Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция органических веществ

    Аэротенки. Процесс биохимической очистки сточных вод от органических веществ в аэротенках состоит из таких этапов адсорбция и коагуляция активным илом взвешенных и коллоидных частиц, окисление микроорганизмами растворенных и адсорбированных илом органических соединений, нитрификация и регенерация активного ила. Избыточный активный ил удаляется из сооружения. [c.201]


    К физико-химическим методам очистки сточных вод относят коагуляцию, флотацию, адсорбцию, ионный обмен, экстракцию, ректификацию, выпаривание, дистилляцию, обратный осмос, и ультрафильтрацию, кристаллизацию, десорбцию и др. Эти методы используют для удаления из сточных вод тонкодисперсных взвешенных частиц (твердых и жидких), растворимых газов, минеральных и органических веществ. [c.72]

    Наилучшие результаты были получены при предварительной обработке сточной воды озонированием и коагулированием. В случае удаления коллоидных органических веществ из исходной сточной воды осаждением и коагуляцией благоприятное влияние, оказываемое озо- [c.325]

    Вирт [39] резко подчеркивает различие процесса старения анионитов, вызванного действием растворенного кислорода, от потери анионитами емкости, обусловленной необратимой сорбцией анионитами органических веществ, содержащихся в воде. Последнее явление мон ет быть предотвращено предварительной коагуляцией органических веществ, хлорированием, пропусканием через активированный уголь и т. д. [c.266]

    Образование почвенных коллоидов происходит на основе взаимной коагуляции различных органоминеральных соединений, а придание им устойчивости обеспечивается гуминовыми органическими веществами почв. Получение бетонов и строительных растворов основано на процессах коагуляционного твердения. Большое значение также имеют процессы коагуляции и защиты коллоидов в кожевенной, бумажной, резиновой, текстильной, маслосыродельной, пивоваренной, бродильной, кондитерской, сахарной, фармацевтической, мыловаренной промышленности, в хлебопечении и во многих других производствах. [c.132]

    Нередко в стоках присутствуют сложные высокомолекулярные органические вещества, не поддающиеся или слабо поддающиеся биохимической деструкции. Под влиянием температуры, кислорода, а также реагентов они могут подвергаться чисто химическим или физико-химическим изменениям — окислению, восстановлению, нейтрализации, сбраживанию, коагуляции, осаждению и т. п. [c.330]

    Возникновение иловых почв в дельтах рек также связано с коагуляционными процессами. Так, дельта Нила образуется в результате слияния двух рек — Белого и Голубого Нила. Воды Белого Нила, вытекающие из болот, несут много органических веществ, частично защищающих минеральные частицы. Благодаря защитному действию гуматов высокодисперсная система весьма устойчива, и воды Белого Нила на всем его протяжении характеризуются значительной мутностью. Голубой Нил, стекая с горных хребтов Эфиопии, содержит много минеральных солей, вызывающих коагуляцию и осаждение гидрофобных минеральных частиц, поэтому воды Голубого Нила совершенно прозрачны. После слияния двух рек вода Нила продолжает оставаться мутной, так как концентра- [c.340]


    Явление взаимной коагуляции играет большую роль в почвенных процессах часть содержащихся в почвах коллоидов образуется в результате взаимной коагуляции положительно заряженных золей Ре(ОН)з, А1(ОН)з и отрицательно заряженных золей кремневой кислоты, а также гуминовых веществ. Явление взаимной коагуляции используется при очистке воды от органических веществ. [c.238]

    В тех случаях, когда стабилизационной обработке подвергают речные воды с малым содержанием органических веществ (до 15 мг/кг), известковое молоко можно вводить в смесители перед отстойниками или осветлителями. При стабилизационной обработке речных вод, цветность которых нужно снижать коагуляцией, введение извести в воду одновременно с коагулянтом может ухудшить процесс обесцвечивания воды, для которого наиболее благоприятны низкие значения pH. На небольших и средних станциях лучше вводить получаемый в сатураторах известковый раствор в фильтрованную воду, а на более крупных станциях, если сатураторные установки оказываются чрезмерно громоздкими, приходится дозировать известковое молоко перед фильтрами между отстойниками (или осветлителями) и фильтрами приходится устанавливать специальные смесители. [c.42]

    Коагуляция цветных вод, содержащих органические вещества. В бутыль емкостью 10—20 дм наливают воды и добавляют алюминиевые квасцы или сернокислый алюминий из рас- чета 60—100 мг на 1 дм (в зависимости от состава цветной воды следует путем предварительных опытов установить необходимое для коагуляции количества квасцов). Затем раствор перемешивают и наблюдают через 1—3 мин помутнение и оседание хлопьев. . [c.325]

    Это достигается созданием в растворе значительных концентраций электролита, ионы которого в процессе своей гидратации отнимают воду от частиц золя и тем способствуют его коагуляции. Подобное, обусловленное гидратацией ионов действие электролитов на гидрофильные коллоиды (а также истинные водные растворы многих органических веществ) носит название высаливания. Последним часто пользуются при [c.616]

    Осажденный кремнезем образуется в том случае, когда первичные частицы кремнезема коагулируют в водной среде в виде рыхлых агрегатов, которые выделяют, промывают и высушивают. Коагуляцию можно осуществлять посредством добавления соли с высокой концентрацией или добавления других коагулянтов, таких, например, как аммиак, способных смешиваться с водой растворителей или некоторых типов органических веществ. Когда первичные частицы по размеру больше чем 5—10 нм, то они могут лишь слабо связываться друг [c.633]

    Коагуляция под действием органических веществ [c.778]

    В процессе отстаивания черного щелока выделяется лишь грубодисперсная форма мыла. Остаточная смолистость черного щелока обусловлена молекулярной и коллоидно-растворенной формами сульфатного мыла. Соотношение между рассмотренными формами зависит от влияния ряда факторов, важнейшими из которых являются концентрация сульфатного мыла и электролитов, температура и pH щелока, а также присутствие других органических веществ. Задача состоит в том, чтобы сдвинуть равновесие вправо, т. е. в сторону образования грубодисперсной фракции мыла. Влияние температуры на выделение сульфатного мыла оказывается двояко при ее понижении концентрация электролитов, необходимая для коагуляции мыла, уменьшается, однако растет вязкость среды, что затрудняет всплывание частиц мыла на поверхность щелока и замедляет процесс выделения сульфатного. мыла. [c.62]

    В клеях и герметиках определяют содержание сухого остатка и его состав. Для определения состава сухого остатка часть клеевой композиции освобождают от растворителей при комнатной температуре или путем коагуляции полимера спиртом и дальнейшей отмывкой полимера на холоду спиртом, ацетоном и затем горячей экстракцией ацетоном до полного извлечения органических веществ. В некоторых случаях остаток после выделения разделяют экстракционными методами. Для экстракции сухого остатка применяют индивидуальные растворители или систему растворителей различной полярности. Схема анализа сухого остатка аналогична схемам анализа резин. Для анализа экстракта из клея, состоящего из различных органических добавок, применяют уже упомянутые в схемах анализа резин и классические методы для определения функциональных групп и основных классов органических соединений. [c.144]

    Этот метод применяется для коагуляции хлоропренового латекса в производстве синтетического каучука наирит , для агломерации стирольных латексов в производстве эмульсионных синтетических каучуков и пенорезины, для выделения многочисленных органических веществ из их растворов, опреснения морской воды, обработки осадков природных вод и т. д. [c.24]

    Изменение состава органических веществ некоторых поверхностных вод в процессе коагуляции [c.84]


    Эффективное обессоливание воды, взятой из открытого водоема, невозможно без предварительного удаления органических веществ, находящихся в ней в коллоидном или истинно растворенном состоянии [1—2]. Этой цели служат методы коагуляции, окисления, дистилляции или сорбции с помощью фильтров с активированным углем или крупнопористыми анионитами [3—5]. [c.87]

    Из данных таблицы видно, что органические вещества, содержащиеся в невской воде, удаляются при коагуляции и сорбции в различной степени. Так, аминокислоты, амины и гуминовые кислоты удаляются лучще при коагуляции, в то время как сложные углеводы, белки и фульвокислоты — сорбционным методом. [c.90]

    Наличие органической компоненты в растворе силикатов четвертичного аммония приводит к другому отличительному свойству Этих растворов. Они способны смешиваться с водорастворимыми органическими веществами, не вызывая ни фазового расслоения, Ни коагуляции кремнезема. Концентрация кремнезема в смешанном водноорганическом растворе может превышать 40%, а органическая компонента в смешанном растворителе способна дости- "ать 50%. Растворы силикатов калия и натрия (но не лития) [c.93]

    Коагуляция кремнезема из силикатных растворов нейтральными электролитами и водорастворимыми органическими веществами [c.112]

    Технологическая эффективность и преимущество электрокоагуляции перед коагуляцией солями не подлежит сомнению при обработке природных вод, содержащих большие количества органических веществ. Они объясняются высокой активностью катионов АР+ И Fe +, отсутствием дополнительных количеств анионов и, как следствие,— большей вероятностью образования металлоорганических комплексов. [c.248]

    Для удаления взвешенных и гумусовых веществ применяются методы отстаивания в отстойниках и осветлителях любого типа, а также фильтрование в напорных и открытых песчаных фильтрах с предварительной коагуляцией при высоком содержании гумусовых. Для уничтожения органических веществ, планктона и бактериального загрязнения необходимо использовать хлорирование и озонирование, для поддержания pH — подкисление, иодщелачи-вание и фосфатирование для поддержания допустимого содержания фтора — фторирование при недостатке и сернокислотную обработку при избытке для обезжелезивания — аэрацию, коагуляцию, подщелачивание, обработку перманганатом калия и катио-нирование для умягчения поверхностных вод — известковосодовое умягчение для умягчения подземных вод —ионный обмен для обессоливания — ионный обмен, электролиз, дистилляцию и гиперфильтрование. [c.162]

    Замораживание дает ощутимые и устойчивые результаты в отношении осадков коагулированной взвеси, образуюш,ейся при очистке природных вод. В осадках сточных вод в больших количествах присутствуют органические вещества, которые могут препятствовать процессу коагуляции при замораживании, точнее — его необратимости. Такие осадки перед замораживанием или осуществлением какого-либо другого способа обезвоживания (на вакуум-фильтрах, пресс-фильтрах и т. д.) обрабатывают коагулянтами, известью, флокулянтами, хлором. Предпочтение отдают хлорному железу [178, 194—200], хлорированному или нехлорирован-ному железному купоросу [196, 201, 202], сернокислому окисному железу [178, 203]. Из алюминийсодержащих коагулянтов чаще всего используют Al2(S04)a. [c.336]

    При очистке сильно окрашенных природных вод едкий натр (гидроксид натрия) и соду (карбонат натрия) следует применять для подщелачивания воды, не содержащей хлопьев гидроксидов с сорбированными органическими веществами. Так как известь (оксид кальция) в очищенную воду не может быть введена, то ее следует добавлять в тех местах очистных сооружений, где находится вода, освобожденная от основной массы хлопьев и окрашивающих веществ. Мел в связи с меньшим стабилизирующим действием его на органические примеси можно вводить в воду после завершения процесса коагуляции и сорбции окрашенных веществ на образующихся гидроксидах, не ожидая их удаления из воды. [c.636]

    При испытании сконструированного нами аппарата (очистка от солей воды из водопроводной сети г. Ленинграда) выяснилось, что следует предварительно удалять из воды органические вещества, имеющиеся в ней в относительно большом количестве. При длительном электродиализе происходило отложение органических веществ (путем электрофореза) на анодной диафрагме, что увеличивало ее элёктросопротивление. Кроме того, анодная диафрагма становилась электрохимически активной, разница чисел переноса между диафрагмами уменьшалась, и это понижало эффективность процесса электродиализа. В результате предварительной коагуляции органических веществ добавлением коагулянта А12(304)з (в количестве 60 мг на. л воды) получалась вода, свободная от органических веществ. Однако электродиализ невской воды, прошедшей предвар ительную коагуляцию, не дал удовлетворительных результатов, так как вода имела повышенную кислотность (pH 4), Это объясняется, во-первых, слабой буферностью коагулированной воды, во-вторых, тем, что применение двух отрицательно заряженных диафрагм вызвало [c.186]

    Продолжительная аэрация бытовых стоков понижает концентрацию растворенных органических веществ в них с 50—70 до 17—20 мг/л перед поступлением воды на очистку обратным осмосом. В результате концентрация растворенных органических веществ в очищенной обратным осмосом воде оказывается примерно на 50% ниже, чем для воды, предварительно обработанной только осветлением коагуляцией. Концентрация растворенных органических веществ в очищенной обратным осмосом бытовой сточной воде (как для сточной воды, подвергнутой только механической очистке, так и для сточной воды, прошедшей предварительно биологическую очистку) находится в пределах 2—3 мг/л. Поэтому, если очин1,аемая вода должна повторно использоваться для бытовых целей, ее необходимо доочистить (нанример, с помощью ионного обмена), чтобы суммарное содержание в ней органических веществ не превышало 0,2—0,5 мг/л. [c.326]

    Благодаря сиоей химической структуре, ступенчатой плотности заряда и различной молекулярной массе флокулянты пригодны для коагуляции нерастворенных органических и неорганических веществ из суспензий и шламов. Добавление флокулянтов в систему вызывает коагуляцию твердого вещества, после чего оно легче фильтруется и осаждается. [c.228]

    Свойства асфальтенов. Аефальтены — это наиболее высокомолекулярные гетеро-органические вещества нефти, представляющие собой твердые продукты от черно-бурого до черного цвета. Асфа 1ьтены лио-фобны по отношению к растворителям с поверхостным натяжением ниже 25-10 Н/м [фи 25 °С (низкомолекулярным алканам, петролейному эфиру, пентану, изопентану, гексану и пр.). Мальтены, находящиеся в дисперсионной среде в виде раствора, вызывают коагуляцию асфальтенов вместе с некоторой частью емол.чстых продуктов. Аефальтены являются продуктами созревания смол, и это означает, что один из процессов созревания включает ароматизацию неароматической части смол. [c.47]

    Методика работы состоит в.следующем. От 0,2 до 3 г анализируемого материала (в зависимости от содержания урана) помещают в стакан емкостью 150—200 мл, добавляют 3—5 мл азотной кислоты (уд. в. 1,40) и 10—20 мл разбавленной серной кислоты (1 1), накрывают часовым стеклом, нагревают до кипения и кипятят до появления паров SO3. Сняв стакан с плитки, к горячему раствору осторожно добавляют 20—30 капель азотной кислоты (уд. в. 1,40) для окисления органических веществ и снова нагревают до появления паров SO3. Если, судя по цвету раствора (бурый, темно-желтый), органические вещества не разрушились, то добавляют азотную кислоту и повторяют нагревание. После этого нагревание продолжают еще 30—40 мин., затем снимают стекло и упаривают раствор до получения почти сухого остатка сшей. По охлаждении осторожно прибавляют 15—20 мл воды, 5—Ю мл концентрированной соляной кислоты и кипятят до растворения солей. Полученный раствор вместе с нерастворившимся остатком разбавляют горячей водой до 50—60 мл, нейтрализуют аммиаком до появления неисчезающей мути, которую растворяют добавлением 2—3 капель концентрированной соляной кислоты и сверх этого добавляют 20—30 капель той же кислоты. Если при нейтрализации раствора обнаружится, что осадок гидроокисей алюминия и железа очень мал, то добавляют 8—10 мл 5%-ного раствора алюминиевоаммонийных квасцов для обеспечения полного соосаждения фосфата уранила, К полученному слабокислому раствору добавляют горячей воды до 100—150 мл, 5 г хлорида аммония, 30%-ного раствора уксусной кислоты по 5—6 мл на каждые 100 мл раствора, нагревают до кипения, добавляют 15—40 мл раствора фосфата натрия и затем отдельными порциями кристаллический ацетат натрия до отсутствия изменения красной окраски бумаги, пропитанной конго красным. Раствор хорошо перемешивают и помещают на кипящую водяную баню для коагуляции осадка фосфатов. Через 20—30 мин., когда раствор над осадком станет прозрачным, проверяют реакцию раствора смачиванием бумажки конго красного, которая при этом не должна изменять своей окраски (pH 4,5—5,0), а в противном случае добавляют еще ацетат натрия. Раствор фильтруют горячим через бумажный фильтр белая лента , осадок промывают 7—8 раз горячим 1—2%-ным раствором нитрата аммония, содержащим 0,5% фосфата натрия, не стремясь перенести весь осадок из стакана на фильтр. Промывание осадка можно заменить переосаждением. В этом случае осадок фосфатов смывают с фильтра водой обратно в стакан, в котором производилось осаждение, и, растворив осадок добавлением нескольких миллилитров соляной кислоты, осаждают вновь, как указано выше. Переосаждение, в особенности, рекомендуется в присутствии тяжелых металлов, ванадия и молибдена. Если необходимо, то переосаждение повторяют еще раз. О присутствии тяжелых металлов (Си, Ni, Со) можно судить по цвету фильтратов. О присутствии ванадия и его количестве заключают по окраске, возникающей при добавлении капли перекиси водорода к кислому раствору. Фильтр с осадком фосфатов развертывают над стаканом, в котором производилось осаждение, и тщательно смывают осадок в стакан 50 мл 10% -ного раствора карбоната натрия. Добавляют 0,05—0,1 г животного угля (для сорбции загрязнений, коллоидной гидроокиси железа, следов тяжелых металлов и т. п.), накрывают стакан часовым стеклом и кипятят раствор до уменьшения его [c.268]

    Как видно из приведенного обзора литературы, особая роль в образовании пористости силикагеля принадлежит реакции среды при коагуляции, длительности синерезиса, условиям промывки (температура промывной воды, наличие в ней электролитов и др.) и сушки (температура, присутствие паров органических веществ). Вместе с тем в большинстве цитированных работ отсутствуют надежные характеристики структуры силикагеля (величина поверхности и размеры пор), что не давало возможности составить достаточно полное представление об эффектах, вызываемых различными факторами. В ряде случаев высказывались противоречивые точки зрения по поводу объяснения этих эффектов. Так, Поляков считал, что увеличение пористости в случае гелей, обработанных растворами аммиака и соляной кислоты, объясняется разрыхлением структуры геля газами, выделяющимися в процессе сушки. Хармадарьян и Копелевич полагали, что при обработке электролитами происходит пептизация кремнекислоты с последующим ее вымыванием, из-за чего увеличивается объем пор. Окатов, Боресков и Киселев связывали такого рода активирующее действие электролитов с их дегидратирующей способностью. [c.17]

    В таблице 3 приводятся данные анализа 9 г рупи органических веществ, содержащихся в невской воде после коагуляции и сорбционной очистки. Анализы выполнялись в лаборатории методик гидрохиманализа Новочеркасского гидрохимического инсгп-тута.. 1етоды анализа разработаны в указанной лаборатории — 81. [c.89]

    Как известно, окраска большинства природных вод обусловлена присутствием в них органических веществ гумусового происхождения. Поэтому частичное, а иногда и полное обесцвечивание воды может быть достигнуто применением окислителей — хлора, озона и др. Исследование процесса обесцвечивания воды, окрашенной высокомолекулярными гумусовыми соединениями, под действием хлора показало, что протекание его обусловлено окислением содержащихся в составе таких веществ фенольных гидроокислов с образованием карбоксильных соединений. Этим объясняется и улучшение процесса коагулирования при прехло-рировании воды, так как замена более гидратированных гидроксильных групп менее гидратированными карбоксильными снижает защитные свойства гумуса по отношению к гидрофобным коллоидам, что способствует ускорению их коагуляции и осаждения. Количество хлора, необходимое для обесцвечивания воды, определяется фракционным составом гумуса с увеличением содержания низкомолекулярных креновых кислот в составе гумуса расход хлора возрастает [30]. [c.93]

    Прехлорирование используют для борьбы со значительным бактериальным заражением в качестве химического средства, улучшающего некоторые процессы очистки воды (например, коагуляцию, фильтрацию, отстаивание или обесцвечивание), как метод борьбы со вспениванием и эффективный способ обезвреживания воды при попадании в нее некоторых отравляющих веществ (ОВ). Прехлорирование обычно проводится большими дозами хлора, но, в отличие от суперхлорирования, оно обычно не требует последующего дехлорирования воды, так как избыточное количество хлора практически полностью удаляется при дальнейших процессах ее обработки. При этом хлор расходуется на окисление различных примесей, сорбируется хлопьями коагулянта, окисляет органические вещества, накапливающиеся на песке фильтров и т. д. [c.148]

    Приведенные схемы автоматизации охватывают отдельные стадии химико-технологического процесса обработки воды. Уже их использование позволяет получить значительную экономию в расходе реагентов и улучшить качество очистки воды. Гораздо большей экономической эффективности можно достигнуть при комплексной автоматизации станций водоподготовки с использованием централизованной системы сбора и обработки информации. Это связано с большим количеством контролируемых объектов, где режимы обработки могут быть разными, огромным объемом информации, необходимой для научно обоснованного управления технологическими сооружениями, а также тем, что химико-технологические процессы взаимосвязаны и для их оптимизации необходимо воздействие на ряд контуров системы. Выше было показано, что на процессы коагуляции примесей воды влияют количество, состав и свойства окрашенных гуминовых соединений и взвешенных веществ, ионный состав обрабатываемой воды, взаимное влияние применяемых реагентов и пр. Хлорирование воды протекает по-разному в зависимости от наличия в ней легкоокисляющихся примесей, органических веществ и аммиака или его солей. В этом случае оперативный контроль и оптимальное управление процессами водоподготовки могут <зыть успешно реализованы лишь при использовании управляющих вычислительных машин (УВМ). [c.210]

    Количественная оценка адсорбции органических веществ (особенно ПАБ и ВМВ) на механических примесях имеет важное значение, поскольку дает в озможность судить о состоянии поверхности, оценить способность частиц к коагуляции. [c.59]

    Исследования, проведенные с водой из р. Миссури, показали, что с минеральными частицами взвеси ассоциировано около 60% органических веществ [126]. С увеличением степени гидрофильности минеральных взвесей возрастает количество органических примесей, удаляемых коагуляцией, что указывает на более высокую адсорбционную способность гидрофильных минералов. С другой стороны, коллоидные частицы и макромолекулы органических веществ могут проявлять по отношению к частицам минералов защитное действие и затруднять их коагуляцию [119, 127]. Гуминовые вещества проявляют защитное действие по отношению к почвенным суспензиям, золям кремпекислоты, гидроокисям алюминия и железа. Этим объясняется, в частности, наличие растворенного железа в водах, богатых кислородом И28]. Максимальная адсорбция гуминовых веществ имеет место при низких значениях pH воды, когда их ДП близок к нулю (рис. II.4). [c.59]

    До настоящего времени коагулирование с последующим осветлением воды является наиболее распространенным способом отделения угольного порошка. Продукты гидролиза коагулянта и сорбент дополняют друг друга в технологическом отношении присутствие коагулянта позволяет удалить из воды дисперсные примеси, плохо снимаемые АУ присутствие сорбента — избавиться от органических веществ, затрудняющих коагуляцию. Но в то же время катионы АР+ и Ке +, вводимые с коагулянтами, могут конкурировать с удаляемыми веществами за адсорбционные участки АУ, а гидроокисные оболочки — уменьшать доступность для адсорбтива внутренней поверхности угольных пор, экранировать их. С другой стороны, включение пористых частиц АУ в хлопья коагулированной взвеси вызывает изменение размера, формы и объемного веса хлопьев, скорости их осаждения. Степень помехи зависит от дозы АУ и принятого способа осветления воды. Так, при дозировании АУ в количествах более 50 мг л перед фильтровальными сооружениями работа фильтрующих слоев заметно ухудшилась, потребовалось добавление флокуляита. При переходе от мокрого способа дозирования угольного порошка (в виде водной суспензии) к сухому длительность фильтроцикла сократилась па 13—14% [221]. Осветлители со взвешенным осадком при дозах АУ около 150 мг л работали неустойчиво даже при скорости восходящего потока 0,5 мм/сек [222]. [c.239]

    Коагуляции сопутствует адсорбция на частицах гидроксидов, низкомолекулярных органических веществ. Возникшие агрегаты сложного состава в результате дальнейшего коагуляционного струк-турообразования превращаются в крупные хлопья. Так как положительно заряженные продукты гидролиза быстро превращаются в А1(0Н)з и Ре(ОН)з, то для успешной коагуляции вводимые реагенты следует возможно быстрее равномерно распределить в воде. Распределение осуществляют в смесителях в течение 10—30 с, затрачивая на перемешивание в 1 с энергию, равную 40—80 Дж на 1м , что сбответствует градиенту скорости 0=200- 300 с .  [c.117]

    Молекулы некоторых органических веществ при взаимодействии с подобранными высокополнмерными соединениями могут переходить в гетерогенное состояние и затем удаляться из воды, например, в процессе коагуляции. [c.51]


Смотреть страницы где упоминается термин Коагуляция органических веществ: [c.31]    [c.176]    [c.164]    [c.277]    [c.485]    [c.57]    [c.24]   
Химия кремнезема Ч.1 (1982) -- [ c.779 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляция



© 2025 chem21.info Реклама на сайте