Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкилы реакционная способность

    Алкены — непредельные углеводороды с обшей формулой С Нгп, имеющие одну двойную связь. Их называют также олефи-нами или этиленовыми углеводородами. Одним из основных методов их получения является крекинг нефти. Наличие двойной связи в молекуле алкенов обусловливает их высокую реакционную способность. Для алкенов характерна реакция присоединения, в процессе которой разрывается двойная химическая связь, например  [c.303]


    Алкины образуют еще один ряд ненасыщенных углеводородов. В молекулах этих соединений имеется одна или несколько тройных углерод-углеродных связей. Простые алкины имеют общую эмпирическую формулу С Н2 2- Простейший представитель ряда алкинов, ацетилен, обладает высокой реакционной способностью. При горении ацетилена в токе кислорода в так называемой кислородно-ацетиленовой горелке образуется пламя с очень высокой температурой, приблизительно 3200 К (см. разд. 21.4). Кислородно-ацетиленовые горелки широко используются при сварке, где требуются высокие температуры. Алкины вообще очень реакционноспособные вещества. Вследствие этого они не столь широко распространены в природе, как алкены, однако являются важными промежуточными продуктами во многих промышленных процессах. [c.416]

    При объяснении этого факта следует учитывать не только большой отрицательный индуктивный эффект атома хлора, снижающий реакционную способность алкена, вследствие чего НХ должен был бы присоединяться против правила Марковникова, но и положительный мезомерный эффект ( + Л1-эффект), обусловленный наличием у атомов галогенов неподеленных пар р-электронов. [c.13]

    Двойная связь обусловливает повышенную по сравнению с алка-нами реакционную способность алкенов. Они активно вступают в реакции присоединения вследствие разрыва менее прочной я-связи. В качестве примера можно привести реакцию присоединения брома к этилену  [c.256]

    Тиофен, открытый Виктором Мейером в 1882 г., кипит при 84,1° и. плавится при 38,3° он термически устойчив вплоть до 850 . Оба атома водорода, расположенные по соседству с серой, обладают большой реакционной способностью они легко нитруются, галогенируются и меркурируются. При определенных условиях их можно даже алкили-ровать и ацетилировать. [c.506]

    Бензол обладает поразительно низкой реакционной способностью по сравнению с алкенами, например бутеном. Своей низкой реакционной способностью бензол больше напоминает насыщенные алканы. Он не вступает в реакции присоединения по двойной связи если бы такие реакции протекали, это понижало бы степень делокализации электронов. Наличие делокализации приводит к тому, что устойчивость бензола оказывается на 166 кДж моль больше, чем следует ожидать для соединения с тремя простыми и тремя двойными связями (см. рис. 15-9). Вообще говоря, чем больше область молекулы, на которую простирается делокализация электронов, тем устойчивее такая молекула. [c.301]

    Тиолирование облегчается с увеличением длины углеродной цепи и степени разветвленности алкена. Реакционная способность алкенов в каталитической реакции присоединения к ним HjS изменяется в ряду [c.53]


    Мы уже упоминали, что соединения, содержащие только углерод и водород, называются углеводородами те из них, в которых все атомы углерода образуют четыре простые связи с другими атомами, носят название насыщенные углеводороды, парафины или алканы. Слово парафин происходит от греческого выражения низкая реакционная способность , а химические свойства парафинов значительно отличаются от свойств силанов и азотоводородов. [c.282]

    Условия процесса абсорбции алкенов серной кислотой при сернокислотной гидратации зависят от реакционной способности алкена и выбираются так, чтобы свести к минимуму побочные реакции его полимеризации. В табл. 12.5 приведен режим абсорбции алкенов различного строения серной кислотой при сернокислотной гидратации. [c.273]

    В результате присоединения Н2 к алкену образуется алкан. Эта реакция, называемая гидрированием, не протекает при обычных температурах и давлениях. Одной из причин низкой реакционной способности водорода по отношению к алкенам является большая энергия связи Н2. Для проведения реакции гидрирования необходим катализатор, способствующий разрыву связи Н—Н. Чаще всего в реакции гидрирования применяются гетерогенные катализаторы-тонкоизмельченные металлы, на поверхности которых происходит адсорбция Н2. Действие таких гетерогенных катализаторов в реакции Н2 с алкенами подробно описано в разд. 13.6. Молекулярный водород также реагирует в присутствии катализаторов с алкинами, образуя с ними алканы, например  [c.423]

    По реакционной способности галогены можно расположить в ряд l2> ВГ2 алканы — в следующий ряд третичный > вторичный > > первичный. [c.56]

    Алкины — углеводороды с тройной связью с общей формулой С Н2я-2. Простейший алкин НС=СН, называемый этином или ацетиленом, широко используется в кислородно-ацетиленовых горелках, в которых пламя имеет очень высокую температуру (3200 К). Алкины, будучи ненасыщенными соединениями, обладают высокой реакционной способностью. Они легко вступают в реакцию присоединения, превращаясь в алкены или алканы и их производные, например  [c.304]

    Особенности строения алканов - наличие прочных ковалентных связей (а-связей), характеризующихся низкой поляризуемостью, определяют их реакционную способность алканы преимущественно вступают в реакции, протекающие по Х -механизму. При достаточно высоких температурах происходит разрыв углерод-углеродной связи (крекинг-процесс). [c.288]

    Алкены обладают большей реакционной способностью, чем алканы. Это обусловлено наличием в и> мо- [c.468]

    Алкены реагируют с соединениями формулы НХ. Какова может быть природа группы X Карбонильные соединения реагируют с соединениями формулы HY. Какова может быть природа группы Y Сопоставьте реакционную способность групп С = С и С = 0 в реакциях присоединения. [c.682]

    В отличие от алканов этилен и его гомологи проявляют большую реакционную способность, что обусловлено наличием в нх молекулах двойной связи. Алкены способны вступать в реакции присоединения за счет разрыва л-связн. Кроме того, л-связь под действием окислителей разрушается легче, чем а-связь, поэтому для алкенов характерно участие в качестве восстановителей в окислительно-восстановительных реакциях. [c.318]

    Примером может служить также хорошо известное уменьшение реакционной способности при переходе от алкилиодида к алкил фториду. Тот факт, что ион может служить эффективным атакующим агентом и в то же время способен легко замещаться, объясняет частое использование этого иона в качестве катализатора в нуклеофильных реакциях. Желаемая реакция облегчается в результате следующих друг за другом атаки активного центра ионом I и его удаления из реакционного центра под действием другого реагента  [c.110]

    В ряду алкан — алкен — алки реакционная способность возрастает это непосредственно видно из сопоставления значений (ккал/моль) в ряду газообразных СзН (-5,61), СзН (14,99) и С3Н4 (46,47). [c.64]

    Следует, однако, отметить, что делать априорГный расчет состава продуктов алкилирования на основе только стабильности карбокатионов нельзя, так как важную роль имеют и кинетические факторы, которые вносят значительные коррективы в направленность протекания реакции. Например, в соответствии с термодинамическими данными, пропилхлорид должен преимущественно превращаться в более стабильный изопропил-катион, который при атаке бензола должен давать изопропилбензол. Образование значительных количеств пропилбензола при алкилировании бензола этим агентом в присутствии А1С1з можно объяснить тем, что пер ичный алкил-катион в силу своей высокой реакционной способности присоединяется к ароматическому ядру раньше, чем произойдет его перегруппировка. [c.109]

    Фактически все гидроксильные соединения в кислых условиях можно присоединить к алкенам. Гидратация (ирисоединение воды) — это очень важный процесс, который находит применение в промышленности для синтеза спиртов из побочных продуктов нефтепереработки. Для получения сложных эфиров, в частности тпрето-алкилкарбоксилатов, часто используют именно эту реакцию, так же как в синтезе диэтилового эфира посредством присоединения воды и этанола к этилену. Условия, требующ,иеся для того, чтобы осуществить эти преврап],ения, сильно меняются в зависимости от структуры данного алкена. Реакционная способность возрастает при наличии электронодонорных заместителей типа алкилов по соседству с двойными, связями. [c.340]


    Таким образом, принимая во внимание современные представления о напряженности средних циклов и полученный экспериментальный материал по их каталитическим преврашениям, можно сделать вывод, что внутримолекулярные реакции s- и Сб-дегидроциклизации с образованием бициклических углеводородов энергетически выгодны для 8—11-членных циклоалканов, поскольку при этом существенно уменьшается трансаннулярное напряжение. В случае конкурирующей реакции — реакции гидрогенолиза — главную роль играет, по-видимому, не напряженность в исходной молекуле, а напряжение, возникающее в переходном комплексе при адсорбции молекулы циклоалкана на поверхности катализатора [197]. Поэтому в общем случае нельзя считать выход н-алка-нов мерой реакционной способности циклоалканов. Это становится тем более очевидным, если учесть, что гидрогенолиз различных циклоалканов в присутствии Pt/ описывается разными кинетическими уравнениями [143, 151, 201, 202].  [c.159]

    Избирательная реакционная способность. Поскольку скорость взаимодействия энантиомеров с хиральными соединениями различна, иногда удается осуществить частичное разделение, остановив реакцию до ее завершения [93]. Этот метод подобен асимметрическому синтезу, о котором говорилось в разд. 4.10. Наиболее важной областью применения этого метода [94] является разделение рацемических алкенов при обработке оптически активным диизопинокамфилбораном, ибо незамещенные алкены с трудом поддаются превращению в диастереомеры. [c.161]

    В соответствии с классическими взглядами, ароматизация алканов на оксидных и металлических катализаторах протекает по пазным механизмам. Согласно [141, 142], на оксидах катализаторах вначале происходит дегидрирование алкана в алкен, последующая циклоизомеризация алкена в циклогексан и, наконец, дегидрирование последнего в арен. На металлических, в частности платиновых, катализаторах постулировался другой механизм алканы— -циклогексаны—варены [143, 144]. Основанием для этого явилось исследование реакционной способности 2,2- и 3,3-диметилгексанов. Одним из продуктов превращения 3,3-диметилгексана в исследованных условиях явился гел1-диметилциклогек-сан. [c.237]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    В аналогичных условиях реакция 1,72 моля изопентана с 0,31 моля фтористого изопропила в присутствии 0,09 моля фтористого бора шла с превращением 4,45 моля изопарафина на каждый моль взятого в опыт фтористого изопропила. Был получен пропан с выходом 74% выход изобутана составлял 1,68 моля на каждый моль прореагировавшего фтористого алкила. Гексаны (12 % 2,3-диметилбутана, 57 % 2-мотилпентана и 31 % 3-метилпентана), гептаны (30% диметилпентанов и 70% метил-гексанов) и октаны образовались с выходами соответственно 71, 33 и 30 %. Значение образования метилпентанов и метилгексанов и более высокая реакционная способность изопентана по сравнению с изобутаном (дающим 2,3-диметилпептан) уже обсуждались. [c.333]

    Как было показано выше, вклад я-аллильного лиганда в дативное связывание с металлом невелик и устойчивость этих комплексов обусловлена в основном донорно-акцепторным взаимодейст вием [61]. Из всех трех атомов углерода л-аллильного лиганда лишь центральный углеродный атом участвует только в донорно-акцепторном взаимодействии с переходным металлом [83]. Исходя из этого, увеличение электронодонорной силы заместителей в л-аллильных лигандах, особенно у среднего углеродного атома, должно способствовать упрочнению связи л-аллильный лиганд — металл. Относительная реакционная способность 2-алкил-1,3-бута-диенов при взаимодействии с (С407Ы11)2, а также активность аддуктов 1 1 в последующих реакциях присоединения к соответствующему 1,3-диену подтверждают этот вывод. Из кинетических кривых образования аддуктов 1 1 (С4В7Н11)2 с диеновыми углеводородами (рис. 9) видно, что активность диенов увеличивается в ряду  [c.125]

    Как правило, когда R = R = R = H, то наблюдается только направление (б). Но при R = алкил или фенил и R, R = H или алкил реакция идет по направлению (а) [420, 671, 674, 677, 686, 768]. Ситуация становится более сложной, если один или оба радикала R R2 = фeнил или алкил и R = H образуются смеси аддуктов и продуктов вторичных реакций, рассмотренные в разд. 3.20.2. Аллильный гидроксил до некоторой степени дезактивирует двойную связь по отношению к атаке ССЬ [502]. Было проведено обширное исследование [990] влияния соседнего циклопропанового кольца на реакционную способность двойной связи по отношению к генерированному в МФК-реакции ССЬ- Оказалось, что циклопропилалкены реагируют примерно в 10 раз быстрее, чем изопропилалкены, и примерно так же, как соответствующие метилалкены. [c.303]

    Чтобы проиллюстрировать низкую реакционную способность алканов, укажем только один пример к-гексан не взаимодействует с кипящей HNO3, концентрированной HjSO , таким сильным окислителем, как КМпОд., и с расплавленным NaOH. Инертность алканов позволяет использовать их в качестве смазочных масел, полимерных пленок и твердых пластмасс для изготовления труб и сосудов (хорошо известным всем примером является полиэтилен). В сущности, алканы вступают только в такие химические реакции, как горение, дегидрирование и галогенирование. [c.287]

    Алкены с большим числом атомов углерода имеют большее число отличаюидихся структур и, соответственио, большее число изомеров. Алкены — бесцветные вещества, прн содержании до четырех атомов углерода в обычных условиях — газы, от пяти до семнадцати атомов углерода — жидкости, а свыше восемнадцати атомов углерода — твердые тела. В химическом отнощении алкены отличаются значительной реакционной способностью, которая обусловлена наличием двойной связи между атомами углерода. Эти две межуглеродные связи не равноценны одна из них является сигма-, а другая—пн-связью (см. гл. П, 6). Пи-связь, являясь меиее прочной, имеет склонность к разрыву, что обусловливает резко выра кенную способность алкенов к реакциям присое-дииеиия. Алкены охотно присоединяют к себе атомы галогенов, кислорода, других окислительных элементов и сравнительно легко подвергаются полимеризации. [c.145]

    Раньше реакцией Се-дегидроциклизации алкилбензолов занимались главным образом для изучения механизма реакции и влияния ароматического кольца на реакционную способность замещенных парафинов. В последнее время эта реакция приобрела практическое значение, особенно в отношении получения диметилнаф-талинов — сырья для производства термостойких полимерных материалов. Реакцию дегидроциклизации исследовали также, используя в качестве исходных материалов алкилдиарилы, диарил-алканы и алкилнафталины. Хотя реакция дегидроциклизации алкилароматических углеводородов изучена менее детально, чем парафиновых, имеющиеся уже сейчас результаты показывают, что эта реакция занимает большее место в различных каталитических процессах нефтепереработки, в том числе в каталитическом риформинге, чем, предполагалось раньше. По-видимому, немалая роль принадлежит этой реакции и при образовании отдельных групп углеводородов в нефти. [c.138]

    Несмотря на то, что энергия диссоциации связей С—С Меньше энергии диссоциации связи С—Н, распад низших алканов (этан, пропан, бутан) происходит по связи С—Н, что объясняется отсутствием стерического фактора. Начиная с пентана распад происходит преймушественно по связям С—С. Большая молекулярная масса и степень разветвления молекулы обусловливает повышение ее реакционной способности. Скорость распада высокомолекулярного алкана по отношению к низкомолекулярному алкану может отличаться на порядок. [c.187]

    Диметил- и диэтилсульфаты являются единственными представителями ряда диалкилсульфатов, которые пользовались постоянным вниманием со стороны исследователей, причем диэтилсульфат стал легко доступным лишь сравнительно недавно. Практическое значение метил- и этилсоединений указывает на то, что их высшие гомологи также заслуживают более серьезного изучения. Следует признать, однако, что ни одно из этих соединений не может заменить соответствующие бромистые алкилы в качестве общеприменимых алкилирующих агентов, так как только одна из алкильных групп диалкилсульфатов способна вступать в большинство реакций. Это свойство является серьезным недостатком в том случае, если неиспользуемый в реакции алкил трудно выделить из реакционной смесн в пригодном для переработки виде. Несомненно, что в некоторых частных случаях высшие диалкил-сульфаты вследствие несколько большей реакционной способности будут полезны в лабораторной работе. Сравнительно недавно [329, 330] показано, что ди-н-алкилсульфаты, включая диоктадецил-сульфат, могут быть синтезированы из спиртов с помощью следующих реакций  [c.60]

    Результатом взаимного влияния кратных связей в сопряженных дпенах является повышение их реакционной способности в реакциях присоединения. Кроме того, в ряде приведенных в разд. 1.1 реакций присоединения сопряженные диены ведут себя как единая система, и поэтому они образуют несколько иные продукты реакции, чем алкены с изолированной кратной связью. У соединений с сопряженными кратными связями появляются также специфические, характерные только для них реакции. [c.63]

    Алкены являются соединениями, родственными алканам, но отличаются от последних тем, что в их молекуле содержится по крайней мере одна двойная углерод-угле-родная связь. Алкены иногда называют олефинами. Наличие двойной связи приводит к тому, что каждый алкен содержит на два атома водорода меньше, чем соответствующий алкан. Поскольку алкены содержат меньше водородных атомов, чем необходимо для образования алкана, они принадлежат к числу ненасыщенных углеводородов. Несколько позже мы убедимся, что наличие двойной связи придает алкенам значительно большую реакционную способность, чем у алканов. Простейшим алке-ном является С2Н4, называемый этеном или этиленом. Следующий член ряда алкенов, СНз—СН=СН2, называется пропеном или пропиленом. При наличии в молекуле алкена более трех атомов углерода возможно образование изомеров. В качестве примера на рис. 24.6 показаны все возможные алкены с четырьмя атомами углерода и молекулярной формулой С4Н8. Первое из этих соединений содержит разветвленную [c.414]

    Тривиальное (историческое) название алканов — парафины — означает не имеющие сродства . Алканы химически мало активны. Низкая реакционная способность алканов обусловлена очень малой полярностью связей С — СиС — Нвих молекулах вследствие почти одинаковой электроотрицательности атомов углерода и водорода. [c.453]

    Применение важнейших алкенов и полимерных материалов на их основе. Алкены представляют собой один из важнейших источников сырья для промышленного органического синтеза. Такое использование алкенов обусловлено тем, что они получаются в огромном количестве при крекинге нефти, а также их йысокой реакционной способностью. [c.256]


Смотреть страницы где упоминается термин Алкилы реакционная способность: [c.340]    [c.430]    [c.416]    [c.146]    [c.225]    [c.622]    [c.188]    [c.189]    [c.88]    [c.413]    [c.226]   
Химия органических соединений бора (1965) -- [ c.13 ]




ПОИСК







© 2025 chem21.info Реклама на сайте