осадительной ванны. Струйки прядильного раствора по выходе из фильеры попадают в осадительную ванну, разбавляющую растворитель, в результате полимер коагулирует в форме волокон. Они собираются в нить или жгут и поступают, в соответствующий приемный механизм. Нити обычно наматываются на бобину, жгут штапельного волокна непрерывно поступает в отделочный агрегат, где промывается, отделывается и сушится. [c.464]


    Приготовление прядильной массы. Не все природные и синтезируемые высокополимеры могут служить основой для производства волокна. Получение вязких концентрированных растворов (7—25%) высокополимеров в доступных растворителях (щелочь, ацетон, спирт и пр,) или перевод смолы в расплавленное состояние — обязательное условие для осуществления процесса прядения, или правильнее сказать, формования химических волокон. Только в растворе или в расплавленном состоянии могут быть созданы условия, позволяющие снизить энергию взаимодействия макромолекул и после преодоления межмолеку-лярных связей ориентировать молекулы вдоль оси будущего волокна. Так, целлюлоза с помощью химических реагентов переводится в растворимое состояние. Некоторые смолы растворяются в ацетоне или расплавляются при повышенной температуре. Раствор или расплав тщательно очищается от примесей и нерастворимых частиц, для чего проводят 2—4 фильтрации, и освобождается от пузырьков воздуха. На этой стадии производства добавляют красители и другие соединения, придающие волокну окраску, матовость и т. д. [c.558]

    При мокром формовании материал волокна или его раствор продавливается через фильеры, изготовленные из тантала или золота, в жидкую осадительную ванну. Путем химического превращения или при удалении растворителя образуются мононити, соединенные в пучок. [c.587]

    Формование вискозного волокна представляет собой химический процесс. Вискозный раствор, выходящий из отверстий фильеры в виде тон- [c.316]

    Вернемся теперь к материалам с сильными взаимодействиями. Типичными их представителями являются химические волокна, имеющие весьма специализированную надмолекулярную организацию [7]. Здесь удобно проследить за влиянием МВР на разных стадиях получения волокна, начиная с отправной системы — прядильного раствора или расплава. Как известно, первой стадией формования волокна (в сегодняшней технологии) является экструзия такого раствора или расплава через фильеру. Это существенно реологический процесс, и характер течения через фильеру определяется в основном величиной эффективной вязкости т] [8]. Как показал Ф. Бюхе [9], вязкое течение концентрированных растворов (начиная с некоторой критической концентрации) и расплавов при условии, что в гидродинамическом поле разрушены все структурные элементы, подчиняется закону [c.8]

    Химические волокна, получаемые на основе целлюлозы и ее эфиров, к этой группе волокон относятся упомянутые выше медно-аммиачное, вискозное волокно и ацетатный шелк. Общим в получении всех видов волокон является формование нитей, которое осуществляют, пропуская специально подготовленные вязкие растворы через фильеры — колпачки с большим количеством мельчайших отверстий. [c.189]

    Формуют волокно из растворов сухим и мокрым способами. Сухое формование производится из раствора смолы в смеси ацетона с бензолом, мокрое — из раствора в диметилформамиде и тетра-гидрофуране. Для снижения вязкости растворов их продавливают через фильеры при повышенной температуре. Волокно хлорин, отличающееся высокой химической стойкостью, используют для изготовления фильтровальных тканей и других материалов для химической промышленности, изготовления рыболовных снастей и др. [c.250]

    Раствор ацетилцеллюлозы из химического цеха по общему трубопроводу 1 поступает в цех формования волокна. Затем при помощи зубчатого насосика 2 раствор подается через све-чевой фильтр 3 и трубку-червяк 4 в фильеру 5. Для снижения вязкости прядильного раствора, увеличения скорости испарения ацетона при формовании волокна и улучшения эластичных свойств волокна раствор перед фильерой подогревается в специальном нагревателе (головке машин). [c.131]

    Механизмы и устройства для подачи прядильных растворов, расплавов и твердого гранулята на машины для формования химических волокон Устройства и механизмы для формования волокна Вытяжные механизмы. ............. [c.374]

    Превращение жаростойких материалов в волокна представляло новую сложную научно-техническую проблему. Традиционные методы формования химических волокон из расплавов и растворов полимеров в большинстве случаев оказались неприемлемыми для переработки в волокна жаростойких неорганических соединений. Предназначенные для переработки в волокно неорганические соединения имеют высокую температуру плавления, что вызывает большие трудности при аппаратурном оформлении процесса в ряде же случаев температура разложения соединений лежит ниже температуры плавления, что исключает возможность их перевода [c.317]

    К смеси 3,48 е Ы,Ы -бис-(3-аминофенил)-изофталамида и 2,18 г ПМДА добавляют в атмосфере азота 13,7 мл высушенного диметилацетамида и 9,0 мл высушенного пиридина и при охлаждении (.—О °С) перемешивают реакционную смесь 4 ч. Затем охлаждение прекращают, а перемешивание продолжают в течение 7 ч при комнатной температуре. В результате реакции получают вязкий раствор полимера. Циклодегидратация полимера проводится в пленке при 250 °С. Циклизацию полиамидокислоты можно вести и химическим путем, добавляя к полученному раствору полимера избыток уксусного ангидрида при этом реакционный раствор желтеет и из него выпадает осадок полиамидоимида. Полиамидоимид, полученный термической или химической циклизацией, растворим в концентрированной серной кислоте (т1ло,. раствора полиамидоимида в серной кислоте 0,53 дл1г). Полимер растворим также в диметилацетамиде, содержащем ЫС1 (Ллог раствора полимера в таком растворителе 0,97 дл/г). Раствор полиамидоимида в диметилацетамиде с добавкой ЫС1 используется для получения волокна методом сухого формования  [c.138]

    Этот способ основан на использовании химических волокон часто сочетаются принципы формования химических волокон и техника спекания, широко применяемая в порошковой металлургии. Описан ряд конкретных приемов получения волокон этим методом. Согласно патенту [37], химические волокна пропитывают водными растворами солей или смесями солей элементов первой, шестой, восьмой группы до достижения сорбции 0,1 — 1 г металла иа 1 моль полимера. Избыток раствора удаляют, а волокно подвергают термической обработке, при которой происходят разложение и удаление полимера. Термическую обработку проводят в условиях, исключающих воспламенение полимера. На этой стадии образуются окислы металлов, которые затем восстанавливают в среде водорода до металла и спекают его. Исходным материалом служит вискозное волокно оно разлагается при температуре 350—500 °С на воздухе при скорости нагревания 100°С/ч. Этим способом получены волокна из Ш, Ад, N1, М1 + Ее. [c.328]

    ЛО, должны растворяться в доступных растворителях, плавиться без разложения или переходить в пластическое состояние при повышенной температуре. Для приготовления химического волокна исходный полимер в виде вязкого раствора, расплава или в пластичном при нагревании состоянии продавливают через фильеру, имеющую в донышке большое число отверстий малого диаметра (до 25 000 отверстий диаметром 0,04 мм и больше). Вытекающие из отверстий фильеры струйки полимера при затвердевании превращаются в нити бесконечной длины, которые наматывают на приемные приспособления. Этот процесс называют формованием волокна. Формование из расплава имеет преимущества, заключающиеся в том, что отпадает операция приготовления раствора и не расходуется растворитель. [c.254]

    Синтетическое волокно — химическое волокно, получаемое из синтезированных высокомолекулярных соединений. Производится из растворов и эмульсий полимеров способами сухого и мокрого формования, а также методом формования из расплава или пластифицированного полимера. Основными видами синтетических волокон, наиболее широко используемыми в текстильных изделиях, являются полиамидные, полиэфирные, полиакрилонитрильные, [c.113]

    Волокна, сформованные из расплава, имеют круглый поперечный срез. При формовании волокна из прядильного раствора струйки его, проходя через отверстия фильеры, имеют первоначально круглое поперечное сечение затем, в результате удаления из струйки растворителя за счет испарения (формование орлона и ацетатного волокна по сухому способу) или за счет вымывания (формование вискозного или альгинатного волокна по мокрому способу) происходит нарушение круглой формы поперечного сечения образующегося волокна. Однако, если при фор- мовании по мокрому способу имеет место значительное вытягивание волокна, находящегося в пластичном состоянии, его поперечное сечение получается почти круглым (медно-аммиачное волокно, волокно акрилан). Несомненно, одним из важнейших требований, предъявляемых к химическим волокнам, является однородность всех волоконец нити по форме поперечного сечения. В начале [c.25]

    Круглое сечение волокна не является следствием его вытягивания в пластичном состоянии, а определяется условиями коагуляции прядильного раствора в осадительной ванне. При медленной и равномерной коагуляции, например при коагуляции органического раствора полимера в органической ванне, при сухом формовании, а также при формовании волокна из расплава химические волокна всегда имеют круглое поперечное сечение, хотя некоторые из них, например ацетатное, вообще не подвергаются вытягиванию в пластичном состоянии. (Прим. ред.) [c.25]

    У химических волокон обычно можно регулировать степень ориентации. Основным способом увеличения степени ориентации является вытягивание волокна в процессе формования. Рассмотрим волокно, сформованное без вытягивания. Молекулы этого волокна расположены почти беспорядочно (рис. 18), хотя все же наблюдается некоторая ориентация в направлении оси волокна, обусловленная течением прядильного раствора через отверстия фильеры при формовании, аналогично тому, как ориентируются щепки, плывущие в узком месте потока . Правда, степень ориентации, вызываемая этим обстоятельством, невелика и примерно соответствует схеме, изображенной на рис. 19. [c.54]

    Химические волокна — искусственные (см. 11а) и синтетнчеси (см. 116) построены из длинных гибких цепей линейных макро.молеку. Формование химического волокна происходит следующим образом ра( твор полимера (прядильный раствор) или расплавленный полиме (расплав) продавливают через фильеру (размер отверстий 0,05—0,25 л с последующн.м образованием при соответствующих условиях элеме тарных волокон, которые скручивают в нить или выпускают в виде пу1 ков коротко нарезанных волоконец длиной 30—150 мм (штапельное вс локно). [c.228]

    Вискозное волокно представляет искусственное химическое волокно из гидратцеллюлозы, то есть одной из структурных модификаций целлюлозы (СбНю05) , которая регенерируется в процессе формования волокна из раствора. Гидратцеллюлоза [c.412]

    Формование волокна. Формование вискозного волокна, как принято в производстве химических волокон, называют прядением, а вискозу, соответственно, - прядильным раствором. Формование - важнейшая стадия технологического процесса, условия которой определяют структуру и свойства волокна. Формование осуществляют мокрым способом, т.е. прядильный раствор продавливают через фильеры (нитеобразователи) с отверстиями диаметром 0,04...0,10 мм в осадительную ванну -раствор, содержащий серную кислоту и ее соли. Серная кислота необходима для разложения ксантогената с получением регенерированной целлюлозы. Соли (сульфаты натрия, цинка и др.) регулируют процесс коагуляции. Состав ванны зависит от вида формуемого волокна. [c.593]

    ВОЛОКНЭОБРАЗУЮЩИЕ ПОЛИМЕРЫ, полимеры, вз к-рых м, б. сформованы хим. волокна. Такие полимеры должны удовлетворять след. осн. Т1>ебованиям 1) плавиться влв растворяться в доступных р-рителях 2) образовывать длинные тонкие жидкие нити прн продавливанив через фильеры расплавов или р-ров полимеров (см. Формование химических волокон), 3) высоко ориентироваться в мех. поле 4) кристаллизоваться или образовывать упорядоченные области с мезоморфной структурой. [c.106]

    Технология указанных способов формования химических волокон рассматривается в многочисленной специальной и учебной литературе, и мы не будем на ней останавливаться. Необходимо лишь подчеркнуть, что классификация способов формования волокон только по технологическим признакам не удовлетворяет современным требованиям и ничего не дает для познания сущности проис-ходящих при этом процессов, и в частности механизма и кинетики образования волокна из растворов и расплавов полимеров, обусловленных спецификой полимерного состояния волокнообразуюш,егэ вещества. [c.238]

    Химический метод формования используется при получении гнд-ратцеллюлозных и некоторых синтетических волокон, например, на основе полиимидазолов. Их получают мокрым способом из концентрированных растворов промежуточных веществ (полупродуктов), которые при взаимодействии с компонентами осадительной ванны в процессе формования частично или полностью переходят в нерастворимое состояние, чем и определяется химический состав будущего волокна. Например, в случае формования вискозного волокна в растворе находится ксантогенат целлюлозы, который под действием серной кислоты осадительной ванны переходит в гид-ратцеллюлозу по схеме (см. стр. 32). [c.239]

    Состав и свойства прядильного раствора (концентрация полимера в растворе и вязкость) зависят от метода формования волокна. Так же как и при получении всех других химических волокон, прядильный раствор, применяемый для формования иолиакрило-нитрильпого волокна сухим способом, обладает значительно более высокой вязкостью, и соответственно концентрация полимера в растворе выше, чем при формовании мокрым способом. При формовании полиакрилонитрильного волокна мокрым способом вязкость прядильного раствора составляет 200—300 сек, [c.179]

    Из термотропных жидкокристаллических сополимеров могут быть получены волокна, обладающие высокой степенью ориентации. Ранее мы упомянули о волокнах из ароматических полиамидов, получаемых формованием из жидкокристаллических растворов. Однако, несмотря на то, что свойства этих материалов очень хороши, формование из расплавов представляется более предпочтительным. А в этом отношении хорошее соотношение свойств дают описываемые жидкокристаллические сополиэфиры. Компоненты, которые могут быть использованы в этих материалах, включают различные ароматические и циклоароматические дикарбоновые кислоты, замещенные гидрохиноны и другие ароматические гликоли. После формования волокно термообрабатывают, в результате чего существенно увеличивается прочность и модуль упругости. Термообработку ведут вблизи точки плавления и включает она определенную последовательность температур, проходимых материалом. Это иллюстрируется для полимера со следующей химической структурой, известного из патентной литературы [7]  [c.179]

    Триацетат — промежуточный продукт при производстве вторичного ацетата — применяется в виде 20%-ного прядильного раствора в хлористом метилене волокно получается в процессе сухого формования. По способу кращения триацетатное волокно должно быть отнесено к химическим волокнам, так как оно имеет сильногидрофобный характер. Триацетатные волокна более устойчивы, чем волокна из вторичного ацетата. В кипящей воде триацетат не гидролизуется и не матируется. Его точка плавления равна примерно 300 °С, а поглощение воды при нормальных условиях составляет 3—4%. В отличие от вторичного ацетата триацетат нерастворим в ацетоне, тетрагидрофуране и других полярных [c.25]

    В трубе НП типа В М-формы (рис. 40), в которой удаление газов из расплава происходит в течение сравнительно длительного времени, пузырьки газа наблюдаются даже в точке 3 (см. рис. 40). Это свидетельствует о захватывании расплавом, обладающим в этом месте трубы уже достаточно высокой вязкостью, пузырьков газа и во второй зоне удаления газов. Захваченные пузырьки могут быть унесены расплавом в прядильную трубу. Естественно возникает вопрос, насколько могут такие пузырьки нарушать химическую гомогенность расплава поликапроамида и затруднять процесс формования. Можно считать установленным, что при формовании штапельного волокна небольшое содержание в расплаве пузырьков газа не сказывается ни на химической гомогенности расплава, определенной по величине относительной вязкости раствора полимера и содержанию лактама в полимере, ни на процессе формования волокна, характеристикой которого является число засо- [c.152]


Смотреть страницы где упоминается термин Формование химических волокон из раствора: [c.68]    [c.228]    [c.106]    [c.443]    [c.258]    [c.264]    [c.321]    [c.108]   
Физико-химические основы технологии химических волокон (1972) -- [ c.168 , c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна химические

Машины для формования химических волокон из прядильных растворов и расплавов

Машины для формования химических волокон из растворов полимеров

Системы подачи прядильных растворов, расплавов и твердого гранулята полимера на машины для формования химических волокон

Схемы машин для формования химических волокон из прядильных растворов и расплавов

Фильеры для формования химических волокон из растворов и расплавов полимера

Формование волокна

Химический ая ое раствора



© 2025 chem21.info Реклама на сайте