Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин диссоциация

Рис. 4. Диссоциация кислорода гемоглобина Н и нормального гемоглобина Рис. 4. <a href="/info/291808">Диссоциация кислорода</a> гемоглобина Н и нормального гемоглобина

    Кислород — единственное простое вещество, которое имеет в газовой фазе аллотропную модификацию — озон О3. Молекулярные орбитали и некоторые свойства молекулы О2 приведены в табл. 17.16. За счет двух неспаренных электронов на щ и Лг разрыхляющих орбиталях молекула О2 парамагнитна. Диссоциация этой молекулы становится заметной при —2300 К. Поскольку молекула О2 не насыщенна, для кислорода характерны реакции присоединения, в частности к гемоглобину крови. [c.425]

Рис. 1.25. Обратимая диссоциация молекулы гемоглобина. Рис. 1.25. <a href="/info/91309">Обратимая диссоциация</a> молекулы гемоглобина.
    В определенных условиях (присутствие солей, 8М мочевины или резкие изменения pH) молекула гемоглобина обратимо диссоциирует на две а-и две 3-цепи. Эта диссоциация обусловлена разрывом водородных связей. После удаления солей или мочевины происходит автоматическая ассоциация исходной молекулы гемоглобина (рис. 1.25). [c.69]

    Возрастание интенсивности окислительных процессов в тканях, например при усиленной мышечной работе всегда связано с более полным извлечением кислорода из крови. Кроме того, при физической работе резко увеличивается скорость кровотока. Зависимость между степенью насыщения гемоглобина кислородом и Р ,, можно выразить в виде кривой насыщения гемоглобина кислородом, или кривой диссоциации оксигемоглобина, которая имеет 8-образную форму и характеризует сродство гемоглобина к кислороду (рис. 17.6). [c.593]

    Ход кривой насыщения гемоглобина кислородом или диссоциации оксигемоглобина зависит от ряда факторов. Сродство гемоглобина к кислороду в первую очередь связано с pH. Чем ниже pH, тем меньше способность гемоглобина связывать кислород и тем выше Рз . В тканевых капиллярах pH ниже (поступает большое количество СО,), в связи с чем гемоглобин [c.594]

    Количество гемоглобина в крови, а также в какой-то мере его способность связывать кислород (характер кривой диссоциации оксигемоглобина) несколько меняются с возрастом. Например, у новорожденных содержание гемоглобина доходит до 20—21% (вместо обычных для взрослого 13—16%). У человека имеется несколько гемоглобинов, которые образуются в различном количестве в разные стадии онтогенеза и различаются по своему сродству к кислороду. [c.595]


    Физиологическая функция гемоглобина и миоглобина заключается в обратимом связывании кислорода непосредственно ферро-порфириновой группой. Связывание кислорода гемоглобином характеризуется 5-образной зависимостью между долей оксигенированных гемов и логарифмом концентрации растворенного кислорода [98, 100]. В противоположность этому связывание кислорода молекулой миоглобина характеризуется гиперболической зависимостью Эти различия показаны на рис. 4, на котором приведены кривые диссоциации кислорода тетрамерного гемоглобина человека, со- [c.35]

    Оксигемоглобин обладает более сильной диссоциацией ионов водорода, чем гемоглобин. При взаимодействии с калиевой солью бикарбоната он вытесняет угольную кислоту и соединяется с калием. Схематично процесс в капиллярах альвеол происходит следующим образом  [c.232]

    Эритроциты, содержащие калиевую соль оксигемоглобина, приносятся с кровью к тканям. В тканях парциальное давление кислорода малое (20—40 мм ртутного столба), а углекислого газа высокое. Создаются условия для диссоциации оксигемоглобина на кислород и гемоглобин. [c.232]

    В тканях, где содержание кислорода незначительно, кислород отщепляется от гемоглобина. Легкость диссоциации оксигемоглобина объясняется тем, что валентность железа остается всегда постоянной. [c.254]

    Обычно реакции оксигенирования обратимы, хотя имеются и исключения. Поэтому при повышении температуры или уменьшении парциального давления кислорода лиганд Оз может отщепиться за счет диссоциации или перехода к другому акцептору, который при этом окисляется. Обратимое оксигенирование играет -существенную роль в жизненных процессах. Лучше всего изучены примеры с участием молекул гемоглобина и миоглобина высших животных, которые обсуждаются в гл. 31. Синтезировано несколько комплексов кобальта разд. 24.33), которые могут играть роль переносчиков кислорода, но для них не всегда твердо установлено, как связан кислород с кобальтом. [c.366]

    Если в случае дезоксигемо-глобина никакой заметной диссоциации тетрамера на субъединицы не наблюдается, то оксиге-моглобин слабо диссоциирует на ар-димеры (/С = 2-10- ). Вопросу связывания гемоглобинов с кислородом посвящено огромное [c.306]

    У человека было обнаружено свыше 50 аномальных разновидностей гемоглобина. В одной из них остаток глутаминовой кислоты в каждой из р-цепей замеш ен остатком валина. Столь ничтожное, казалось бы, изменение снижает ионный заряд молекулы и степень диссоциации между гемом и глобином. Пониженная полярность облегчает, по-видимому, кристаллизацию несимметричных молекул гемоглобина, не содержащих кислород, заставляя эритроциты принимать несвойственную им форму. Такие эритроциты быстро разрушаются селезенкой, что приводит к гемолитической анемии. Эта молекулярная болезнь (термин введен Л. Полингом) известна под названием серповидноклеточной анемии. [c.493]

    Гемоглобин обладает также другим замечательным свойством, которое делает его еще более эффективным переносчиком кислорода. Если гемоглобин присоединяет кислород при pH 7,4, то он отщепляет 0,6 моля ионов Н+ на каждую связанную молекулу кислорода. В легких ионы Н+, освобожденные гемоглобином, реагируют с бикарбонатными ионами, образуя кислоту Н2СО3, которая диссоциирует с выделением двуокиси углерода последняя диффундирует в воздушное пространство внутри легких. Диссоциация Н2СО3 на Н2О и СО2 протекает медленно по сравнению со скоростью потока крови в легких в красных кровяных тельцах эта реакция катализируется ферментом карбоангидразой. В капиллярах идет обратный процесс образовавшаяся в результате метаболизма СО2 превращается в угольную кислоту Н2СО3, которая диссоциирует на НСО -и Н+. Ион Н+ адсорбируется гемоглобином поглощение Н+ является частью суммарной реакции выделения кислорода из гемоглобина. Этот так называемый эффект Бора объясняется тем, что константы кислотной диссоциации оксигемоглобина отличаются от соответствующих констант дезоксигемоглобина. [c.233]

    Рассмотрим случай, когда константа Къв очень мала и Ва легко диссоциирует на мономеры. Тогда присоединение X приведет к диссоциации димера. Хорошо известным примером белка такого рода может служить гемоглобин миноговых, который представляет собой димер и после связывания кислорода диссоциирует на мономеры [64]. В этом случае уравнение (4-49) сводится к такому виду  [c.302]

    Посмотрите еще раз на выражение для константы Ь, определяющей отношение между количествами белка, находящегося в конформациях А и В в отсутствие лиганда. Из уравнения (4-50) следует, что Ь может достигать больших значений (преимущественно присутствует конформер А) либо при очень малой Кь либо при /Свв<С/Саа-Так, если t—1 и Ь велико, это означает, что связь между субъединицами в Вг значительно слабее, чем в Аг, и вполне возможно, что при-гоединение X приведет к диссоциации молекулы, как это имеет место в случае гемоглобина миноговых. Если же Kt мала (это означает, что молекулы белка находятся преимущественно в конформации А за счет большей стабильности этой формы), Къв может быть значительно больше, чем Каа, если Каа при этом достаточно мала, димер Аг пол- [c.302]


    Дана зависимость насыщения гемоглобина (НЬ) кислородом при pH 7,2 от концентрации свободного кислорода. Концентрации 0 в капиллярах легких (125 мкМ) н в капиллярах тканей, потребляющих (50 мкМ), зафиксированы в узких пределах. Кривая а в отсутствие дифосфоглицерата (ДФГ) гемоглобин насыщается О в легких, но не может доставлять его к тканям. Кривая б прн физиологическом уровне ДФГ (4.5 мМ. приблизительно 30% Оа. поглощенного легкими, высвобождается в тканях (стрелка 1). Кривые бив поскольку гемоглобин плода (кривая в) имеет более низкое сродство к ДФГ. чем материнский гемоглобин, освобожденный из материнской крови молекулярный кислород может захватываться гемоглобином плода (стрелка [[I). Кривая г высокая концентрация ДФГ (8 мМ) приводит к повышенному снабжению тканей кислородом (стре.жи I и [[). Кривая д при отсутствии кооператнвиостн между субъединицами гемоглобина от легких к тканям транспортировалось бы меньше Оз. При построении гипотетической кривой связывания (5) для комплекса НЬОз принята константа диссоциации 38 мкМ. [c.258]

    Участие гемоглобина в регуляции pH крови связано с его ролью в транспорте кислорода и углекислого газа. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от его насыщения кислородом. Нри насыщении кислородом гемоглобин становится более сильной кислотой (ННЬО,). Гемоглобин, отдавая кислород, превращается в очень слабую органическую кислоту (ННЬ). [c.588]

    Как отмечалось, кислотный характер оксигемоглобина выражен значительно сильнее, чем гемоглобина (константа диссоциации ННЬО, примерно в 20 раз больше константы диссоциации ННЬ). Важно также запомнить, что поступающий в ткани с кровью оксигемоглобин является более сильной кислотой, чем Н,СОз, и связан с катионом калия. Эту калийную соль оксигемоглобина можно обозначить как КНЬО, (рис. 17.7). В периферических капиллярах большого круга кровообращения гемоглобин эритроцитов отдает кислород тканям (КНЬО,—>0, + КНЬ), его способность связывать ионы водорода увеличивается. Одновременно в эритроцит поступает продукт обмена —углекислый газ. Под влиянием фермента карбоангидразы углекислый газ взаимодействует с водой, при этом образуется угольная кислота. Возникающий за счет угольной кислоты избыток водородных ионов связывается с гемоглобином, отдавшим кислород, а накапливающиеся анионы НСОз выходят из эритроцита в плазму  [c.597]

    Опишите, какое действие на сродство гемоглобина А к кислороду окажут следующие изменения и почему 1) 4-крат-ное увеличение парциального давления СО2 2) 4-кратное увеличение концентрации 2,3-дифосфогдицерата (ДФГ) 3) снижение pH с 7,4 до 7,2 4) диссоциация молекулы гемоглобина на мономерные субъединицы. [c.399]

    Метод ДМВ дает прекрасную возможность изучения диссоциации НЬ на субъединицы. Исследование диссоциации гемоглобина человека этим методом позволило установить, что в интервале pH от 10 до 11 тетрамеры диссоциируют на некооперативные димеры а Р оно дало также возможность найти зависимость константы диссоциации тетрамеров на димеры ог [c.448]

    В течение многих лет эти методы использовали главным образом при исследованиях в области физиологии и биохимии, особенно Роутон, а позже Джибсон и другие (работавшие над изучением реакций гемоглобина), а также Чанс — для исследования ферментативных реакций. Однако недавно область исследуемых этим методом реакций начали расширять. В табл. 7 (стр. 64) указаны различные реакции, исследованные струевыми методами к ним относятся реакции с переносом протона, окисли-тельно-восстановительные реакции, гидролиз, образование и диссоциация комплексов, реакции двуокиси углерода с водой, аммиаком и ионом гидроксила. Можно коротко упомянуть некоторые из этих реакций. [c.57]

    Конечно, прямой доступ к иону железа для лигандов закрыт аминокислотами, особенно дистальным гистидином. Как уже отмечалось, один из атомов азота имидазольного кольца гистидина обращен к железу, а другой фактически находится на поверхности, так что этот гетероцикл может работать как своего рода люк, перекрывающий лигандную полость. Поэтому связывание любого лиганда представляет собой сложный процесс, включающий промежуточные изменения конформации белка, например поворот гистидина Е7 вокруг его связи Са —Сз или небольшое искажение структуры спирали Е [161]. Тем не менее скорость связывания кислорода исключительно велика. Константа скорости реакции второго порядка при 20°С для различных миоглобинов находится в интервале 1,0-10 — 1,9-10 дм -моль с [определенные к настоящему времени значения свободной энергии активации для этих процессов составили в трех случаях 23,0, 23,0 и 29,3 кДж/моль (5,5, 5,5 и 7,0 ккал/моль) соответственно], а константы скорости для изолированных, но слегка модифицированных а- и 3-цепей составили 5-10 — 8-10 дм моль с , тогда как для мономерного гемоглобина hironomus получено более высокое значение 3-10 дм -моль 1-с [6]. Для гемоглобйнов кинетика реакции имеет сложный характер вследствие изменений четвертичной структуры, однако константы скорости и в этом случае попадают в интервал 10 — 10 дм моль с . Константы скорости отщепления кислорода составляют 10—70 с , а соответствующие энергии активации равны 80—88 кДж/моль (19—21 ккал/моль) для миоглобинов и 10— 15 с и 67—105 кДж/моль (16—25 ккал/моль) для большинства гемоглобйнов (эти значения сильно зависят от pH). Библиографию по этому вопросу см. в работе [8]. Даже если гистидин существенно уменьшает величину константы скорости, которая была в отсутствие белка, наблюдаемые скорости вполне достаточны для физиологических потребностей. Мутантные гемоглобины, в которых гистидин замещен на аргинин или тирозин, обнаруживают несколько более высокие скорости, особенно в реакциях с СО [8]. Некоторые гемоглобины с очень малыми константами скорости диссоциации ( 10 с 1), которые явно не могут функционировать как переносчики кислорода, встречаются у нематод [91]. [c.163]

    Из белков крови наибольшее буферное действие принадлежит гемоглобину. Его особое значение в буферном действии объясняется влиянием оксигенации на его способность связывать или освобождать ионы водорода. Восстановленный гемоглобин является более слабой кислотой или соответственно более сильным сопряженным основанием, чем оксигемоглобин (константа кислотной диссоциации гемоглобина равна 6,6- 10 9, а оксигемогло-бина 2,4-10 ). Проходя через ткани, кровь отдает кислород и поглощает СОг при этом НЬОг превращается в НЬ. Насыщение крови СОг должно было бы повысить ее кислотность, однако этого не происходит, так как появившиеся ионы водорода полностью связываются сильным основанием — анионом восстановленного гемоглобина. [c.35]

    Комплексы, образуемые перекисью водорода с гемопротеинами, изучены более подробно, сначала методом визуальной спектроскопии, а в более поздних работах путем применения специальной техники быстрой спектрофотометрии. Все эти комплексы настолько неустойчивы, что их не удалось выделить. Показано, что и пероксидаза и каталаза образуют по три комплекса, тогда как метгемоглобин и метмиоглобип—только по одному. Эти комплексы различаются по цвету и Чанс [375] и Джордж [367] в составленных ими обзорах описали эти различия. Чанс характеризует эти комплексы как первичные, вторичные и т. д. в соответствии с характером спектров. Некоторые из этих комплексов принимают участие в ферментных реакциях. Проведено много работ для выяснения их относительных ролей. Чанс [375] указывает, что первичные комплексы наблюдаются лишь для гемопротеииов, активных как ферменты, тогда как каталитически неактивные гемоглобин и миоглобин их не образуют. Имеются также различия в константах равновесия при образовании и диссоциации обоих этих типов комплексов. С механизмом катализа при действии этих ферментов связано также то, что в отсутствие избытка перекиси водорода первичные комплексы, относительно говоря, устойчивы. Это дало возможность титрования гемопротеинов перекисью водорода с применением специальной техники такого рода исследования показали, что на каждый атом железа связывается одна молекула перекиси водорода. Ход этих реакций и форма образующихся комплексов еще не вполне выяснены. Чанс [375] и Джордж [c.352]

    Окись углерода (СО)—бесцветный газ, не имеющий вкуса, со слабым запахом, напоминающим запах чеснока, Обладает низкой растворимостью и не поглощается активированным углем. При неполном сжигании газов в продуктах сгорания содержится, как правило, окись углерода, являющаяся сильнодействующим отравляющим ядом. Она вытесняет кислород из оксигемогло-бина крови и вступает в соединение с гемоглобином, образуя карбоксигемо-глобин. Кровь становится неспособной переносить достаточное количество кислорода из легких к тканям, а из-за пониженного содержания кислорода в крови наступает удушье. Соединение СО с гемоглобином способно к диссоциации. Следовательно, когда содержание СО во вдыхаемом воздухе уменьшается, начинается отщепление СО из карбоксигемоглобина и обратное выделение ее через легкие. При отсутствии СО в воздухе выделение ее из крови заканчивается в течение 10—12 ч. Основные признаки острого отравления — судороги, одышка, потеря сознания и удушье. [c.21]

    Другим важным выводом Краута было обнаружение у ферментов обратимой диссоциации. Многочисленные определения показали, что у различных ферментов константа диссоциации различна у одних очень высокая, у других, как, например, у гемоглобина, равна нулю. Что касается константы диссоциации хлорофилла, который относят к группе ферментов с порфинной простетической группой, то она пока еще не определена, [c.185]

    Способность связывать Н-ионы выражена у солей гемоглобина значительно сильнее, чем у солей оксигемоглобина. Другими словами, это значит, что гемоглобин является более слабой органической кислотой, чем оксигемоглобин. Вследствие этого при диссоциации оксигемоглобина в тканевых капиллярах на кислород и гемоглобин появляется дополнительное количество оснований (щелочно реагирующих солей гемоглобина), способных связывать углекислоту, т. е. увеличивать резервную щелочность. Наоборот, присоединение кислорода к гемоглобину приводит к некоторому подкис-лению крови и вытеснению части НаСОз из бикарбонатов. [c.436]

    Характер кривой диссоциации оксигемоглобина зависит от температуры и pH крови. Чем выше температура, тем меньшее количество кислорода может быть связано с гемоглобином, т. е. тем легче НЬОз отдает кислород 462 [c.462]

    Посмотрим теперь, какое же количество кислорода (в мл) может переносить кровь здорового человека от легких к тканям. Обычно в 100 мл крови человека содержится от 12 до 16 г гемоглобина (чаще 13—15 г). 1 г гемоглобина может связывать до 1,34 мл кислорода (при нормальном атмосферном давлении). Соответственно 100 мл крови, протекающих через систему легочных капилляров, способны поглотить от 16 до 21,5 мл кислорода (иначе 16—21,5 об.%). В тканях парциальное давление кислорода не превышает 20—40 мм рт. ст. В венозной крови при парциальном давлении кислорода, равном 40 мм рт. ст., гемоглобин насыщен кислородом на 70% (см. кривую диссоциации оксигемоглобина), т. е. каждые 100 мл венозной крови удерживают при содержании гемоглобина от 12 до 16 г — 11,2— Ъ мл кислорода (объем приведен к нормальным условиям). Отсюда следует, что каждые 100 мл крови, протекая по тканевым капиллярам, отдают тканям около 5 мл кислорода при содержании в крови 12% гемоглобина и около 6,5 мл кислорода при содержании в крови 16% гемоглобина. Один литр крови, протекая через тканевые капилляры, отдает соответственно от 50 до 65 мл кислорода. Как уже указывалось, сердце человека в течение минуты может прогнать до 20—25 л крови, т. е. ткани в условиях крайне напряженной мышечной работы могут получить до 25x50=1250 жуг кислорода или 1,25 л кислорода в минуту. Здесь необходимо напомнить, что в состоянии покоя взрослый человек должен получать в минуту лишь 200 мл кислорода. Доставка этого количества кислорода обеспечивается протеканием через сердце всего 4 л крови в минуту. Скорость кровотока и частота сердцебиений регулируются нервной системой. Следует также иметь в виду, что количество гемоглобина в крови и даже его способность связывать кислород (характер кривой диссоциации оксигемоглобина) несколько меняются с возрастом. Так, у новорожденных детей содержание гемоглобина (вместо обычных для взрослого 13—16%) [c.463]

    Неустойчивость оксигемоглобина и оксимиоглобина при рентгеновском облучении и значительная устойчивость к диссоциации комплекса гема с окисью азота 1172 ] указывают, что это производное заслуживает внимания при кристаллографических исследованиях по крайней мере по двум важным причинам. Во-первых, Кон [171 ] указывала, в что в случае гемоглобина и миоглобина электронный характер связывания окиси азота и кислорода может оказаться одинаковым. Во-вторых, (1 -конфигурация с неспаренным электроном, находящимся преимущественно на аксиальной орбитали по- [c.71]

    Существование этих четырех совершенно различных групп белков дает прекрасный пример того, как природа решает некоторые проблемы координационной химии (в данном случае обратимой координации кислорода) не одним, а несколькими способами. Даже механизм, связывающий константу равновесия со степенью оксигенации всего белка, был создан природой не только для гемоглобина, но и для гемоцианина. Однако полученные недавно функционально активные кобальтсодержащие аналоги гемоглобина и миоглобина показывают, что природа перепробовала не все возможные решения этой проблемы даже в пределах комплексов из тех металлов, аминокислот и других лигандов, которые имеются в ее распоряжении. Кобальтовые аналоги характеризуются меньшим сродством к кислороду, чем нативные белки [207], но pH и дифосфоглицерат влияют на них примерно так же, как и в случае гелюглобинов. Гем-гемовые или гомотропные взаимодействия в кобальтовых аналогах выражены слабее, чем в исходных белках [108]. Кобальтовые аналоги получены путем диссоциации гемоглобина или миоглобина на белок и железопорфирин (разд. 7.4) и последующей рекомбинацией белка с кобальтовым аналогом железопорфирина. [c.145]

    СОСТОИТ из нескольких гетерогенных компонентов, к которым относится, в частности, у-глобулиновая фракция, или фракция антител. Около 40% крови приходится на эритроциты, которые в свою очередь на 35% состоят из гемоглобина — белка с молекулярным весом 64 500. Роль эритроцитов сводится просто к тому, чтобы не дать гемоглобину диффундировать из кровяного русла. Нормальный гемоглобин взрослого человека, обозначаемый символом НЬА, состоит из четырех по.липептидных цепей двух одинаковых а-цепей, каждая из которых содержит 141 аминокислотный остаток, и двух одинаковых более длинных р-це-пей, содержащих по 146 аминокислотных остатков. М-концевые участки этих цепей имеют следующий состав Вал-Лей-Сер-Про-Ала-Асп-Лиз-(а-цепь) и Вал-Гис-Лей-Тре-Про-Глу-Глу-Лиз-(р-цепь). С каждой цепью соединена также группа гема, несущая атом железа. Таким образом, в одной молекуле гемоглобина имеется четыре гемогруппы. Железо находится в геме в состоянии двухзарядного иона Ре +. Может возникнуть вопрос, есть ли смысл приписывать молекуле гемоглобина структуру гРа Не проще ли считать ее димером ар Однако при нормальных условиях роль переносчика кислорода в организме играет именно структура ааРг, простой димер ар способностью переносить кислород, по-види мому, не обладал бы (см. разд. 5 гл. XXII). Ряд других данных, в том числе данные по титрованию и равновесию диссоциации, о которых пойдет речь ниже, также свидетельствуют в пользу структуры агРг как наиболее простой структурной единицы гемоглобина. Пространственное строение этой единицы будет детально рассмотрено в разд. 2 гл. XV. [c.222]


Смотреть страницы где упоминается термин Гемоглобин диссоциация: [c.145]    [c.122]    [c.394]    [c.145]    [c.320]    [c.176]    [c.371]    [c.462]    [c.202]    [c.249]    [c.225]    [c.225]    [c.226]    [c.226]   
Катализ в химии и энзимологии (1972) -- [ c.293 , c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин



© 2025 chem21.info Реклама на сайте