Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины разбавления

    Следовые количества первичных аминов алифатического ряда-от l до Сб могут улавливаться разбавленной серной кислотой. За тем амины экстрагируют амилацетатом с помощью нингидринной реакции фотометрически определяют содержание аминов [334]. [c.101]

    Лучшие выходы достигаются при —5-ь20°С, максимальном разбавлении реакционной смеси, медленной подаче реагентов в раствор амина, а также при использовании более основных аминов [38]. [c.472]


    Изонитрильная проба. Растворяют 50 мг амина или его соли в 1 мл этилового спирта. Добавляют 2 мл разбавленного раствора едкого натра и несколько капель хлороформа. Быстро нагревают до кипения. Сильный неприятный запах указывает на образование изонитрила и наличие в исследуемом веществе первичной аминогруппы. [c.125]

    Амины, полученные восстановлением продуктов нитрования без предварительного отделения нейтрального масла, могут быть легко от него освобождены это достигается обработкой аминов рассчитанным количеотвом соляаой или серной кислоты и извлечением полученных солей аминов разбавленным метанолом при встряхивании. Избыток минеральной кислоты вызывает выделение солей аминов из водных растворов в виде масел. Эти масла растворимы в углеводородах и эмульгируют их при прибавлении воды. Соли аминов с органическими кислотами также растворимы в воде при избытке кислоты. Высокомолекулярные амины могут быть превращены в алкилированные аминокислоты действием хлоркарбоновых кислот. Особенно просто получают алкиламиноуксусные кислоты. В виде натриевых солей при подходящей длине алкильной группы они обладают прекрасными моющими свойствами  [c.346]

    Высокая комплексообразующая способность аминов по отношению к ряду металлов может найти применение и частично используется в процессах их экстракции из разбавленных растворов [c.139]

    Капролактам (лактам е-аминокапроновой кислоты, 2-оксо-гексаметиленимин) представляет бесцветное кристаллическое вещество с температурой плавления 68,8°С, темпе-/КН ратурой кипения 262,5°С и плотностью 1,02 т/м (при 70°С). Хорошо растворим в воде (525 г в 100 г воды), бензоле, ацетоне, этаноле, диэтиловым эфире, плохо растворим в алифатических углеводородах. Растворяется в разбавленной серной кислоте, гидролизуясь до е-аминокапроновой кислоты. Гигроскопичен. При нагревании с концентрированными минеральными кислотами капролактам образует соли. В присутствии каталитических количеств воды, спиртов, аминов и органических кислот при нагревании полимеризуется с образованием полиамида. [c.343]

    Высшие ненасыщенные альдегиды, у которых двойная связь находится между а- и -углеродными атомами, могут быть легко получены по ранее упоминавшемуся методу — отщеплением воды от двух молекул альдегида при действии разбавленных щелочей, карбонатов, а также ацетата натрия, хлорида цинка или солей вторичных аминов, например пиперидина (синтез Кневенагеля). Первая стадия этой реакции представляет собой альдольную конденсацию  [c.215]


    На рис. 19 представлена технологическая схема установки осушки газа с блоком регенерации гликоля, действующая на Оренбургском ГПЗ. Газ с установки аминовой очистки, очищенный раствором амина от сероводорода и углекислоты, проходит через трубное пространство теплообменника /, где предварительно охлаждается проходящим по межтрубному пространству товарным газом. Охлажденный газ поступает в сепаратор 7 для отделения сконденсировавшейся воды и унесенного газовым потоком амина. После отделения капельной жидкости газовый поток направляется в последовательно расположенные теплообменники 2, 3 ш 4. В теплообменники 2 я 4 впрыскивается 85 %-ный раствор монозтиленгликоля, где в прямоточноперекрестном потоке происходит извлечение влаги из газа раствором гликоля. Таким образом, в качестве абсорберов в данном случае используются кожухотрубчатые теплообменники (рис. 20), снабженные форсунками для впрыска гликоля. Использование разбавленного раствора гликоля (75-85 % по массе) понижает температуры замерзания осушителя и снижает растворимость гликоля в образующемся углеводородном конденсате, что благоприятно сказывается на эффективности процесса абсорбционной осушки газа и сокращает потери гликоля. [c.87]

    Изделия, изготовленные из поликарбоната, характеризуются стабильностью размеров, не деформируются при длительном нагревании вплоть до температуры плавления и остаются гибкими до —75 °С. Поликарбонаты устойчивы к действию воды, растворов солей разбавленных кислот, углеводородов, спиртов, разлагаются под действием растворов щелочей, аммиака и аминов. [c.78]

    В большинстве растворителей окислительно-восстановительные реакции идут по нормальной схеме, но в жидком аммиаке и некоторых алифатических аминах щелочные и щелочноземельные металлы ведут себя совершенно аномально. В свободном виде элементы обеих групп легко растворяются в жидком аммиаке, и после испарения аммиака получаются исходные щелочные металлы, а щелочноземельные металлы образуют аммиакаты состава М(ЫНз)в- Разбавленные растворы всех этих металлов имеют характерную синюю окраску. Спектры поглощения растворов равных концентраций одинаковы для всех этих металлов, это означает, что синяя окраска обусловлена одинаковыми частицами. Оказалось, что эти растворы обладают необычайно высокой электропроводностью. Эквивалентная электропроводность этих растворов любой концентрации более высокая, чем электропроводность любой известной соли н любом растворителе, а для больших концентраций она приближается к электропроводности металлов. Структура этих растворов детально изучена, основные сведения [c.352]

    Протоны, образующие связи с кислородом, азотом с серой, находятся в спиртах, фенолах, карбоновых кислотах, енолах, аминах, амидах, меркаптанах и других соединениях. В большинстве случаев такие протоны относятся к так называемым активным атомам водорода. Характер таких активных протонов зависит от силы межмолекулярных взаимодействий и скорости химического обмена. На положение сигналов таких протонов сильно влияет концентрация раствора, его температура и характер растворителя. Поэтому для определения истинных химических сдвигов активных протонов используют растворитель, не образующий водородных связей (например, четыреххлористый углерод), и производят измерения при нескольких концентрациях раствора, после чего экстраполяцией к бесконечному разбавлению раствора определяют величину химического сдвига. Полученное при этом значение 6 соответствует отдельным молекулам, не связанным межмолекулярными водородными связями. [c.133]

    Окисление раствором перманганата калия третичных аминов в третичные нитросоединения дает очень хорошие выходы и весьма чистые продукты. Так, /и)0епг-бутиламин дает с выходом 83% чистое т/ ет-нитро-производпое. Метод применялся также для получения пгрете-питропроиз-водпых из трет-амиламина, 7и/>е г-октиламина и 1,8-диамино-п-ментана [32а]. Такие нитросоединения можно получить и нитрованием соответ-ствуюш их углеводородов разбавленной азотной кислотой при 130—150°, но с плохими выходами. Метод нарофазного нитрования но применим для получения только что перечисленных нитросоединений. [c.85]

    Интересным свойством щелочных металлов является их способность растворяться в жидком аммиаке, некоторых аминах и эфирах. В разбавленном состоянии эти растворы имеют голубую окраску и обладают значительной электропроводностью. Свойства таких растворов объясняются наличием в них сольва-тированных электронов, которые образуются за счет ионизации атомов металла. Например, [c.229]

    Действие аммиака или аминов на ацилгалогениды представляет собой общий метод синтеза амидов [691]. Реакция сильно экзотермична и требует тщательного контроля, обычно охлаждением или разбавлением. При использовании аммиака получают незамещенные амиды, из первичных аминов получаются N-замещенные амиды, а из вторичных аминов — N, N-ди-замещенные амиды. Аналогично можно ацилировать арил-амины. В некоторых случаях для связывания выделяющегося НС1 добавляют водный раствор щелочи. Такая реакция носит название метода Шоттена — Баумана (как и в случае реакции 10-22). [c.153]


    Водоразбавляемые алкидные олигомеры выпускаются в виде 60%-ных растворов в органических растворителях, обычно в спиртах (этанол, пропанол, реже—бутанол, гликоли, этил- и бутилцел-лозольвы). Растворы нейтрализуют аммиаком или третичными аминами. Разбавление водой растворов алкидных олигомеров осуществляется потребителем. Следует иметь в виду, что разбавленные водой растворы недостаточно стабильны и могут расслаиваться при хранении. Низкая стабильность растворов обусловлена гидролизом сложноэфирных связей под действием введенных в раствор оснований, сопровождающимся образованием продуктов, не способных растворяться в воде, например жирных кислот  [c.136]

    Если хороший выход не требуется, то реагенты растворяют в ацетонитриле [2] или ацетоне [3] и оставляют на ночь при комнатной температуре. При нагревании до 65 С в течение 3 сут 1-бромгексадекана и трибутилфосфина образуется три-бутилгексадецилфосфонийхлорид [4]. Тетрагексиламмонийбро-мид получают с выходом 59% при кипячении соответствующего амина и бромида в ацетонитриле в течение 48 ч. Для получения три-к-бутилэтиламмонийбисульфата кипятят 5 ч трибутиламин и диэтилсульфат в ацетонитриле, удаляют растворитель к остатку добавляют разбавленный водный раствор серной кислоты и кипятят еще 48 ч. Это необходимо для гидролиза образующегося при реакции этилсульфата в кислый сульфат [5]. [c.81]

    Соли кобальта, марганца, меди железа и других металлов переменной валентности значительно ускоряют распад пероксидов, кетонов и др. Например, амины ускоряют разложение диа-цильных пероксидов кетонов. Распад пероксидов с применение.м указанных ускорителей происходит даже при комнатной температуре. Для предотвращения нежелательных последствий ускорители добавляют только в разбавленные растворы пероксидов. Это объясняется тем, что прямое попадание ускорителей в концентрированные органические пероксиды может вызвать их бурное разложение с саморазогревом и в ряде случаев с воспламенением. [c.25]

    Прп прибавлении к реакционной смеси соляной кислоты выпадает в осадок трудно растворимая кислая калиевая соль амино-метионовоп кислоты, которая показывает кислую реакцию по фенолфталеину и титруется как одноосновная кислота. Средняя калиевая и бариевая со.чи аминометионовой кислоты разлагаются в кипящем водном растворе. Свободная кислота известна только в виде разбавленного раствора, и попытки концентрирования его даже при комнатной температуре ведут к выделению аммиака [c.180]

    При нагревании с обратным холодильником ароматических нитро-соединений с сульфитами щелочных металлов [951] образуются ариламиносульфокислота (арилсульфаминовая кислота), или продукт ее сульфирования, или оба эти соединения. Кипячение смеси с разбавленной кислотой приводит к амину и аминосуль-фокислоте  [c.146]

    Скорость разрушения может быть значительной и в разбавленных, и в концентрированных щелочах. По этой причине при катодной защите алюминия следует избегать перезащиты, чтобы не допустить разрушения металла в результате концентрирования щелочей на катодной поверхности. Агрессивны по отношению к алюминию известь Са(0Н)2 и некоторые высокоосновные органические амины (но не НН40Н). Свежий портландцемент содержит известь и также агрессивен, поэтому на поверхности алюминия при контакте с влажным бетоном может наблюдаться выделение водорода. После отверждения бетона скорость коррозии уменьшается. Однако, если он увлажняется или содержит гигроскопичные соли (например, СаСУ, коррозия продолжается. [c.346]

    В то время как одноатомные ароматические амины очень устойчивы к гидролизу и их аминогруппа (если она ие находится под влиянием МОг-группы) не отщепляется при кипячении с водой или щелочами, ароматические пол и амины часто удается преврати ь в многоатомные фенолы путем прямого гидролиза (Ю. Мейер). Например, при длительном кипячении о-диаминобеизола с разбавленной кислотой получается пирокатехин, а из 1,3,5-триаминобеизола в аналогичных условиях — флороглюцин  [c.536]

    Фенилазид представляет собой желтое масло, взрывающее при нагревании. Хлористым оловом он восстанавливается при низкой температуре в диазобензоламид вH5N = N—ЫН2, а при кипячении с разбавленной серной кислотой образует л-амино- [c.590]

    Разбавленные минеральные кислоты чрезвычайно легко расщепляют колхицин на метиловый спирт и колхицеин 21H23NO6. При действии более концентрированных кислот, кроме того, ироисходит дезацетилиро-вание аминогруппы колхицина и образуется первичный амин, триметил-колхициновая кислота С1бНдО(ОСНз)з(ОН)ЫН2. [c.1118]

    Полиалкиленсульфоны имеют уд. вес 1,28—1,37 г см , предел прочности при растяжении 380—500 кг1см -, относительное удлинение при разрыве 5—7%. Полимеры устойчивы к действию разбавленных растворов кислот и окислительных сред, растворяются в концентрированных кислотах и разрушаются аминами. Полисульфоны могут быть использованы для получения волокон и в производстве пластических масс. [c.465]

    Лучше применять фенил- и нафтилизотиоцианаты. Реакция с изотиоцианатами удобна тем, что ее можно проводить с разбавленными водными растворами аминов. [c.270]

    Катионактивные ПАВ типа солей жирных аминов гидролизуются в щелочной среде, поэтому разбавление следует производить слабыми растворами кислот (например, 0,01 М раствором НС1). Растворы ПАВ, устойчивых к гидролизу (алкил-, алкилбензол- и алкилнафталинсульфонаты, алкилсульфаты соли четвертичного аммониевого основания, не-ионогенные ПАВ), разбавляют водой. [c.111]

    У. Укажите реагент для получения в одну стадию -амино-этанола из. тиофосфамида. а. Разбавленная соляная кислота б. Вода в кислой среде в. Водный раствор щелочи [c.248]

    Выполнение работы. 1. Собрать установку для кондуктометрических измерений (см. рис. 22). Определить постоянную ячейки (см, 8), 2, Приготовить на бидистилляте 0,05 и. водный раствор слабого электролита кислоты муравьиной, уксусной, хлоруксусной, дихлоруксусной, бензойной, янтарной гидроокиси аммония или какого-либо амина. Путем последовательных разбавлений исходного 0,05 и. раствора получать серию из восьми растворов концентрации (г-экв/л) 0,05 0,025 0,01 0,008 0,006 0,004 0,002 0,001. 3. Измерить сопротивление объема раствора электролитов в порядке возрастания концентраций. Перед измерениями сосуд и электроды тщательно промыть дистиллированной водой и наиболее разбавленным раствором. [c.110]

    Кроме того, узкие линии наблюдаются, если исследуются симметричные молекулы типа иона аммония, в которых отсутствуют градиенты электрического поля, а также, если протон ЫН-группы быстро обменивается с другими протонами системы (например, в аминах в присутствии следов воды). Подобно гидроксильному протону ОН-группы, протон, связанный с атомом азота, может образовывать водородную связь. Поэтому точные химические сдвиги для NH-пpoтoнoв можно получить лишь при исследовании разбавленных растворов в инертном растворителе. Иногда вместо широких пиков для протонов ЫН-группы можно наблюдать триплет, который должен присутствовать в спектре из-за спин-спинового взаимодействия с ядрами (/ = 1). Такие триплеты наблюдались в спектрах ПМР безводного аммиака и ионов аммония в кислых растворах. [c.134]

    Несмотря на то что диазотирование происходит в кислой среде, в действительности атаке подвергается не соль амина, а небольшое количество свободного амина, присутствуюш,его в растворе [403]. Поскольку алифатические амины —более сильные основания, чем ароматические амины, в среде с pH ниже 3 свободного алифатического амина недостаточно для реакции, тогда как ароматический амин в этих условиях еще может ди-азотироваться. В разбавленной кислоте истинной атакующей частицей является N2O3, которая служит носителем иона N0+. Это подтверждается тем, что в азотистой кислоте при достаточно низкой кислотности реакция имеет второй порядок и амин не фигурирует в выражении скорости [404]. Для рассматриваемых условий механизм реакции можно представить следующим образом  [c.480]


Смотреть страницы где упоминается термин Амины разбавления: [c.886]    [c.50]    [c.121]    [c.228]    [c.420]    [c.78]    [c.166]    [c.271]    [c.186]    [c.207]    [c.137]    [c.498]    [c.182]    [c.139]    [c.249]    [c.78]    [c.129]    [c.241]    [c.334]    [c.345]    [c.189]   
Органические синтезы через карбонилы металлов (1970) -- [ c.328 ]




ПОИСК







© 2025 chem21.info Реклама на сайте