Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм действия коррозии

    Механизм действия ингибиторов коррозии [c.213]

    Коррозионное разрушение конденсационно-холодильного оборудования охлаждающей водой является одной из причин уменьшения межремонтного пробега установок. Срок службы секций погружных конденсаторов-холодильников из-за интенсивной коррозии составляет 3—5 лет. В последние годы, как у нас в стране, так и за рубежом, в качестве замедлителя коррозии нашли применение соли различных фосфорных кислот. Механизм действия фосфатов заключается в образовании тонкой [c.200]


    По механизму действия коррозию делят на химическую и электрохимическую [59—60]. [c.33]

    В отношении механизма действия коррозии существует много различных теорий. Однако, как правило, поверхности металла подвергаются ржавлению в результате совместного действия кислорода воздуха и воды. [c.43]

    Наконец, может происходить растворение компонентов защитных присадок в воде и торможение коррозии металлов в электролитах по электрохимическому механизму. В этом случае компоненты присадок будут выступать в роли водорастворимых ингибиторов коррозии. По этому механизму действуют многие ингибиторы атмосферной коррозии металлов. [c.293]

    Настоящая книга является первой из семи намеченных к изданию книг по химмотологии. В ней изложены основные представления о химмотологии как новой научной дисциплине и ее роли в народном хозяйстве. Рассмотрены теоретические основы окисления углеводородов и горения жидких топлив, теория поверхностных явлений в двигателях и механизмах с участием ПАВ, основы трения и износа, механизм действия противоизносных и противозадирных присадок к топливам и маслам. Даны теоретические представления о коррозии конструктивных материалов в контакте с нефтепродуктами, описаны мероприятия по защите от коррозии. [c.2]

    Непосредственное отношение к химмотологии имеет поведение металлов (и защита их от коррозии) в контакте с топливами, смазочными материалами и специальными жидкостями, особенно в условиях эксплуатации двигателей и механизмов. В связи с этим в данной книге уделено внимание в основном теории коррозии металлов в нефтепродуктах и механизму действия ингибиторов коррозии в топливах и смазочных материалах. Отметим особо важную роль коррозионно-механического износа деталей двигателей и механизмов, который во многих случаях определяет ресурс их работы. [c.281]

    МЕХАНИЗМ ДЕЙСТВИЯ ИНГИБИТОРОВ КОРРОЗИИ В ТОПЛИВАХ И СМАЗОЧНЫХ МАТЕРИАЛАХ [c.291]

    Эффективным способом борьбы с коррозией в топливах является повышение их защитных свойств с помощью присадок -ингибиторов коррозии. Ингибиторы коррозии по механизму действия делят на анодные, катодные и экранирующие. [c.58]

    На рис. 243 дана схема пленочного механизма пассивирую щего действия хромат-иона на коррозию железа хромат-ион pea гирует с ионом железа, возникшим в поре защитной окисной пленки (рис. 243, а), и образует нерастворимое соединение (рис. 243, б), которое, осаждаясь, закрывает пору и препятствует коррозии железа (рис. 243, е). На рис. 244, а приведена схема адсорбционного механизма действия того же аниона, который [c.346]


    Механизм действия органических замедлителей коррозии в основном сводится к их адсорбции на катодных участках корродирующего металла и повышению перенапряжения водорода, что [c.314]

    Полученная регрессионная модель изменения коррозии металла от вышеуказанных независимых параметров качества (сера, аро-матика, смолы и асфальтены) топливных компаундов еще раз подтверждает правомерность установленного двойного защитного и антиокислительного механизма действия данных групп соединений на коррозионную агрессивность последних. Таким образом, в присутствии воды эти соединения асфальтены, смолы, малоактивные сернистые соединения, высокомолекулярные ароматические углеводороды [28,80] - способны оказывать антикоррозионное действие по двум механизмам. [c.99]

    В книге обобщается отечественный и зарубежный опыт использования присадок к различным моторным топливам (автомобильным и авиационным бензинам, реактивным и дизельным топливам) как средств улучшения их эксплуатационных свойств и повышения долговечности двигателей и топливной аппаратуры. Рассматриваются механизм действия и ассортимент присадок, улучшающих сгорание топлив в двигателях, снижающих образование нагаров, предохраняющих двигатели от коррозии и износов, облегчающих эксплуатацию двигателей в различных условиях, повышающих электропроводность топлив и др. [c.2]

    Однако указанные катализаторы, являющиеся сильными кислотами, вызывают сильную коррозию и это сдерживает их широкое промышленное применение. Остальные коррозионно-неагрессивные катализаторы изомеризации (кроме катализаторов типа Фриделя—Крафтса) требуют более высоких температур и давления водорода, что приводит к образованию большого количества побочных продуктов [16]. При изучении механизма действия этих катализаторов представляют интерес данные [208] для изомеризации пентана на двух катализаторах  [c.314]

    Влияние коррозионного процесса на усталость выражается главным образом в ускорении пластической деформации, сопровождающейся образованием выступов и впадин. Именно поэтому разрушение от коррозионной усталости не является результатом аддитивного действия коррозии и усталости, а всегда больше их суммы. Такое влияние коррозии объясняет также, почему уровень устойчивости к коррозионной усталости в большей степени определяется коррозионной стойкостью, чем прочностью на растяжение. При низкой частоте нагружения предел коррозионной усталости снижается, так как увеличивается время коррозионного воздействия за один цикл [81 ]. КРН и коррозионная усталость имеют разные механизмы, поэтому чистые металлы, устойчивые к КРН, подвержены действию коррозионной усталости в той мере, в какой они подвержены общей коррозии. [c.163]

    Несмотря на повыщенный интерес исследователей к созданию ингибиторов коррозии на основе комплексообразующих соединений или комплексов, содержащих переходные металлы, остаются недостаточно изученными многие вопросы, касающиеся разработки компонентного состава ингибиторов, исследования их защитной эффективности и механизмов действия в средах различного состава. [c.292]

    По электрохимическому механизму протекает коррозия атмосферная, в электролитах, почвенная, под действием блуждающего тока. [c.225]

    Наличие в электролите органических веществ увеличивает коррозионное разрушение решетки. Добавки солей молибдена и особенно кобальта, наоборот, уменьшают коррозию. Кобальт одновременно снижает конечное зарядное напряжение на 0,2—0,3 В. Механизм действия кобальта пока окончательно не установлен [14]. [c.75]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. IX. 5. В соответствии с тем, скорости каких процессов — анодного, катодного пли обоих — замедляются, ингибиторы подразделяют на анодные, катодные и смешанного типа. Анодные ингибиторы смещают ста- [c.257]

    Электрохимическая коррозия Протекает по механизму действия гальванического элемента, в котором окислительный (анодный) и восстановительный (катодный) процессы разделены в пространстве. Металл, окисляясь, играет роль анода (рис. 48) и в виде ионов переходит в водную среду. Находящееся с ним в контакте тело с Е>Еще (например, другой менее активный металл примеси продукты окисления самого металла), которое должно обладать электрической проводимостью, выполняет функцию катода, на поверхности которого происходит восстановление окислителя (НаО, О2 и т. п.). [c.195]

    Механизм действия антикоррозийных присадок обычно связывают с образованием на поверхности металлов защитных пленок, предохраняющих металл от коррозии и масло от воздействия металлов, катализирующих окисление. Прямого антиокислительного действия на масла антикоррозийные присадки в подавляющем большинстве случаев не оказывают. Еще в 1947 г. С. Э. Крейном и Г. С. Терманян [27] было показано, что защитное действие анти- [c.341]


    Электрохимическая коррозия протекает по механизму действия гальванического элемента, в котором окислительный (анодный) и восстановительный (катодный) процессы разделены в пространстве. Металл, окисляясь, играет роль [c.258]

    Одним из путей защиты от коррозии конденсационно-холодильных систем и оборотного водоснабжения является примененив различных солей фосфорных кислот (орто-, napo-, Триполи- и др.). Механизм действия их звключается в способности образовывать на поверхности стали нерастворимые, прочно сцепленные защитные плёнки третичных фосфатов, не препятствующих теплопередаче. [c.58]

    По кинетическому механизму действия противокоррозионные присадки подразделяются на иммунизаторы, ингибиторы и пасси-ваторы [30]. К иммунизаторам относят вещества, при добавлении которых к бензинам удлиняется период-индукции до начала интенсивной коррозии ингибиторы замедляют скорость коррозии, но не увеличивают индукционный период, а пассиваторы предотвращают коррозию в самом начале, образуя защитную пленку продуктов коррозии на поверхности металла [44]. В качестве противокоррозионных присадок к бензинам исследованы и предложены многие вещества самых различных классов [51—61]. [c.306]

    Уменьщение коррозии металлов при введении в коррозионную среду замедлителя может призойти вследствие торможения анодного процесса (анодные замедлители), торможения катодного процесса (катодные замедлители) и торможения обоих процессов (сиещанные замедлители). Один из методов изучения механизма действия замедлителей коррозии — построение поляризационных кривых. [c.310]

    Механизм действия защитных присадок. Рассмотрим механизм действия присадок к рабоче-консервационным маслам, основываясь на детальных исследованиях Шехтера, Демченко, Шора, Школьникова и др. [232, с. 11 243 244]. Особенность действия присадок к рабоче-консервационным смазочным материалам заключается в том, что они сами являются ПАВ и у них имеется свой определенно выраженный комплекс защитных свойств, обеспечивающих защиту деталей от коррозии [244, с. 215]. [c.188]

    Пр исадк1и к маслам классифицируют по назначению (функциональному действию), химическому составу и механизму действия. В наибольшей степени разработана и получила распространение первая классификация, в соответствии с которой выделяют следующие группы присадок, улучшающих те или иные свойства масел повышающие устойчивость масел к окислению — антиокислительные (иногда их называют ингибиторами окисления) повышающие смазочную способность масел — а нтифрикционные, противоизносные и противозадирные способствующие защите металлов от коррозии — ингибиторы оррозии и противокоррозионные не допускающие образования на деталях двигателя нагаров, лаков и осадков — моющие, или детергентио-диспергирующие понижающие температуру застывания — депрессорные улучшающие вязкостно-температурные свойства — вязкостные повышающие устойчивость масел к воздействию грибков и бактерий — ингибиторы микробиологического поражения, или антисептики предотвращающие вспенивание и эмульгирование масел —противопенные и деэмульгирующие повышающие адгезию и предотвращающие растекание масел — адгезионные улучшающие одновременно несколько эксплуатационных свойств масел — многофункциональные. [c.300]

    Механизм действия сернистых соединений топлива одинаков как для карбюраторных, так и для двигателей с воспламенением от сжатия. В зоне высоких температур, где конденсация влаги [евозмолсна, преобладающее значение имеет газовая коррозия. В области пониженных температур, где возможна конденсация влаги, будет преобладать кислотная коррозия. Склонность к сернистой коррозии быстроходных, термически напряженных двигателей, а также факты больших износов в зоне максимальных температур подтверждают преобладающее значение газовой коррозии для установившегося режима работы двигателя. [c.135]

    Образующийся комплекс разлагается, и сероводород регенерируется. При образовании хемосорбированного катализатора Ре(Н5 )адс на поверхности металла прочная связь атомов железа с серой приводит к ослаблению связи между атомами металла, что и облегчает их ионизацию. К этому же приводит снижение приэлектродной концентрации ионов двухвалентного железа в результате в заимодействия их с сульфидами по реакции Ре ++ + Н5 ->-Ре5 + Н+. При этом происходит сдвиг электродного лотенциала железа в отрицательную сторону, что ведет к увеличению скорости анодного процесса коррозии, Механизм действия сероводорода на катодную реакцию имеет вид  [c.17]

    Щелочные присадки к сернистому топливу, снижающие коррозию деталей двигателя продуктами сгорания, химически нейтрализуют окислы серы, преобразуя их в неагрессивные соединения, уносимые с выпускными газами. В условиях сгорания топлива эти соединения реагируют с окислами серы или с серной кислотой. Например, нитраты щелочных металлов могут образовывать нитриты или окислы этих металлов, которые и взаимодействуют с трехокисью серы, давая нейтральные или летучие продукты [12]. Эти реакции могут протекать в газовой фазе или в тонкой масляной пленке на металлической поверхности деталей двигателя. Аналогичный механизм действия указывается для карбонатов металлов или их аммонийных солей. [c.181]

    Металлические изделия при хранении и эксплуатации под воздействием окружающей среды (кислорода, влаги, химически активных продуктов) подвергаются коррозии и разрушаются. Нефтяные масла без присадок не в состоянии обеспечить длительную и надежную защиту этих изделий от коррозии. Чтобы улучшить защиту металлов от коррозии, в масла втаадят маслорастворимые органические вещества, препятствующие коррозии металлов в условиях атмосферного воздействия (электрохимической коррозии),— ингибиторы коррозии и под действием продуктов, содержащихся в маслах (химической коррозии), — противокоррозионные присадки. Ввиду различных причин коррозионного разрушения металлов приходится использовать в маслах присадки разных состава и механизма действия. [c.305]

    Механизм действия ингибиторов коррозии сводится к следующим последовательно протекающим процессам вытеснению воды (электролита) с поверхности металла удерживанию воды в объеме нефтепродукта образованию на поверхности металла адсорб-ционно-хемосорбцио нных слоев ингибитора коррозии, гидрофоби-зирующих поверхность и препятствующих контакту электролита с металлом торможению анодного и катодного коррозионных процессов разрушения металла образовавшейся защитной пленкой ингибитора коррозии. [c.306]

    Электрохимическую коррозию частично устраняют введением в состав масла защитных присадок, называемых противоржавейными. Механизм действия защитных присадок сводится к вытеснению влаги и других электролитов с поверхности металла и образованию на нем прочной адсорбционной пленки, предотвращающей контакт металла с агрессивной средой. Таким образом, эта пленка, в отличие от пленки, образоЬанной антикоррозионными присадками, устойчива к действию не только органических кислот, но и воды. [c.190]

    Для замены ингибиторов углекислотной коррозии ИКИПГ-1, КО, АНПО и ряда других был создан новый ингибитор, получивший название СТ. В его состав входят алифатические амины (до 10%), диэтиленгликоль (до 30%) и флотореагент ВЖС (до 60%). Диэтиленгликоль является гомогенизатором тройной смеси, а также снижает температуру застывания. Его защитное действие как простого эфира проявляется в том, что, будучи десорбентом воды, диэтиленгликоль создает благоприятные условия для адсорбции основных компонентов ингибитора на поверхности металла. Механизм действия ингибитора СТ [146] можно упрощенно представить следующей схемой удаление воды с поверхности образование органических радикалов [c.224]

    По механизму действия различают химическую и электрохимическую коррозию. Химическая коррозия — разъедание металла химически активными веществами (кислотами, щелочами, растворами солей и т.д.). Широко расгфостранена электрохимическая коррозия, протекающая в водных растворах электролитов, в среде влажных газов и щелочей под действием электрического тока. При этом ионы металла переходят в раствор электролита. Электролитом является среда, омывающая поверхность детали. Многие технологические процессы связаны с получением или применением водорода при высоких температурах и давлениях он вызывает водородную коррозию, которая появляется в виде отдулин и расслое-1ШЙ на различной глубине поверхностного слоя корпусов аппаратов, труб [c.82]

    В силу ряда причин в научной и технической литературе остается недостаточно изученной пробле.ма создания эффективных ингибиторов для защиты металлов в условиях коррозии под напряжением (механохимическая коррозия [8]), а также исследования их защитных свойств и механизмов действия. Испытания ингибиторов проводятся либо в статических условиях, либо (значительно реже) при действии определенного вида усилий (например, изгибающих, растягивающих, сжимаюспих и т.п.). В результате при сложном напряженно-деформированном состоянии металла, характерном для действующего оборудования различного профиля, эффективность ингибиторов может существенно снижаться вплоть до инверсии в действии. Игнорирование механохимического фактора негативно сказывается и на изучении механизмов их защиты, в значительной степени снижая корректность интерпретаций. [c.179]

    Для снижения интенсивности высокотемпературной ванадиевой коррозии используются присадки ВТИ - магниевые соли синтетических жирных кислот С 4 - С20 и окисленного петролатума. Механизм действия подобных присадок заключается в переводе пероксида ванадия и ванадилванадата натрия Ыа Уг04 бУ О из низко- в высокоплавкие соединения, не оказывающие сильного коррозионного действия. [c.59]

    Механизм действия значительного числа ингибиторов заключается в адсорбции ингибитора на корродирующей поверхности и последующем торможении катодных или анодных процессов. К анодным замедлителям нужно отнести замедлители окисляющего действия, например нитрит натрия ЫаЫОг, бихромат натрия ЫааСггО,. Воздействие анодных окислителей на анодный процесс может привести к установлению пассивности, следовательно, к замедлению коррозии металла. [c.222]

    Различная степень взаимодействия присадок, приводящая в отдельных случаях к осаждению из растворов, подтверждена с помощью метода лазерной спектроскопии. Как видно из рис. 9.8, различные композиции присадок отличаются размерами коллоидных образований в масляных композициях. Знание размеров этих образований позволяет определить пути повыше шя коллоидной стабильности растворов присадок, Так, например, для повышения коллоидной стабильности присадки АБЭС, входящей в состав масла ИГС ,-38д, важно учитывать ее взаимодействие с ингибиторами коррозии. Можно предположить, что замена В-15/41 на присадку А (размеры коллоидных образований в системах 1,58 и 0,53 мкм, соответственно, рис. 9.8) повысит коллоидную стабильность раствора присадки АБЭС. Механизм действия присадки А, по-видимому, заключается в диспергировании нерастворимых ассоциатов на мельчайшие частицы, за счет чего предотвращается их коагуляция и выпадение в осадок. Более того, можно предположить, что присадка А одновременно препятствует превращению растворимых в масле продуктов окисления в нерастворимые вещества и их седиментации. Образующиеся при этом коллоидные частицы удерживаются во взвешенном состоянии в масле за счет солюбилизации. Таким образом, очевидно, присадка А обладает некоторой антиокислительной функцией. [c.274]

    Антикоррозионные присадки. Механизм действия антикоррозионных присадок (АКП) заключается в создании на поверхности металла стойких защитных пленок, предохраняющих детали от коррозии. К числу АКП относятся серу- или фосфорсодержащие органические соединения. Например, в случае S-содержащих присадок, образуются тиокислоты или их соли, сульфиды металлов, комплексные соединения металла с присадкой. Диалкилтиофосфаты металлов (например, цинка) при окислении образуют плотные защитные пленки фосф атов железа и цинка. [c.666]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. 95. В соответствии с тем, скорости каких процессов — анодного, катодного или обоих — замедляются, ингибиторы подразделяют на анодные, катодные и ингибиторы смешанного типа. Анодные ингибиторы смещают стационарный потенциал в анодную, а катодные — в катодную сторону. Ингибиторы смешанного типа могут смещать Е в анодную или катодную сторону или не изменять его в зависимости от степени торможения соответствующих процессов. Ингибиторы смешанного типа оказываются наиболее эффективными. В качестве ингибиторов кислотной коррозии применяют разнообразные органические вещества, молекулы которых содержат амино-, ИМИНО-, тио- и другие группы. Необходимым условием ингибирующего действия этих веществ является их адсорбция на по-нерхности металла. [c.214]

    Вредное влияние на бетон обычно усиливается в случае сложных минеральных удобрений. Так, аммонизированный суперфосфат, содержащий сульфат аммония и гипс, вызывает сильную сульфатную коррозию бетона. Нитрофоска разрушает бетон, потому что в ней наряду с (NH4)2 НРО4 содержится KNO3 и (N1 4)2504 (или NH4 I). В отдельности механизм действия этих солей на цементный камень был уже разъяснен. [c.191]


Смотреть страницы где упоминается термин Механизм действия коррозии: [c.304]    [c.6]    [c.93]    [c.190]    [c.186]    [c.170]    [c.266]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм действия



© 2025 chem21.info Реклама на сайте