Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, галогениды карбонилы

    Карбонилы остальных платиновых металлов известны. Карбонил рутения Ru( O)j получают путем взаимодействия металлического рутения с СО при 180° С и давлении 200 бар. Его можно получить также при действии СО на Ru I,, при 170° С. Ru( O)j плавится при —22° С неустойчив — выделяет СО, при этом выпадают кристаллы Ru2( O)9, разлагающиеся при 150° С. Карбонилы родия, осмия и иридия образуются при нагреве безводных галогенидов металлов с СО, под давлением, в присутствии Си или Ag. Некоторые из них довольно устойчивы. Карбонил родия [Rh( 04)]n плавится при 76° С и разлагается при 150° С карбонил [Rh4( 0)ii] разлагается при 220° С карбонил осмия 05г(С0)9 плавится при 224° С, сублимируется выще 130° С, а карбонил иридия 1г(С0)з не возгоняется ниже 200° С. [c.1004]


    В органических растворителях реактив Гриньяра способен вступать в реакции с галогенидами металлов. К числу этих реакций относится частичное восстановление соли. Повидимому, окись углерода способна соединяться с одним из продуктов восстановления, который после разложения кислотой образует в числе других продуктов и карбонил металла. В водных растворах восстановление может быть осуществлено сульфидами, цианидами (см. синтез 76) и даже самой окисью углерода в сильнощелочных растворах  [c.223]

    Электрофильный катализ знаком практически всем химикам-органикам, так как галогениды металлов (кислоты Льюиса) широко применяются для ускорения реакций, идущих с промежуточным образованием ионов карбония. Роль катализаторов здесь сводится к генерированию ионов карбония. [c.181]

    Стадии образования и перегруппировки карбоний-иона нри гидроизомеризации в основном совпадают с аналогичными стадиями, протекающими в присутствии галогенидов алюминия. На этом аналогия может заканчиваться, так как возможно, что гидроизомеризация протекает не по цепному механизму. Так, после перегруппировки карбоний-ион вместо отнятия гидридного иона от исходной молекулы может или отнять гидрид, находящийся в виде диссоциировавшего водорода на поверхности металла [62, 96], или отщепить протон, образ я при этом алкен, гидрирование которого и дает конечный продукт реакции. [c.100]

    Наиболее общий метод синтеза моно-я-циклопентадиенильных соединений переходных металлов заключается в действии циклопентадиенид-аниона на соедине.ние переходного металла (галогенид, карбонил, карбонилгалогенид или другой комплексный галогенид). Из циклопентадиенидов наиболее часто употребляется СбНвКа, значительно реже используются СвНаК и [c.66]

    Колклаф [22] указывает, что существуют два механизма полимеризации окисей олефинов на галогенидах металлов а) карбоний-ионпая, а также оксоний-ионная полимеризация, которая легко протекает при комнатной и более низкой температуре, и б) координационная полимеризация, описанная Прайсом и характеризующаяся тем, что для ее проведения требуется продолжительное нагревание при температуре приблизительно 100°. В комплексно-координационной полимеризации эффективным катализатором является не галоидное соединение, а алкоголят. [c.298]

    Реакция, катали.чируемая галогенидами металлов. Галоидводородный обмен имеет место в том случае, когда предельные углеводороды, содержащие третичные атомы углерода, реагируют с галоидными алкилами в присутствии хлористого алюминия [1]. Нанример, в результате взаимодействия изопентана с третичным хлористым бутилом в присутствии бромистого алюминия при времени контакта около 0,001 сек. образуется т/)ет-амилбромид (50—70% от теоретического выхода) и изобутан. Эту реакцию можно рассматривать как доказательство способности иона карбония отнимать гидридный ион в соответствии с правилом 5. Механизм обмена можот быть выражен следующим образом  [c.217]


    Небольшое различие в реакционной способности между цис- и транс-дихлорэтиленами в реакциях, индуцированных перекисями, в противоположность реакциям, катализируемым хлористым алюминием, свидетельствует о различной способности радикалов и катионов mpem-бутила реагировать с затрудненными (экранированными хлором) двойными связями. Все прочие различия между реакциями, индуцированными перекисями, и реакциями, катализируемыми галогенидами металлов (например, получение высоких выходов ненасыщенных хлоридов как с нормальными, так и с и.чопарафиповыми углеводородами при индуцированной перекисями конденсации, в то время как при катализируемой хлористым алюминием конденсации получаются высокие выходы пасыщенных хлоридов, но только с изопарафинами) объясняются основными правилами для реакций свободных радикалов и ионов карбония. [c.233]

    Значительное увеличение скорости вулканизации при добавлении кислых катализаторов, по мнению Гиллера [5], свидетельствует в пользу механизма ионоцепной реакции. При взаимодействии основных оксидов с галогенированными полимерами образуются небольшие количества галогенидов металлов, которые в дальнейшем играют роль катализатора Фриделя — Крафтса, что приводит к образованию иона карбония  [c.249]

    Mg, Т1 действием циклопентадиена на соль (в присут. основания) или карбонил металла. При взаимод. галогенидов нек-рых металлов с 5H5Na образуются II [c.50]

    Карбонилирование непредельных углеводородов, спиртов, органических галогенидов и других субстратов, катализируемое переходными металлами, их солями и органическими комплексами, широко применяется для синтеза новых карбонил-, карбоксил- и алкоксикарбонилсодержащих соединений, в том числе создания или модификации гетероциклических соединений [1-6]. Однако в цитированных книгах и обзорах практически нет сведений о синтезе гетероциклов при карбонилировании ацетиленовых соединений, т.к. они появились, в основном, в последние 20 лет. Эти данные и отражены в настоящем обзоре. [c.63]

    Карбонил. Вольфрам образует с окисью углерода гексакарбонил Ш(СО) й. Это блестящие, бесцветные кристаллы, возгоняющиеся при нагревании выше 50° и разлагающиеся выше 100—150°. При их разложении на стенках сосуда образуется блестящий зеркальный налет металла. Ш(СО)в получается действием окиси углерода на порошок вольфрама при низком давлении и высокой температуре, а также восстановлением УС1з цинком или алюминием при 70—100° в этиловом спирте под давлением 145—220 атм окиси углерода. При термической диссоциации Ш(СО)в образуются тетракарбонил Ш(С0)4, три-карбонил Ш(СО)з и др. Гексакарбонил при комнатной температуре устойчив против действия воды, крепких серной, соляной и разбавленной азотной кислот. Вода не растворяет его, спирт и эфир растворяют незначительно, а хлороформ — хорошо. Ш(СО) з кипит под давлением при 175°. Хлор и бром, взаимодействуя с ним, образуют галогениды вольфрама. Ш(СО) в образует производные с рядом органических соединений — аминами и др. Может быть использован для получения вольфрамовых покрытий и как полупродукт для получения хлоридов и органических соединений вольфрама. [c.239]

    Эту схему можно расширить и включить в нее гидриды и галогениды карбонилов, если учесть, что каждый атом водорода и галогена отдает электронной системе металла лишь один электрон. Таким образом, число электронов железа и кобальта в Н2ре(СО)4 и НСо(СО)4 составляет 36, что соответствует криптону. Для Ке в Ке(СО) 5Х это число равно 86 (75+ 10+ 1), что соответствует радону. Так как для приобретения устойчивой конфигурации кобальту требуется нечетное число электронов, образование гидрида монометаллического карбонила оказывается возможным даже в том случае, когда существование самого монометаллического карбонила невозможно. Формулы многих карбонилов аммиакатов указывают на то, что пары электронов из атома азота, ЫКз, могут быть сдвинуты к атому [c.225]

    Картина МО становится более сложной, если учитывать л-связи между металлом и лигандом, как, например, в случае карбонила - Сг(СО)в- Три ёу,-, х -орбитали металла ( 2,-орбитали) могут участвовать в образовании п-МО. Получаются связывающие и разрыхляющие -уровни МО, что показано на рис. 8.18, а. Понижение 2 -Зфовня за счет л-связи увеличивает разницу в энергии А между уровнями 2, и е. Следовательно, лиганд, который помимо а-связи может образовывать л-связь, используя заполненные орбитали металла и вакантные л-орбитали лиганда (механизм образования подобной связи называется л-дативным), является лигандом сильного поля . Соответственно лиганд, не способный к образованию л-связи, является лигандом слабого поля . Такая ситуация возникает, если лиганд имеет занятые р-орбитали, например, в случае неподеленных пар электронов в хлоридном лиганде (атомные Зр-орбитали). <2 -Уровень становится ниже е -уровня (рис. 8.17, б), и теперь разность в энергии между и -уровнями может быть очень небольшой. Таким образом, галогениды являются "лигандами слабого поля . [c.536]

    НЫХ галоидалкилэфиров типа VIII наблюдают тот же порядок активности галогенидов металлов, что и в реакциях алкилирования. Рацемизацию можно легко изобразить, если в качестве промежуточного вещества образуется плоский ион карбония IX. [c.84]


    Карбонилы рассматриваемых элементов образуются при непосредственном взаимодействии окиси углерода с металлом. Константы равновесия этих реакций для железа и никеля приведены ниже в табл. XIV.8 и XIV.9 [2515]. При нагревании порошка железа в атмосфере СО (200 бар, 100—200° С) образуется Ре(СО)5, растворимый в бензоле и эфире, но не растворимый в воде. На воздухе Fe( O)j сгорает с образованием РеаОз, а при отсутствии воздуха разлагается выше 140° С на СО и металл. При действии щелочей на Pe( O)j образуется карбонил-гидрид Ре(СО)4На с отчетливыми кислотными свойствами. Водород в этом соединении может быть замещен как на металл, так и на галоген. Галогены могут также непосредственно присоединяться к Ре(С0>5 с образованием Ре(СО)5НаЬ, легко распадающимся при нагревании на Ре(СО)4НаЬ и СО. Устойчивость карбонилгалогенидов растет в ряду С1—Вг—I. Карбонил-галогениды образуются также при действии СО на РеНаЬ, при этом в случае Fel а реакция идет уже на холоду. [c.725]

    Комплексы, содержащие более одного центрального иона металла, принято называть полиядерными. Различают гетеропо-лиядерные комплексы, в которых находятся ионы разных металлов, и гомополиядерные комплексы с одинаковыми центральными ионами. Полиядерные комплексы образуются в тех случаях, когда в системе имеются лиганды, способные взаимодейство-Бать более чем с одним ионом металла. Это лиганды со следующими функциональными группами оксид, гидроксид, пероксид, карбоксилат, сульфид, галогенид, цианид, тиоцианат и карбонил, а также полидентатные лиганды, которые могут взаимодействовать с образованием как хелатов, так и мостиковых связей. Исследование полиядерных комплексов [12, 13]—чрезвычайно трудная задача, что, пожалуй, лучше всего отражено в словах одного из выдающихся исследователей в области химии полиядерных комплексов, профессора Силлена, который писал [14] Чем больше я работаю с полиионами, тем больше убеждаюсь в том, что нужна крайняя осторожность при утверждении, что данная частица существует . [c.112]

    Принципиальная схема процесса показана на схеме (166), однако на практике алкильные и ацильные катионы обычно стабилизованы в виде комплексов металлов, которые промотируют стадию карбонилирования. Установлено [143], что реакция алкилгалогенидов с оксидом углерода и спиртом в присутствии основания и карбонила металла в качестве катализатора открывает возможность прямого синтеза сложных эфиров из галогенидов ср. схемы (153) и (154) . Оригинальная методика с использованием натрийтетракарбонилкобальтата На+[Со(СО)4] оказалась приемлемой для синтеза метиловых эфиров из простых галогенидов (с умеренными выходами), например по схеме (167), и получения замещенных малоновых эфиров из а-бромэфиров. [c.327]

    Примеры карбон ил галогенидов и некоторые их свойства даны в табл. 28.2, Известны также и анионы карбонилгалотенидов. Они часто образуются при взаимодействии ионных галогенидов с карбонилами металлов или замещенными карбонилами  [c.564]

    Карбонилгалогениды обычно получают непосредственным взаимодействием галогенида металла с окисью углерода, обычно под высоким давлением. В некоторых случаях применяют реакцию расщепления шогоядерпого карбонила под действием элементарного галогена, например [c.138]

    Взаимодействие ацетилена с хлором в газовой фазе протекаег очень интенсивно. Взрывоопасность этих смесей в широком интервале концентраций и особенно высокий тепловой эффект реакции позволяют вести ее безопасно только в жидкой фазе. Присоединению хлора способствуют катализаторы — галогениды металлов (РеС1з, ЗЬСЬ и др.), относящиеся к типу апротонных кислот. Они содействуют переходу промежуточного я-комплекса в карбоний-ион  [c.175]

    Эффективные катализаторы карбонилирования спиртов — соли и карбонилы металлов VIII группы — открыты Реппе с сотр. [213, 214, 679, 680]. Никелевые катализаторы соли карбоновых кислот [681, 682], галогениды [213, 214, 679, 683], карбонил [684], комплексы галогенидов с солями аммония или фосфония [685], активны при 80—300° С и давлении 200—300 атм только в присутствии активаторов — галоидов и их соединений [679]. [c.89]

    Кроме органических цианидов и галогенидов, в качестве добавок к активному азоту исследовались металлы, вводимые в виде карбонильных [55] и алкильных [264] соединений. При добавлении карбонила никеля скорость образования М1 монотонно уменьшается при переходе к более высоким уровням, что, вероятно, связано с прогрессивным уменьшением заселенности все более высоких колебательных уровней N2(Л), от которых энергия передается к атомам, М1. В этих опытах полностью отсутствует излучение СМ, хотя слабое излучение обнаруживается при добавках чистой СО [256]. Для интерпретации результатов с 2п-, А1-, В- и Hg-aлкилaми Марч и Шифф [264] постулировали, что энергия передается от состояния N2( 2) без участия высоких колебательных уровней состояния Л (рис. 3.7). По мнению Филлипса [265, 266], это же состояние служит источником энергии для возбуждения атомных линий излучения при добавлении галогенидов металлов к активному азоту. Однако если предположить образование возбужденных атомов непосредственно из молекулы галогенида, то для возбуждения некоторых наблюдаемых состояний недостаточно энергии рекомбинации М + М и приходится допускать ступенчатый процесс возбуждения. [c.201]

    Отсутствие изомеризационной активности у Т1С14 дает основание предположить, что в данном случае изомеризация происходит не по карбоний-ионному механизму. Действительно, в соответствии с этим механизмом, Ti l4, будучи более сильной льюисовской кислотой, должен быть более активен в катализе реакции изомеризации по сравнению с Т1С1з. Известно, что изомеризация а-олефинов на галогенидах переходных металлов является сложным процессом, включающим в качестве промежуточной стадии образование л-комплекса олефин-переходный металл. При образовании л-комплекса олефина с атомом переходного металла последний выступает в роли акцептора, предоставляя вакантные орбитали для л-элек-тронов олефина, и в роли донора, поставляя -электроны на разрыхляю- [c.51]

    Получены также и другие иодопроизводные карбонила железа состава Fe( O)2l2 и Fe( 0)2l. Присоединение молекулы СО к галогениду металла ослабляет ионный характер связи Ме—Hal. [c.22]

    К числу наиболее детально изученных соединений переходных элементов относятся карбонилы металлов, самым известным из которых является N1(00)4. Карбонилы других переходных металлов менее устойчивы, и их получают с большим трудом. В то время как карбонил никеля получается при непосредственном взаимодействии металла с СО, большинство других карбонилов синтезируют более сложным путем, например реакцией СО с галогенидом металла при высоком давлении в присутствии сильного восстановителя, например металлического Ма или oH5MgBr. К настоящему времени из карбонилов металлов лучше всего охарактеризованы У(СО)в, Мп2(СО)ю, Ре(С0)5, Рег(С0)9, Рез(СО)12, Со2(СО)8 и Ni (С0)4. Первый из них наименее устойчив. Структуры остальных карбонилов можно объяснить, основываясь на том, что у атома металла достигается заполненная электронная оболочка путем обобществления электронов от групп СО или с другим атомом металла. Так, Сг имеет шесть валентных электронов (Зс и 4х) и приобретает еще 12 электронов от шести групп С = О , так что возникает оболочка из 18 электронов, т. е. конфигурация криптона. Аналогично можно объяснить Ре(СО)э и N ( 0)4. В Мп2(С0)ю каждый атом Мп окружен октаэдрически пятью молекулами СО и другим атомом Мп. Связь Мп — Мп возникает со спариванием спинов электронов и объясняет наблюдаемый диамагнетизм соединения, на первый взгляд непонятный, так как Мп имеет нечетное число валентных электронов (7). И в этом случае достигается заполненная оболочка, поскольку каждый атом Мп окружен шестью своими несвязывающими валентными электронами, двумя электронами, обобществленными между атомами Мп, и десятью электронами от пяти молекул СО. Структура Ре2(С0)д состоит из двух октаэдров Ре(СО)в с тремя обобществленными молекулами СО. Кроме того, происходит спаривание спинов в связи Ре — Ре. Подсчет числа электронов и в этом случае приводит к 18 электронам у каждого атома железа (восемь валентных электронов, шесть электронов от трех необобществленных групп СО, три электрона от трех обобществленных групп СО и один электрон от второго атома Ре). Структуры Рез(СО)12 и Сог(СО)8, по-видимому, сходны в том, что в них имеются мостиковые СО и связи металл — металл. [c.209]


Смотреть страницы где упоминается термин Металлы, галогениды карбонилы: [c.55]    [c.25]    [c.2208]    [c.236]    [c.313]    [c.71]    [c.252]    [c.262]    [c.596]    [c.13]    [c.63]    [c.553]    [c.289]    [c.276]    [c.759]    [c.145]    [c.168]    [c.102]    [c.657]   
Синтезы на основе окиси углерода (1971) -- [ c.12 , c.79 , c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Галогениды металлов

Карбонилы металлов



© 2025 chem21.info Реклама на сайте