Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа сил электрического поля

    Наиболее стойкие мелкодисперсные нефтяные эмульсии разрушаются с помощью электрического тока. При воздействии электрического поля капельки воды, находящиеся в неполярной жидкости, поляризуются, вытягиваются в эллипсы с противоположно заряженными концами и притягиваются друг к другу. При сближении капелек силы притяжения возрастают до величины, позволяющей сдавить и разорвать разделяющую их пленку. На практике используют переменный электрический ток частотой 50 Гц и напряжением 25—35 кВ. Процессу электрообезвоживания способствуют деэмульгаторы и повышенная температура. Во избежание испарения воды, а также в целях снижения газообразования электро-дегидраторы — аппараты, в которых проводится электрическое обезвоживание и обессоливание нефтей — работают при повышенном давлении. На НПЗ эксплуатируются электродегидраторы трех типов  [c.9]


    Основываясь на современных исследованиях Н-связи, можно сделать предположение, что процесс поляризации существенно зависит от перемещения и положения протона Н-мостика в электрическом поле. Так, в работах [206, 660] при рассмотрении влияния среды на структурную форму комплекса с водородной связью (КВС) отмечается зависимость этой формы от диэлектрической проницаемости среды. При исследовании водородной связи О—Н---М обнаружено, что с повыщением диэлектрической проницаемости раствора происходит переход КВС из молекулярной формы в ионную с последующей диссоциацией комплекса при более высоких значениях е раствора [660, 661]. Существенно, что перенос протона вдоль Н-связи в КВС, как установлено в работе [662], вызывается реорганизацией среды. Хотя влияние среды на связь О—Н---0 мало изучено, высокая подвижность протонов в структуре льда все же д ет основание предполагать, что в образуемых при определенных величинах сорбции КВС возможна миграция протона Н-связи. [c.246]

    Исходя из этого, определим потенциал растворяющегося электрода. Знак потенциала будет отрицательным, так как из электрода освобождаются положительные ионы (рис. 131, б), которые накапливаются в приповерхностном слое до концентрации Со, а затем уходят в раствор, где концентрация свободных ионов С (рис. 132). Работа электрического поля — ёпР изотермическая работа расширения RT 1п Со/С. Приравнивая оба выражения работы, определим величину потенциала  [c.270]

    Электрическое напряжение (напряжение) и между двумя точками электрической цепи равно работе электрического поля по перемещению единичного положительного заряда из одной точки в другую. [c.406]

    Для электролитического процесса левую часть уравнения можно выразить через работу электрического поля  [c.157]

    Энергия взаимодействия равна работе электрического поля на длине свободного пробега Я, т. е. Аи-вз=еЕ ке + Хг). Тогда условие (3. 17) окончательно запишется в виде [c.46]

    Сам Плюккер и независимо от него Крукс показали, что такое отклонение существует. Оставалось решить еще один вопрос. Если катодные лучи представляют собой заряженные частицы, то электрическое поле также должно их отклонять. Однако доказать, что катодные лучи отклоняются в электрическом поле, удалось далеко не сразу. Только в 1897 г. английский физик Джозеф Джон Томсон (1850—1940), работая с трубками с очень глубоким вакуумом, сумел в конце концов показать, что катодные лучи отклоняются под действием электрического поля (рис. 20). Это было последним звеном в цепи доказательств, и теперь оставалось лишь согласиться с тем фактом, что катодные лучи представляют собой поток отрицательно заряженных частиц. Величина отклонения частицы в магнитном поле заданной напряженности определяется массой частицы и величиной ее электрического заряда. Томсону удалось измерить соотношение массы и заряда частицы, хотя измерить эти величины отдельно он не смог. [c.148]


    У нас теперь электризованный маховик, в котором электрическое поле работает на увеличение механической прочности. Но ведь главная функция маховика — накопление энергии. Не обязательно только механической электризованный маховик — конденсатор, он может накапливать одновременно энергию механическую и электрическую. Это — изобретение по а. с. 1132310. [c.102]

    При движении электрического заряда е в электрическом поле против направления падения потенциала и на участке, где изменение потенциала равно ф, а также при увеличении заряда тела, имеющего потенциал и, на величину г работа совершается над системой, величина ее равна в первом случае —а во втором случае — [c.41]

    В работе [84] рассмотрено влияние количества поглощенных торфом катионов (О) на его диэлектрическую проницаемость. Обнаружено, что величина е увлажненного торфа (И = 20%) при первоначальных добавках А1 и Ма практически не меняется, а при поглощении ионов Са уменьшается. Такое уменьшение, по-видимому, связано с понижением подвижности сорбированных молекул из-за структурных изменений сорбента. Полученные при сравнительно невысоких частотах (600 кГц) результаты дают основание считать, что миграция ионов в электрическом поле не существенна при количестве поглощенных торфом катионов в пределах 0,2 мг/экв на 1 г сухого вещества. В дальнейшем, с увеличением О, наблюдается волнообразное изменение е, что является результатом противодействия двух факторов роста подвижности ионов и их роли как пептизаторов или коагуляторов. Важным вопросом исследования диэлектрических свойств системы сорбент — сорбированная вода является, как отмечалось выше, установление связи между экспериментально определяемыми макроскопическими характеристиками е, г" и молекулярными параметрами сорбента и сорбата. Основой для установления этой связи может служить теория Онзагера — Кирквуда — Фрелиха (ОКФ), в соответствии с которой смесь сорбент — сорбат можно представить как систему различных ячеек сорбента и сорбата. Для такой системы, основываясь на общих теоремах Фрелиха [639], получено соотноше- [c.249]

    Единицей электрического потенциала в Международной системе единиц и практической единицей измерения потенциала является вольт (в) — разность электрических потенциалов между двумя точками электрического поля, при перемещении ме жду которыми заряда в 1 к соверщается работа в 1 дж (1 ед, эл. напр. СГС = 3- 10 в). [c.388]

    Исследования, выполненные сотрудниками Московского энергетического института Н. Г. Дроздовым и С. П. Носовым, показали, что возможность образования зарядов статического электричества в жидком кислороде обусловливается наличием в нем твердых частиц. Величина напряженности электростатического поля зависит от скорости движения частиц в жидком кислороде, количества примесей и их природы. Знак электрических зарядов, по данным этой работы, зависит от природы примесей. Наличие в жидком кислороде частиц активного глинозема и двуокиси углерода приводит к электризации жидкого кислорода с отрицательным знаком, тогда как наличие частиц силикагеля приводит к электризации с положительным знаком. Изучение процесса электризации потока жидкого кислорода при его дросселировании показало, что напряженность электрического поля имеет тенденцию к быстрому возрастанию при увеличении скорости жидкого кислорода. [c.28]

    По данным работы [655], диэлектрическая изотерма сорбции воды на торфе также является ломаной линией. На основе калориметрических сорбционных опытов было высказано предположение, что первым двум участкам изотермы отвечает различная энергия связи молекул с центрами сорбции, а третьему, с наибольшей производной е7 а, — образование в процессе сорбции водородных связей между сорбированными молекулами. Существенно, что при критической величине сорбции ао обнаруживается резкое увеличение коэффициента диэлектрических потерь е", обусловленное, по-видимому, значительным возрастанием электропроводности материала вследствие образования цепочек из сорбированных молекул и функциональных групп сорбента — карбоксильных (СООН), гидроксильных (ОН) и других полярных групп. При этом предполагалась возможность эстафетного механизма переноса протона вдоль цепочек, что обусловливает значительное возрастание е и е". Наличие протонной проводимости и протонной поляризации позволяет объяснить не только большие величины с1г /<1а, но и частотную зависимость критической гидратации Со, обнаруженную для ряда сорбентов [646, 648]. Здесь необходимо отметить, что при измерении диэлектрических характеристик применяются слабые электрические поля, которые не могут повлиять на про- [c.245]

    Произведение e Qq или e Qq/h (часто записываемое как eQq или eQq Jh) называют константой квадрупольного взаимодействия. Оператор Нд действует на ядерные волновые функции. Если т = О, то член, включающий операторы сдвига, опускается. Мы не будем заниматься точным расчетом матричных элементов интересующийся этим вопросом читатель может обратиться к работам [1—3]. Достаточно сказать, что для получения энергий ядерных спиновых состояний в градиенте электрического поля, обусловленном распределением электронной плотности в молекуле, можно записать ряд секулярных уравнений и решить их. [c.263]


    Фильтрование. В процессах фильтрования и пропитки твердых тел происходит движение жидкой фазы относительно пор и каналов в твердой фазе. Интенсификация этих процессов может быть достигнута при увеличении скорости относительного движения жидкости. Не случайно поэтому многочисленные работы были посвящены исследованиям влияния вибраций, ультразвука и ударных волн на течение жидкостей в капиллярах. В коллоидных системах существенное влияние на процесс начинают приобретать электрические явления, и поэтому для интенсификации технологических процессов, например в мембранных аппаратах для ультрафильтрации, используют электрические поля. [c.126]

    В работе [39] описывается электрогидродинамический (ЭГД) сепаратор, основанный на воздействии электрического поля на включения (пузырьки) в жидкости (в потоке). Основными факторами, влияющими на процесс разделения фаз, являются неоднородность поля, разность диэлектрических проницаемостей среды носителя ех и включений 2 и наличие направленного потока среды. ЭГД-сепаратор позволяет отделить все примеси, для которых и Е1>Е2- Рекомендуемые [c.139]

    Введение. При рассмотрении электродных процессов мы будем широко пользоваться величиной разности электрических потенциалов, сокращенно называя ее просто разностью потенциалов. Электрический потенциал, отвечающий данной точке тела, как известно, равен работе, совершаемой силами электрического поля при перемещении единицы положительного электричества из рассматриваемой точки в точку, потенциал которой принят равным нулю. Разность потенциалов, отвечающих двум точкам, равна работе переноса заряда от одной точки к другой. [c.414]

    По применению электрических полей переменного и постоянного тока. В СССР электродегидраторы работают в основном с полями переменного тока как в промысловых, так и в нефтезаводских установках подготовки нефти. Наряду с эффективностью обработки водонефтяных эмульсий В/Н (вода в нефти) с большой обводненностью в полях переменного тока такие системы имеют более простое и доступное электрооборудование. [c.368]

    Ионизащ1Я атома состоит в полном удалении электрона нз сферы действия ядра — математически говоря, в удалении электрона в бесконечность. Обратному переходу электрона из бесконечности на какой-либо определённый уровень энергии в атоме соответствует граница той серии спектральных линий, для которой этот уровень является нижним уровнем. Границе серии соответствует линия с наибольшей возможной в этой серии частотой V, равной vrp. Значение произведения /IV, соответствующее границе серии спектральных линий, у которой нижним уровнем является основной энергетический уровень валентного электрона в нормальном невозбуждённом атоме, равно энергии, которую нужно затратить, чтобы ионизовать атом. Если атом ионизуется вследствие удара о него электрона, то эта энергия берётся за счёт кинетической энергии движения электрона. Поэтому ионизация атома при столкновении с электроном может произойти лишь в том случае, если кинетическая энергия электрона достаточно для этого велика. Энергия электрона накопляется за счёт работы электрического поля, ускоряющего электрон, и определяется соотношением [c.194]

    Как ввести второй вещество Здесь явное противоречие не должно быть посторонних веществ, чтобы не ухудшались характеристики маховика, и должно быть второе вещество, чтобы маховик стал вепольной системой. Решение второе вещество — тоже стальная лента, т. е. маховик получен намоткой двойной ленты. Красиво, не прада ли Второе вещество введено без всякого усложнения системы... Однако само по себе введение втородз вещества еще ничего не дает. Было, скажем, 800 одинарных витков, стало 400 витков двойных. Веполь попрежнему неполный, нет взаимодействия между витками (точнее есть только клеевое взаимодействие, которое было и раньше). Нужно ввести поле. Какое поле сожмет две металлические ленты, притянет одну ленту к другой Ответ очевиден электрическое поле, силы взаимного притяжения разноименных зарядов. Клей, помимо своей основной функции, будет работать как диэлектрик между двумя проводниками. Это — изобретение по а. с. 1084522. [c.102]

    Во всех расчетах не принимаются во внимание довольно значительные силы взаимодействия, возникающие из-за аффекта поляризации. Так, если нейтральную молекулу, не имеющую ио своей природе постоянного диполя,, поместить в электростатическое поле, у нее появляется наведенный дшюль Для изотропной молекулы с поляризуемостью а в однородном электрическом поле наведенный диполь будет противоположен по направлению Е и равен по величине — иЕ. Работа, которую необходимо затратить для [c.446]

    Имеющиеся в растворе ноиы NHj и СГ ири работе элемента двнисутся в на-празлеииях, обусловленных процессами, протекающими на электродах. Поскольку у цинкового электрода катионы цинка выходят в раствор, а у катода раствор все время обедняется катионами то в создающемся электрическом поле ионы NH4 движутся при работе элемента к катоду, а ионы l —к аноду. Таким образом, раствор во всех его частях остается электронейтральным. [c.622]

    Электростатическое осаждение. Сейчас — это наиболее важная методика для очистки выбросои от пыли. Продукты сгорания проходят сквозь мощное электрическое поле и приобретают заряд. Далее заряженные частицы осаждаются на пластинах с прт ивоположным зарядом. Таким способом удаляют до 99% пыли, оставляя топы (1 частицы диаметром менее 0,1 мкм (1 мкм = 10 м). Пылеуловители в к мaтныx кондиционерах часто работают именно по этому принципу. [c.415]

    Нелокальная электростатика сольватационных явлений была впервые предложена Р. Р. Догонадзе и А. А. Корнышевым [437]. Затем этот подход был разработан в работах Корнышева и сотр. (см. обзоры в [428, 433]) для целого ряда других систем. Однако в этих работах анализировались в основном системы, содержащие в качестве источников электрических полей электрические заряды. Оказалось, что включение в систему электрических диполей приводит к появлению ряда новых эффектов нелокальной поляризуемости среды [429]. В этой связи интересно сравнить электрическое поле, создаваемое единичным [c.156]

    Для физиков проблема структурных сил привлекательна тем, что эти силы являются, по-видимому, наиболее яркой демонстрацией пространственной дисперсии диэлектрического отклика в водном электролите. Д. Грюен и С. Марчелья [450] впервые показали, что гидратационные силы в фосфолипидных системах могут быть представлены как результат влияния пространственной неоднородности электрических полей на взаимодействие сближающихся фосфолипидных бислоев. В работах [451, 452] непосредственно использовали аппарат нелокальной электростатики для описания природы гидратационных сил. Отметим, что были предложены и другие теории гидратационных сил [453, 454]. Однако подход, основанный на нелокальной электростатике, представляется физически более достоверным, поскольку он позволяет представить эти силы как результат электростатического взаимодействия сближающихся фосфолипидных бислоев. Это, в свою очередь, позволяет независимо исследовать влияние электролита и параметров поверхности на величину гидратационных сил. Опишем кратко развитый нами подход, следуя [438]. [c.163]

    Обезвоживание и обессоливание нефти при помош,и электрического поля осуш,ествляют под давлением в электродегидраторах, снабженных электродами, к которым подводится высокое напряжение переменного тока промышленной частоты. Суш,ествует несколько типов и конструкций электродегидраторов, отличаюш,ихся формой, габаритами и принципом работы. Имеются электродепвдраторы вертикальные, шаровые и горизонтальные с электродами разных конструкций и различными системами ввода сырья в электрическое поле. [c.50]

    По данным И. В. Крымова и Н. Г. Клюйко, а также по данным работы [93], электризация и напряженность электрического поля пропорциональны скорости перекачки топлива. Последняя при прочих равных условиях определяет величину заряда, переносимого в образующихся разрядах. С учетом вероятности воспламенения 10 паров реактивных топлив в смеси с воздухом предельно допустимая величина перенесенного заряда в разрядах и максимальная допустимая скорость перекачки топлив приведены ниже (по данным В. Н. Гореловой и В. В. Малы-щева)  [c.90]

    Эрдей-Груз и Фольмер (1930 г.), исходя из предположения замедленности стадии разряда водородных ионов и предполагая, что разряду подвергаются не все ионы, но лишь наиболее активные, концентрация которых является постоянной при t = onst и в сильном поле определяется экспоненциальной функцией, пришли к заключению об ограниченной скорости разряда ионов, требую-ш,ей для своего увеличения либо повышения концентрации активных водородных ионов, либо снижения требуемого уровня энергии активации. Роль электрического поля, по Эрдей-Грузу и Фольмеру, состоит в том, что оно снижает необходимую энергию активации на величину, пропорциональную работе перенапряжения, т. е. на (irjf, где Р < 1 (по опытным данным Р = 0,5). Для достаточно больших перенапряжений ими была получена зависимость  [c.253]

    Повышение температуры более 120°С нерационально, так как при атом увеличивается электрическая проводимость эмульсии и, соответственно, снижается напряженность электрического поля и повышается расход электроэнергии, что значительно осложняет условия работы проходных и подвесных изоляторов. Кроме того, растет давление насыщенных паров и, как результат, давление в аппаратах [4, 5]. Повышение температуры обусловливает также дополнительные затраты на охлаждение воды, дренируемой из электродегид-раторов, перед сбросом ее в канализацию. [c.14]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    Спектры многих элементов очень сложны. Например, в спектре железа насчитывается свыше пяти тысяч линий. Работа с чувствительной аппаратурой показывает, что многие линии в атомных спектрах состоят из нескольких очень близко расположенных линий — являются мультиплетами. Если поместить источник излучения в магнитное поле, то произойдет расщепление одиночных линий — вместо одной линии в спектре появ ится несколько близко расположенных линий [эффект Зеемана). Аналогичное явление наблюдается при помещении источника излучения в электрическое поле (эффект Штарка). [c.10]

    В коллоидных системах и капиллярно-пористых телах в электрических полях наблюдаются такие процессы, как электрофорез, электроосмос, электродиализ, электрокоагуляция, ионофорез и др. [И]. Указанные процессы относятся к группе так называемых электроповерхност-ных, т.е. относящихся к коллоидной и физической химии (двойной слой, электрокинетические явления, электроповерхностные силы). В последние годы эти вопросы были существенно развиты в работах Б.В. Дерягина, Н.В. Чураева, С.С. Духина и других исследователей [11,12]. [c.79]

    Усовершенствоваоте теоретических исследований в этом направлении было продол жено в работах Кронига и Шварца, В. П.-Мотулевича, Д. М. Ерошенко и Ю. И. Петрова Г. А. Остроумова [19, 26]..Эйредж экспериментально изучал теплоотдачу от тонкой платиновой проволоки к различным газам в неоднородном электрическом поле напряжен ностью (11,94-7,671)-10 В/см. Тщательное экспериментальное и теоретическое исследо вание влияния электрического поля на теплообмен провели Н. Ф. Бабой, М. К. Болога i К. И. Семенов [27]. [c.158]

    По вводу нефти в электродегидратор. В отечественной и зарубежной промышленной практике подготовки нефти получили распространение две принципиально разные системы ввода нефти в электродегидратор — в нижнюю часть аппарата и непосредственно в межэлектродное пространство. Установлено, что аппараты с нижним вводом эффективно эксплуатируются и дают лучшие результаты по качеству нефти при обработке нефтей легкой и средней плотности. Электродегидраторы с межэлектродным вводом эмульсии (без нижней подачи) также эффективно работают при увеличении объема электрического поля за счет введения дополнительной площади электродов (электродегидраторы 2ЭГ160/3, 2ЭГ160-2 и др.) и могут иметь меньшие габариты. Серией исследований установлено, что очистка от воды и солей существенно повышается при комбинированном вводе эмульсии в аппарат, когда организуется одновременная раздельная подача около 2/3 нефти (по производительности) в подэлек-тродную зону и около 1/3 в межэлектродную зону. [c.368]

    Аппарат работает по следующей схеме. Нефтяная эмульсия, вводимая через коллектор ввода, рэвиомерно распределяется по всему сечению и равномерным восходящим потоком движется вверх. Этот поток на своем пути рассекается вертикальными чередующимися пластинами положительного и отрицательного электродов на несколько небольших потоков. Каждый поток обрабатывается в электрическом поле высокой напряженности постоянного тока соответствующей пары разнополярных пластин. Элек- [c.375]


Смотреть страницы где упоминается термин Работа сил электрического поля: [c.16]    [c.61]    [c.94]    [c.313]    [c.55]    [c.528]    [c.186]    [c.180]    [c.248]    [c.295]    [c.161]    [c.7]    [c.175]    [c.52]    [c.87]   
Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Поле электрическое

Работа электрическая



© 2025 chem21.info Реклама на сайте