Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромофоры карбонильные

    Хромофоры ( носители цветности )—атомные группировки, наличие которых придает соединению окраску. Характерной структурной особенностью хромофоров является наличие нё-насыщенных атомов и двойных связей. Сильными хромофорами являются, например, нитрогруппа —NO , нитрозогруппа —N=0, азогруппа —N = N—. Относительно более слабый- хромофор— карбонильная группа С=0. Еще более слабым, но весьма важным хромофором является двойная связь >С=С<. [c.513]


    Правило октантов. Одно из наиболее важных проявлений оптической активности связано с внутренне симметричным хромофором, например С = 0, который находится в асимметричном окружении. Большой экспериментальный материал для производных циклогексанона позволил сформулировать правило октантов, нашедшее очень широкое применение и развитие для других классов соединений. Оно связывает знак эффекта Коттона с положениями замещающих групп по отношению к карбонильной группе. На рис. Х.2 показано расположение четырех октантов, задаваемых плоскостями А, В и С, пересекающихся в точке на связи С = 0. Плоскость А является плоскостью симметрии цикла. В плоскости В находится карбонильная группа с двумя атомами углерода цикла Са и Сб- Плоскость С перпендикулярна плоскостям А и В, пересекает связь С = 0 и выделяет четыре октанта, называемых задними. Проекция со стороны карбонильной группы на задние октанты позволяет удобно представить влияние заместителей на знак вращения. Так, аксиальные и экваториальные заместители у атома 3 приводят к отрицательному эффекту Коттона, а у атома 5—к положительному. Экваториальные заместители у атомов [c.205]

    Для спектральных и фотохимических свойств молекулы решающее значение имеет ее строение. Исследование красителей показало, что цвет вещества обусловлен присутствием особых групп хромофоров, к которым обычно относятся ароматические ядра, кратные связи, карбонильная группа. Атомные группы, усиливающие и смещающие полосу поглощения хромофора, называются ауксохромами. Если смещение поглощения под их воздействием происходит в красную (длинноволновую) область, то оно именуется батохромным, сдвиг в фиолетовую (коротковолновую) сторону — гипсо-хромным. Деление групп на хромофоры и ауксохромы не является строгим, к последнему классу относят обычно амино-, окси- и меркапто-группы, а также галоиды. Взаимное влияние различных хромофоров и ауксохромов в молекуле столь сильно, что не удается легко и однозначно выделить в спектрах колебания, вызванные теми или иными переходами. [c.281]

    Хромофоры не одинаковы по своему влиянию на цветность. Так, в азобензоле (стр. 396) наличие азогруппы уже придает ему окраску. В то же время ароматические вещества, содержащие одну карбонильную группу (альдегиды, кетоны), или одну этиленовую группу, не окрашены вещество имеет окраску только ири определенном сочетании нескольких таких групп. [c.400]

    Существуют две конформации, в которых фенильная и карбонильная группа находятся в положении, близком к скошенному именно в этих конформациях наиболее полно выполняется рассмотренное ранее условие создания асимметрии хромофора, поэтому эти две конформации и создают основные вклады во вращение. Одна из них (LIV) создает [c.301]


    Из сказанного следует, что способность молекул к поглощению света зависит от характера химических связей между атомами, входящими в их состав. Если имеются только ст-связи (например, в случае насыщенных углеводородов), в УФ- и видимой областях спектра поглощения нет. При наличии я-связей соединение может поглощать световое излучение — возможны я -> я - и м—я -переходы. Во многих случаях в молекулах удается выделить группы атомов, присутствие которых обусловливает поглощение. Такие группы атомов называют хромофорами. В качестве примеров можно назвать карбонильную группу >С=0, тиокарбонильную группу >С=3, азогруппу —Ы = и др. К хромофорам относятся также сопряженные двойные связи. .. —С=С—С=С—..., в случае которых с удлинением [c.289]

    Еслп двойная связь и карбонильная группа сопряжены, для описания сложного хромофора требуется иной набор молекулярных орбиталей и уровней энергии, чем для изолированной двойной связи или изолированной карбонильной группы. Схема уровней энергии сопряженного енона представлена ниже. В сопряженном еноне п я переход сдвинут в длинноволновую область относительно изолированного карбонильного соединения. Длина волны л л перехода также больше для сопряженного енона, чем для любого изолированного хромофора. (Эти л -> л переходы наблюдаются в области ниже 210 нм и весьма интенсивны.) С помощью диаграммы уровней энергии укажите, каким переходам соответствуют п л и я л переходы сложного хромофора. [c.535]

    Хромофоры — это функциональные группы, которые поглощают электромагнитное излучение независимо от того, возникает при зтом окраска или нет. Так, карбонильная группа С=0 является хромофором, поглощающим в области 280 нм, в то же время кетоны— бесцветные вещества. В табл. 14.1 приведены примеры органических хромофоров, которые встречаются в полимерных соединениях. Использование ультрафиолетовой и видимой спектроскопии для исследования полимеров в значительной степени обусловлено наличием в молекулах полимеров некоторых из этих хромофорных групп. [c.219]

    В спектрах ненасыщенных молекул могут проявляться переходы л - -п и я - л. Один из наиболее легко объяснимых случаев — карбонильное поглощение альдегидов и кетонов. Более сильная полоса поглощения при 180 нм вызвана переходом я - -я, а более слабая при 285 нм — переходом я - -п. Строение остальной части молекулы влияет на интенсивность и длину волны максимума поглощения, однако ряд веществ с одинаковыми хромофорами обычно имеет примерно одинаковый ультрафиолетовый спектр поглощения. Когда хромофорные группы разделены двумя или более одинарными связями, их действие обычно аддитивно, но если они составляют часть сопряженной системы, влияние этих групп усиливается, так как я-злектронная система распространяется по меньшей мере на четыре атомных центра. Соответствующая полоса поглощения обычно сдвинута на 15—45 нм [c.482]

    В некоторых случаях у соединений, содержащих хромофорные группы, разделенные несколькими насыщенными группами, в спектре наблюдаются изменения. Это может быть объяснено близким расположением хромофоров в пространстве, благодаря чему происходит взаимодействие их я-электронных облаков. Внутримолекулярные взаимодействия этого типа встречаются у карбонильных соединений. Например, для кетона [c.89]

    Считается, что лучшей мерой асимметрии групп, окружающих хромофор, является функция эллиптичности, называемая приведенным вращением ( к). Знак приведенного оптического вращения тот же, что и эффекта Коттона. Путем сравнения показано, что в случае соединений, для которых были сделаны подробные расчеты [200], величина Як весьма приближенно пропорциональна амплитуде кривых с эффектом Коттона. В данном обзоре амплитуда рассматривается как сугубо приближенный показатель асимметрии групп, окружающих карбонильную группу, причем полностью учитывается теоретическая ненадежность подобного подхода. [c.366]

    Следует отметить еще раз, что каждый индивидуальный тс-хромофор является плоским, т. е. все атомы, имеющие сопряженные тс-электроны, а также и-электронные пары гетероатомов, находящихся в итс-сопряжении, должны лежать в одной плоскости. Аналогично обстоит дело с ароматическими хромофорами фталоцианинов и порфиринов, у которых весь макроцикл, а не только одно лишь 16-членное макрокольцо, является плоским. Химические связи в макроциклах порфиринов являются сопряженными я-связями нецелочисленной кратности. Порядок я-связей С—N во фталоцианине равен 0,7, а связей С —N и С—С в порфириновых макрокольцах равен 0,5. Как видно из приведенных выше формул, в молекуле хлорофилла в качестве ауксохромов выступают карбонильная группа, которая сопряжена с простой я- [c.277]

    УФ Полоса при 260 ммк обусловлена фенильным хромофором. Увеличение интенсивности полосы 285 ммк по отношению к соответствующей полосе для ацетона приписывается взаимодействию между фенильным и карбонильным хромофорами (см. стр. 218). [c.275]

    Влияние на тонкую структуру спектров еще более заметно у каротиноидов, содержащих в сопряжении с полиеновой системой карбонильную группу. Сопряженная группа С = 0 эффективно удлиняет хромофор так, что максимум поглощения сдвигается в более длинноволновую область, однако при этом [c.48]

    Бензоин окисляется азотной кислотой в а-дикетон, бензил, окрашенный в желтый цвет. Углубление окраски (бензоин бесцветен) объясняется наличием дополнительного хромофора — карбонильной группы. Сам бензил способен претерпевать очень интересную реакцию — бензильную перегруппировку, первая стадия которой, очевидно, нуклеофильная атака какого-либо подходящего нуклеофила, например ОН или СН3О , по карбонильной группе [c.380]


    Сопряженные альдегиды и кетоны в ближнем ультрафиолете характеризуются двумя полосами поглощения К и Я. / -Полоса в этих соединениях батохромно смещена относительно ее положения в алифатических карбонильных соединениях. Сопряженные азометины, азины и азосоединения изоэлектронны 1,3-диенам и енонам, что является причиной сходства характеристик полос л- - л -переходов всех этих хромофоров. /С-Полоса нитро-алкенов смещена в сторону больших длин волн по сравнению с положением аналогг чной полосы в сопряженных карбонильных соединениях. [c.50]

    Обратимся к У Ф - с п е к т р у. В спектре наблюдаются две полосы, сильно различающиеся по интенсивности. Сильную полосу (е 12 600) при 42 4С0см (236 нм) следует признать К-по-лосой. Ее появление указывает на присутствие сопряженного хромофора, что согласуется с выводом из ИК-спектра о наличии фрагмента а,Р-не-предельного карбонильного соединения. Слабая полоса (е 58) при 31 800 см (314 нм) по положению и интенсивности может быть классифицирована как -полоса и отнесена к п->--> rt -переходу в кетонной группе, входящей в цепь сопряжения (см. ПШ)-Присутствие этой полосы утверждает предположение о структуре а,р-не-предельного кетона и позволяет окончательно отбросить структуру сложного эфира (в этом случае не должно быть длинноволновой полосы в УФ-спектре). [c.219]

    Два родственных оптических метода — дисперсия оптического враи ения (ДОВ) и круговой дихроизм (КД), отличаются от упоминавшихся выше тем, что используются почти исключительно для стереохимических целей. Так, практически только эти методы (вместе с простой поляриметрией) позволяют отличить друг от друга оптические антиподы, а также вообще оптически активные формы от рацемических. Кривые ДОВ и КД особенно чувствительны к изменениям пространственного строения молекул. Например, УФ-спектры кетонов любого строения имеют практически одинаковый характер — главное в них, это полоса поглощения карбонильного хромофора в области 300 нм. Характер же кривых ДОВ оптически активных кетонов существенно зависит от окружения хромофора — от строения всей молекулы в целом и, прежде всего, от расстояния между хромофором и асимметрическим центром. [c.86]

    Более тщательные исследования с использованием спектрополяриметрического метода показали, что по мере удаления хромофора от асимметрического центра не просто наблюдается уменьщение вращения, но постепенно исчезает характерный для данного хромофора эффект Коттона, причем при переходе хромофора из а- в р-положение наблюдается обращение знака эффекта Коттона. Одним из примеров может служить проведенное Джерасси [94] исследование тех же карбонильных соединений, с которыми имел дело Нердель (рис. 38). [c.287]

    Характерные кривые ДОВ имеют и стероидные кетоны с иными положениями кетонной функции. Изучив дисперсию оптического вращения очень большого числа стероидных соединений, Джерасси смог сформулировать правило, что форма кривой ДОВ существенно не меняется при введении в кето-стероид заместителей, имеющих характер оптически слабых хромофоров, если при этом остается неизменным непосредственное стереохимическое окружение — конфигурация и конформация вблизи стерического центра, ответственного за создание карбонильной аномалии. По существу здесь имеется более частный случай общего правила положения Чугаева. [c.650]

    НЕНАСЫЩЕЕ1НЫЕ КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ. При сопряжении двойной связи с карбонильной группой образуется сложный хромофор. Отвечающая ему картина молекулярных орбиталей отличается от таковой [c.77]

    ПРАВИЛО ОКТАНТОВ. Большое число экспериментальных и теоретических исследований обобщено в эмпирическом правиле октантов. Это правило позволяет предсказать абсолютную конфигурацию хирального центра, который искажает симметричный карбонильный хромофор в цикло-гексаноновых системах. [c.81]

    У насыщенных и, особенно, ароматических карбонильных соедиш ний рйак ия фотовозбужденного карбонильного хромофора и алкей [c.200]

    Хромопротеиды (окрашенные белки) — сложные вещества, состоящие из простого белка и пигментной группы. К X. относятся гемоглобин, миоглобин, хлорофилл. Хромофоры (от греч. hromos — цвет и foreo — несу)—ненасыщенные группы атомов, вызывающие появление окраски. Хромофорная теория возникновения окраски была предложена в 1878 г. немецким ученым Виттом. К X. относят азогруппу —N = N—, нитрогруппу—NO2, нитрозогруппу—N0. карбонильную группу >С0 и др. Введение других групп, называемых ауксохромами (от греч. аихо — увеличиваю) (—ОН, —NHa и др.), способствует углублению окраски. [c.152]

    Большинство работ по изучению ДОВ и КД проводилось на хиральных кетонах, поскольку полоса поглощения, отвечающая переходу - я в карбонильных хромофорах, расположена в удобном для измерений диапазоне около 33 300 см (300 нм). Замена одного растворителя на другой сопровождается изменением характеристик эффекта Коттона на кривых ДОВ или КД- Эти характеристики включают волновое число экстремумов ДОВ или максимума КД и интенсивность эффекта Коттона, оцениваемую по вращательной силе (/ ), эллиптичности (0), дифференциальному поглощению (Ае) или амплитуде ДОВ (а) [361]. Так, наблюдаемому при повышении по лярности растворителя или его способности образовывать водородные связи липсохромному сдвигу полосы поглощения, соответствующей переходу п- п в карбонильных хромофорах (см. разд. 6.2.3), отвечает аналогичное смещение максимумов, в сторону больших волновых чисел на кривых КД и ДОВ. Обычно максимум кривой КД для полосы поглощения, отвечающей переходу располагается примерно при 297 нм в н-гексане, 295 нм в 1,4-диоксане, 293 нм в ацетонитриле, 290 нм в этаноле или метаноле, 283 нм в 2,2,2-трифторэтаноле [361]. Индуцированный повышением полярности среды гипсохромный сдвиг полосы перехода в карбонильных хромофорах обусловлен главным образом стабилизацией -орбитали молекул растворенного вещества за счет сольватации, особенно с участием водородных связей (в протонных растворителях). Кроме того, наблюдаемый экспериментально гипсохромный сдвиг может быть связан и с перераспределением интенсивностей элементов тонкой структуры полосы перехода п- п при усилении взаимодействий между растворителем и растворенным веществом [328, 329] (эта проблема уже обсуждалась в разд. 6.2.3). [c.445]

    Ахиральные симметрично построенные соединения могут проявлять оптическую активность в присутствии хиральных молекул растворителя, поскольку последние способны индуцировать асимметрию. Например, при изучении КД растворов ахиральных карбонильных соединений бензила и бензофенона в хиральном растворителе (К,К)-(—)-бутандиоле-2,3 неожиданно была обнаружена оптическая активность в области, соответствующей переходу п- я [131, 365]. Это явление, впервые описанное для органических молекул Босничем [131], называют индуцированной оптической активностью [365]. Очевидно, что хиральные молекулы протонного растворителя будут создавать, асимметричное окружение и индуцировать оптическую активность в карболильном хромофоре даже тогда, когда молекулы хирального растворителя ориентированы в сольватной оболочке совершенно неупорядоченно [365]. [c.447]

    Природный лигнин в древесине либо бесцветен, либо очень слабо окрашен, что свидетельствует о незначительном содержании в нем хромофорных групп, в процессах выделения лигнина из древесины в нем накапливаются хромофоры (сопряженные с бензольным кольцом двойные связи и карбонильные группы и др.) и может происходить образование хромофоров, поглощающих в видимой области, таких как хинонные структуры различного типа. Поэтому цвет препаратов лигнина зависит от метода выделения и может быть обусловлен как изменениями в самом лигнине, так и наличием окрашенных примесей нелигнинной природы. Так, нативный лигнин Браунса и ЛМР имеют светло-кремовый цвет, а кислотные лигнины - темно-коричный. [c.411]

    Реакция, таким образом, идет, по-видимому, по двухстадийному механизму, каждая из стадий которого включает нуклеофильную атаку карбонильной группы субстрата, и большинство известных примеров согласуется с этим положением. Две эти стадии можно изучать по отдельности, исследования по предстационарной кинетике с (29), например, дают информацию об образовании ацилфермента. Удобным методом исследования гидролиза ацил-фермента является использование хромофорной ацильной группы. Циннамоилимидазол (31) быстро ацилирует химотрипсин при сю-отношении 1 1, причем ультрафиолетовое поглощение циннамоиль-ного хромофора можно наблюдать на ферменте. Это позволяет получать ацилфермент и исследовать его гидролиз независимо от стадии ацилирования. [c.484]

    Карбонильный хромофор. Изолированная карбонильная группа характеризуется слабым поглощением около 280 ммк и полосой средней интенсивности около 190 ммк. Сравнение ацетона (X ЬУ11) [c.201]

    Дикарбонильные соединения. Для а-дикетонов характерны две полосы поглощения низкой интенсивности. У простых ациклических дикетонов, хромофор которых имеет трансоидную конфигурацию ЬХУИ, длинноволновая полоса фактически наблюдается в видимой области, а если карбонильные группы включены в циклическую структуру и вынуждены, таким образом, принять неплоское взаимное расположение (см., например, ЬХУ1И), то эта полоса сдвигается в ультрафиолетовую область. [c.206]

    Длину волны максимума полосы, обусловленной переносом электрона, у ароматических карбонильных соединений можно предсказать, если приписать основную величину поглощению хромофора ацетофенона (ЬХХХ ) и вводить обычным способом инкременты для заместителей [16]. Такой подход можно распространить также на производные бензальдегида (ЬХХХ1, Н есть Н) и бензойной [c.210]


Смотреть страницы где упоминается термин Хромофоры карбонильные: [c.391]    [c.264]    [c.181]    [c.241]    [c.94]    [c.184]    [c.42]    [c.59]    [c.234]    [c.47]    [c.80]    [c.279]    [c.206]    [c.213]    [c.22]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.76 , c.77 , c.84 , c.518 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильная группа как хромофор

Хромофоры

Хромофоры оптически активные карбонильные



© 2025 chem21.info Реклама на сайте