Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры форма макромолекул

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    Физико-химические свойства растворов высокомолекулярных соединений определяются размерами и формой макромолекул в растворе, интенсивностью взаимодействия макромолекул между собой и сродством данного соединения к растворителю. По этому признаку растворители могут быть разделены на так. называемые хорошие (высокое сродство) и плохие (низкое сродство). В хороших растворителях полимеры способны образовывать истинные растворы. В таких растворителях высокомолекулярные соединения находятся не в виде мицелл или пачек, а в виде отдельных макромолекул. Истинные растворы ВМС подчиняются правилу фаз Гиббса. В частности, это означает, что при ограниченной растворимости концентрация насыщенного раствора зависит только от температуры и не зависит от пути образования раствора (при нагревании или при охлаждении). [c.436]

    Свойства полимеров резко зависят от геометрической формы макромолекул. Так, линейные полимеры, обладая большой прочностью, эластичностью, могут образовывать растворы с высокой вязкостью. Это связано с высокой степенью ориентации линейных макромолекул друг относительно друга и их довольно плотной упаковкой. Разветвленные полимеры обладают иногда даже большей растворимостью по сравнению с линейными полимерами. Степень разветвленности определяет их прочность и вязкость растворов. Например, полимеры с высокой степенью разветвления образуют растворы с пониженной вязкостью, что объясняется меньшей гибкостью этих макромолекул, а значит, и незначительной их асимметрией. Разветвленность макроцепи является еще одним видом нерегулярности макромолекул полимера, который мешает и даже препятствует процессу кристаллизации. С увеличением степени разветвленности макромолекул полимеры приближаются по физическим свойствам к обычным низкомолекулярным веществам. Сетчатые полимеры по свойствам очень отличаются от линейных и разветвленных полимеров. Они не растворяются и не плавятся без разложения, практически не кристаллизуются. Все эти и другие свойства зависят от степени связывания макромолекулярных цепей [c.382]

    Высокомолекулярные вещества обладают некоторыми общими свойствами, определенной механической прочностью и др., нередко они разлагаются при высоких температурах без предварительного плавления. Свойства высокополимеров зависят не только от химического состава структурной единицы полимера (мономера), но в очень большой степени от величины молекулярного веса, геометрической формы макромолекул, строения цепей, характера и интенсивности взаимодействия между ними. [c.274]


    На течение растворов полимеров и их вязкость большое влияние мол<сет оказывать также изменение формы макромолекул. При наложении внешнего давления возможно распрямление полимерных клубков и ориентация их по направлению течения. В результате ориентации макромолекул гидродинамическое сопротивление потоку и вязкость раствора уменьшаются. При относительно больших концентрациях растворов распрямление и ориентация полимерных молекул затруднены. Поэтому при повышении концентрации растворов гибкоцепных макромолекул вязкость увеличивается более резко, чем предсказывает уравнение Эйнштейна. [c.195]

    Как зависит вязкость растворов полимеров от нх молекуля )ной массы, формы макромолекул и их термодинамического сродства к растворителю Напишите уравнения Марка — Хаувинка и Хаггинса и объясните, при каких условиях они выполняются. [c.204]

    При еще. более высоких температурах за время нагружения успевает произойти не только изменение формы макромолекул и отдельных их частей, но и заметное перемещение макромолекул как целого (их центров тяжести) относительно друг друга под действием внешней силы. В результате происходит развитие необратимой деформации полимера, т. е. его течение. Температура, при которой наряду с. обратимой высокоэластической становится значительной и необратимая деформация, называется температурой текучести. [c.141]

    Своеобразная форма макромолекул линейных полисилоксанов определяет ряд свойств, специфичных для этих полимеров и обычно присущих только полимерам, не содержащим полярных [c.476]

    При приложении к полимеру внешней деформирующей силы деформация развивается в зависимости от времени действия этой силы. В начале действия силы перемешаются сегменты, не входящие в состав узлов сетки. Это подтверждается приведенными выше значениями времени оседлой жизни сегментов, не входящих в узлы сетки (малые доли секунды). В результате перемещения этих свободных сегментов клубкообразная форма макромолекул, характерная для исходного равновесного состояния, искажается, макромолекулярные клубки оказываются вытянутыми в направлении действия силы. Время оседлой жизни связанных сегментов, т. е. входящих в узлы сетки, более велико это значит, что они вначале не распадаются и целостность структуры флуктуационной сетки сохраняется. Если снять деформирующую силу, то сегменты возвратятся в исходное состояние. Таким образом деформация, возникающая при малом времени действия силы, оказывается обратимой. Это эластическая деформация. [c.99]

    Форма и структура макромолекул полимеров. Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации. Разветвленные полимеры могут образоваться как при полимеризации, так и при поликонденсации. Разветвление полимеров прн полимеризации может быть вызвано передачей цепи на макромолекулу, росте боковых цепей за счет сополимеризации и другими причинами. Разветвленные полимеры образуются при поликонденсации многофункциональных соединений, а также в результате прививки к макромолекулам боковых цепей. Прививку проводят либо путем взаимодействия полимеров с олигомерами или мономерами, либо путем физического воздействия (например, 7-облучения) на смесь полимера и мономеров. Сетчатые полимеры образуются в результате сшивки цепей при вулканизации, образовании термореактивных смол и т. д. Форма макромолекул влияет на структуру и свойства полимеров. [c.357]

    МОЛЕКУЛЯРНЫЙ ВЕС ПОЛИМЕРОВ. ФОРМА МАКРОМОЛЕКУЛЫ [c.394]

    Исследования опалесценции получили самостоятельное развитие для определения молекулярной массы и формы макромолекул полимеров. В этом случае используется флуктуационная трактовка рассеяния света, где в уравнения, описывающие это явление [например, (2.18)1, входит молекулярная масса. Эта связь выведена из зависимости осмотического давления от концентрации. Поскольку влияние межмолекулярных взаимодействий на осмотическое давление исчезает только при очень больших разбавлениях, необходимо получать данные для разбавленных растворов при нескольких концентрациях и результат [/ = / (1/%) или = = 7 (1/%)] экстраполировать к бесконечному разбавлению (с -> 0). Данный прием характерен для всех методов определения молекулярной массы, основанных на использовании осмотического давления, хотя при этом не всегда имеется уверенность в том, что при разбавлении растворов малоустойчивых высокомолекулярных веществ их молекулярная масса остается неизменной. [c.29]

    Молекулы высокомолекулярных веществ могут быть линейными и разветвленными, причем длина молекулярных цепей может быть сравнительно большой — превышать 1 мкм. Именно линейной формой макромолекул определяются типичные свойства полимеров каучукоподобная эластичность, способность образовывать прочные пленки и нити, набухать, давать при растворении вязкие растворы и т. д. [c.426]


    Полимеры представляют собой неоднородные системы в отношении как формы макромолекул, так и молекулярных масс. Такая физико-химическая неоднородность определяется условиями синтеза и очистки полимера. В отличие от низкомолекулярных соединений полимеры представляют собой смесь макромолекул различной молекулярной массы, часто различающихся даже по химическому составу (сополимеры, производные целлюлозы и хитозана, белки). Полимерные материалы (волокна, пленки) могут быть изготовлены и из смесей полимеров. [c.16]

    Ранее отмечалось, что расчетные размеры молекулярных клубков меньше реальных. Это связано с фактическими ограничениями свободы конформационных переходов потенциальным барьером i/q- Дополнительные ограничения в изменении формы макромолекул возникают в результате взаимодействия полимера с растворителем. [c.107]

    В случае пространственных полимеров понятие молекула теряет свой обычный смысл и приобретает некоторую неопределенность и условность. Это связано с большими размерами и громоздкостью этих макромолекул. Форма макромолекул имеет большое значение. От ее формы зависят свойства полимеров (см. с. 382), Полимерные соединения часто применяются в качестве связующего компонента. Если к полимерным соединениям добавить наполнители, красители, пластификаторы, а также средства, препятствующие преждевременному разрушению данного полимера, то такие композиции называются пластмассами. [c.378]

    Таким образом, геометрическая форма макромолекул полимера зависит от функциональности исходных мономеров. [c.386]

    Многие вещества входят в живые организмы в форме макромолекул, полимеров с высокой молекулярной массой. Биополимеры можно подразделить на три большие класса белки, углеводы и нуклеиновые кислоты. В пище животных белки, углеводы и молекулы из класса соединений, называемого жирами, служат важнейшими источниками энергии. Кроме того, полимерные углеводы выполняют функции важнейших строительных материалов, придающих форму растительным организмам, а [c.443]

    На механические свойства студней сильно влияет их концентрация. Студни, содержащие в единице объема малое число постоянных межмолекулярных связей, обычно весьма эластичны. Наоборот, студни с большим числом связей между макромолекулами сравнительно мало эластичны, так как чем больше связей между цепями полимера, тем меньше возможность изменения формы макромолекулы, тем более жестка образовавшаяся сетка. [c.486]

    Задание. Сделать вывод о форме макромолекул полистирола в растворе рассчитать невозмущенные размеры и сегмент для всех фракций полистирола (см. работу III. 1) объяснить, существует ли зависимость между размером сегмента и молекулярной массой полимера. [c.105]

    Характер теплового движения макромолекул в различных температурных интервалах неодинаков. В температурной области стеклообразного состояния энергия теплового движения недостаточна для перемещения отдельных участков макромолекул относительно друг друга, поэтому форма макромолекул и их взаимное расположение практически не изменяются во времени. Соответственно при малых нагрузках в стеклообразном состоянии у полимеров наблюдаются лишь небольшие обратимые деформации. [c.140]

    В химии высокомолекулярных соединений форма макромолекулы приобретает очень важное значение. Так, макромолекула линейного полимера в зависимости от геометрии элементарных звеньев и порядка их чередования (если они различаются по химическому составу и стереометрии) может по своей форме приближаться к жесткой палочке (полифенилены, полиацетилены), свертываться в спираль (амилоза, нуклеиновые кислоты, пептиды) или в клубок — глобулу (глобулярные белки). В зависимости от формы макромолекулы линейные полимеры могут значительно различаться по свойствам. Но в то же время они имеют ряд общих свойств, характерных именно для линейных полимеров, которые отличают их от полимеров с иной геометрической формой молекул. [c.47]

    Резкая анизотропия формы макромолекул обусловливает возможность существования полимеров в ориентированном состоянии. Ориентация в большинстве случаев достигается путем растяжения полимерных тел. [c.178]

    В полимерах атомы главной валентной цепи связаны между собой ковалентными химическими связями, характеризующимися высокой энергией, а сами цепи — значительно более слабыми силами межмолекулярного взаимодействия. Межмолекулярные связи непрерывно распадаются и возникают под действием тепловых флуктуаций. Нестабильность межмолекулярных связей создает благоприятные условия для непрерывного теплового движения участков макромолекул, что приводит к непрерывному изменению формы макромолекулы, т. е. ее конформации. [c.121]

    Г сли реакция протекает в растворе полимера, то свернутая или выпрямленная форма макромолекулы соответственно затрудняет или облегчает вероятность столкновения реагента с функциональ- [c.221]

    В зависимости от состава основной цепи полимерные соединения делят на карбоцепные, гетероцепные и элементорганические. По форме макромолекул и порядку расположения валентных связей различают полимеры линейные, разветвленные и пространственные. Особенности указанных полимеров были рассмотрены в разделе 1 (стр. 7). По методам синтеза принято делить полимерные соединения на две группы полимеры, получаемые реакцией полимеризации полимеры, получаемые реакцией поликонденсации и ступенчатой полимеризации (стр. 33). По тому, как полимерные соединения ведут себя при нагревании, их делят на термопластичные и термореактивные. [c.26]

    Третья особенность химии высокомолекулярных соединений — это резкая зависимость свойств полимеров от геометрической формы макромолекул. В химии низкомолекулярных соединений от геометрии молекулы зависят лишь свойства отдельных ее атомов. [c.47]

    Следовательно, строение (геометрическая форма макромолекулы) синтетических полимеров зависит от функциональности исходных мономеров и метода их синтеза. [c.57]

    При изучении физической структуры полимеров (формы макромолекул и конформационных превращений, водородных связей, надмолекулярной структуры), а также и химического строения применяются разнообразные физические методы исследования микроскопия (световая, ультрафиолетовая, электронная) рентгеносчруктурный анализ электронография спектроскопия (ультрафиолетовая, инфракрасная, ядерного магнитного резонанса и др.) оптические методы (метод двойного лучепреломления) и др. [c.143]

    Химические превращения полимеров с сохранением первоначальной степени полимеризании и формы макромолекул—полимераналогичные превращения. [c.86]

    При восстановлении поливинилхлорида прп помощи литий-алюминийгидрида в указанных условиях не наблюдается расщеп- чения макромолекул полимера или и мeнeния их формы. Макромолекулы поливинилхлорида, примененного для получения полиэтилена, содержали длинные боковые ответвления (по 1—2 ответвления на 100 звеньев цепи). Эти ответвления сохраняются и в полученном из такого пoJ[ивинилxлopидa полиэтилене, придавая ему свойства, аналогичные свойства 1 полиэтилена, синтезированного ири высоких давлениях. [c.199]

    Форма макромолекул полиэтилена зависит от метода его получения. Наиболее регулярная нитевидная форма х арактерна для полученного из диазометана полиэтилена (полиметилепа). Такой полимер не имеет боковых ответвлений и строение его макромолекул соответствует формуле [c.204]

    Простая связь, как известно, допускает вращение одной части молекулы относительно другой (см. с. 273) без деформации валентных углов или химических связей. В случае макромолекул такое вращение приводит к возникновению множества различных конформаций нерегулярной формы. Это объясняется тем, что такое вращение может происходить вокруг большого числа последовательно расположенных простых связей в цеин (рис, 38). Если представить, что три атома углерода С , Сз и Сз молекулы лежат в одной плоскости, то атом С4 может равномерно занимать любую точку по краю окружности конуса , образованного вращением связи Сг—Сз как оси вращения. То же касается и атома Сд, допуская его свободное вращение вокруг простой связи Сз—С4. Продолжая рассуждать так и дальше, можно предположить, что в случае очень длинной молекулы полимера в результате таких произвольных поворотов вокруг множества простых связей форма макромолекулы будет довольно сложной н нерегулярной, с высокой степенью асимметрии. Такую линейную макромолекулу можно представить в виде спутанного клубка шерсти. Однако, как известно, такое внутреннее вращение вокруг простых связей не совсем свободно. Это связано с различными стерическими препятствиями, возникаюн ими за счет взаимодействия соседних замещающих атомов или групп атомов этой или соседней макроцепи. Такие препятствия особенно проявляются в случае огромных молекул, занимающих в пространстве различное положение. При внутреннем вращении происходит изменение общей энергии молекулы, так как энергия взаимодействия между атомами или группами атомов определяется расстоянием между ними, Поэтому для высокомолекулярных соединений еще в большей степени, чем для низкомолекулярных, характерно заторможенное внутреннее вращение. [c.381]

    На форму макромолекулы в растворе, как это показали экспериментальные исследования, существенным образом влияет природа растворителя. В одном растворителе молекулы полимеров могут быть более вытянуты, в другом — более свернуты в клубок. Как правило, чем лучше полимер растворяется в данной жидкости, чем более он сольватнроваи, тем меньше участки молекулярной цепи взаимодействуют друг с другом, тем более вытянуты макромолекулы и тем выше вязкость раствора. В плохом растворителе макромолекулы мало сольватированы и поэтому образуют более компактные клубки. Поэтому введение в раствор полимера нерастворителя обычно значительно снижает вязкость раствора. [c.461]

    Межмолекулярные силы, действующие между отдельными атомами и их группами, препятствуют изменению формы макромолекул. Чтобы изменить форму макромолекул, надо преодолеть действие межмолекулярных сил, что сопряжено с затратой определенного количества энергии. С повышением температуры растет энергия макромолекул, причем энергия теплового движения может оказаться больше энергии взаимодействия молекул друг с другом, в результате чего вероятность изменения конфигурации и взаимного расположения молекул увеличивается. Наоборот, при охлаждении полимера перегруппировка макромолекул практически прекращается, в результате полимер остается по своей неупорядоченной структуре в аморфно-жидком состоянии и при температурах значительно ниже температуры кристаллизации. Таким образом, даже при сильном охлаждении высокополимеры не переходят в упорядоченное (кристаллическое) состояние. В этом ВМВ сходны со стеклами, и такое состояние высокополимера называется стеклообразным. Процесс застекловывания идет часто в довольно значительном температурном интервале. Та температурная область, в которой происходит такой переход, называется температурой перехода, в частности для явления застекловывания она называется температурой застекловывания. [c.357]

    Общий подход к рассмотрению свойств высокомолекулярных соединений оказывается возможным потому, что многие их особенности зависят больше от формы макромолекул, чем от их химической природы. Так, характерные особенгюсти линейных полимеров — способность образовывать прочные волокна и пленки, значительная эластичность, способность растворяться, а при повышении температуры плавиться. Типичные представители линейных полимеров — это каучук и его сиитетические аналоги, 1юлиамиды, полиолефины. [c.316]

    При изучении строения макромолекулы полимера наряду с определением химического строения элементарных звеньев, порядка и.х чередования и пространственного расположения большое значение приобретает определение геометричской формы макромолекулы. По форме макромолекул высокомолекулярные соединения разделяются на линейные, разветвленные и сетчатые. Сетчатые полимеры, в свою очередь, делятся на лестничные, паркетные, или пластинчатые, и трехмерные. [c.27]


Смотреть страницы где упоминается термин Полимеры форма макромолекул: [c.286]    [c.292]    [c.21]    [c.268]    [c.44]    [c.61]    [c.66]    [c.78]    [c.29]    [c.442]    [c.289]   
Основы химии и технологии химических волокон Том 1 (копия) (1964) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Макромолекулы, форма



© 2025 chem21.info Реклама на сайте