Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо амперометрическое титрование

    РАБОТА 36. АМПЕРОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ ЖЕЛЕЗА([1) БИХРОМАТОМ КАЛИЯ [c.178]

    Метод заключается в окислении хрома до Сг и последующем амперометрическом титровании бихромата в сильнокислом растворе солями железа (II)  [c.189]

    Аналогично проводят амперометрическое титрование Ри(1У) иодатом в водно-спиртовых средах (Я. П. Гохштейн, 1953 г.). При определении 10—20 мг плутония с весовым содержанием урана до 300%, хрома до 100%. марганца до 30%, железа до [c.213]


    В ряде работ [108—110, 440] для определения рения в W—Re-сплавах использован метод амперометрического титрования сульфатом хрома(И) [110], сульфатом титана(1П) [108], солями вана-дия(П) [440] и железа(П) [109]. Ниже приведена методика амперометрического определения рения с использованием Сг(П) [110]. [c.256]

    V Удовлетворительные результаты дает титрование 1,5—19 мг Ре (в 50 мл раствора) раствором аскорбиновой кислоты с использованием вращающегося платинового микроэлектрода [21] при потенциале 0,0 в (относительно насыщенного каломельного электрода) в среде 0,3—1 н. соляной кислоты. Определению не мешают ионы, не проявляющие окислительных свойств, у Амперометрическое титрование с вращающимся платиновым электродом применяют для определения железа в глине, шамоте и бокситах [13]. Амперометрическое титрование Ре с ртутным капельным электродом (при потенциале 0,0 в) проводят [18, 22] на фоне 0,1 н. соляной кислоты после удаления кислорода из титруемого раствора. При определении 1—2 мг Ре ошибка составляет менее 1 %. Метод высокоселективен. Определению мешают только окислители (Си +, Ag+ и др). [c.239]

    Совершенно очевидно, что если адсорбированные на платине иодид-ионы (равно как и другие ионы и молекулы) влияют на электрохимическое поведение тех или иных присутствующих в титруемом растворе веществ, то это в свою очередь может привести к осложнениям при амперометрических определениях. В нашей практике мы часто наблюдали, что платиновый электрод, на котором проводилось титрование по току окисления иодида или восстановления иода, оказывался совершенно непригодным для работы при определении по току других веществ (трехвалентного железа, четырехвалентного церия, бихромата и т. д.). Кроме того, адсорбция иодида в ряде случаев обусловливает нарушение нормального хода кривых амперометрического титрования. Так, например, при титровании ртути (И) иодидом калия по току окисления иодид-иона при потенциале +0,8 в (НВЭ) амперометрическая кривая (как и следует ожидать) имеет форму б (рис. 15, кривая /). Однако если в титруемом растворе находится железо (II), которое также окисляется при данном потенциале и обусловливает высокий начальный ток, то кривая титрования принимает форму в (рис. 15, кривая 2), хотя иодид-ионы не реагируют с железом (II). Этот аномальный ход кривой титрования обусловлен тормо- [c.56]

    На рис. 45 цифрой 4 показана соединительная склянка, расположенная между исследуемым раствором и электродом сравнения. На первый взгляд может показаться, что введение такой склянки делает установку недостаточно компактной и что удобнее пользоваться, например, Н-образными сосудами, рекомендованными для полярографических определений в одном колене такого сосуда находится исследуемый раствор, в другом — непосредственно электрод сравнения, а горизонтальная соединительная трубка заполняется агаровым гелем или перегораживается перегородкой из пористого стекла. От подобных конструкций следует безоговорочно отказаться непосредственное соединение обоих растворов, даже через агаровый гель, недопустимо, так как приводит к их быстрому загрязнению и делает невозможным определение таких ионов, которые могут реагировать с ионами электрода сравнения, т. е. с хлорид-ионами при каломельных полуэлементах или хлорид- и иодид-ионами при меркур-иодидных электродах сравнения. Между тем амперометрическое титрование часто применяется для определения именно таких элементов — серебра, свинца, таллия, железа (П1), перманганата и т. д. Поэтому применение промежуточного сосуда, заполненного раствором индифферентной соли (лучше всего нитратом калия или аммония), совершенно необходимо. [c.140]


    Определение ванадия — элемента с переменной валентностью— основано на реакциях окисления — восстановления, причем наиболее распространенным является метод амперометрического титрования ванадия (V) солью Мора (двухвалентным железом) по току окисления последнего на платиновом вращающемся электроде. [c.180]

    В литературе по амперометрическому титрованию приводится довольно много указаний на определение железа различными методами, которые можно подразделить на несколько групп  [c.199]

    Значительно большее число работ посвящено амперометрическому титрованию восстановленного урана окислителями. Уран (VI) восстанавливают обычно в редукторах того или иного типа (висмутовый, кадмиевый, цинковый — так называемый редуктор Джонса) или электролитически. Последний способ предпочтительнее потому, что при нем в раствор соли урана не вносится посторонних ионов. В качестве окислителей применяют перманганат , церий " (IV), железо (III), ванадат аммония и. и. в за- [c.323]

    Наиболее часто применяются комп-лексоны, преимущественно комплексен III. Комплексон III образует со многими ионами металлов малодиссоциирующие комплексные соединения. Титруют по предельному току определяемого иона. Определяются висмут, железо, никель, свинец,-цинк, медь, марганец, кобальт, ртуть, кадмий, индий. Устойчивость комплексов этих металлов с комплексоном III различна, поэтому титруют при определенной кислотности среды. Амперометрическое титрование возможно, для определения полярографически неактивных веществ, когда ни титруемый ион, ни реагент не дают диффузионный ток. Для этого в анализируемый раствор вводят специальный ион-индикатор, способный к электродной реакции. Индикатор реагирует с реагентом после того, как прореагируют определяемые ионы. Титрование в этом случае проводят при потенциале, соответствующем предельному току индикатора. Например, при амперометрическом титровании алюминия раствором фторида в качестве индикатора применяют раствор соли железа [c.165]

    Последнее время в практику амперометрического титрования введен метод титрования с индикатором. Этот метод применяют в тех случаях, когда ни титруемый ион, ни рабочий раствор не дают в условиях полярографирования волн или когда получение их по тем или другим причинам затруднительно. В этом случае к титруемому раствору добавляют индикатор, дающий полярографическую волну и реагирующий с рабочим раствором после того, как прореагирует определяемый ион. Так, например, ион алюминия восстанавливается в далекой отрицательной области при 1/2=—1,57 в и определение его как полярографическое, так и амперометрическое затруднительно. Ион фторида, способный реагировать с ионом алюминия, не восстанавливается полярографическим путем, и поэтому прямое титрование алюминия фторидом невозможно. В качестве индикатора при определении ионов алюминия, бериллия и некоторых других применяют трехвалентное железо. Комплексы бериллия, алюминия и других ионов с фторидом прочнее комплекса фторида с железом, и поэтому ион фтора будет реагировать с железом только после того, как в растворе не останется упомянутых ионов. Поэтому при титровании, например, раствора соли алюминия фторидом в присутствии железа в начале титрования волна железа будет оставаться неизменной, и только когда весь алюминий свяжется в комплекс [А1Р]+ , начнет уменьшаться волна железа. Перегиб кривой укажет на наступление точки эквивалентности. В некоторых случаях условно точка эквивалентности определяется как [c.456]

    Рис. 13-11в и 13-Иг иллюстрируют соответственно кривые ток — потенциал для системы железо(П)—церий(1У) в и после достижения точки эквивалентности. Исследование этих двух кривых показывает, что ток должен уменьшаться почти до нуля в точке эквивалентности и возрастать снова после ее достижения. Эти ожидания подтверждаются кривыми амперометрического титрования на рис. 13-12а. [c.471]

    Кривые амперометрического титрования, подобные тем, что показаны на рис. 13-12а, получаются при окислении иодида, ферроцианида и гидрохинона церием (IV), при восстановлении железа (III) титаном (III) и окислении иодида до монохлорида иода бромом в концентрированной хлористоводородной кислоте. [c.472]

    НО, этот метод может быть применен для амперометрического титрования. Ионы европия(1П), марганца (И), железа (III), меди(И), цинка, кадмия, ртути(И) и свинца использовались [c.219]

    Сопоставлением количества миллилитров комплексона, пошедших на амперометрическое титрование двух аликвотных частей раствора после разложения пробы, можно определить числа атомов циркония и серы в исходном органическом веществе. Их соотношение остается постоянным для одного и того же вещества, но выделенного с кристаллизационными молекулами различной природы. Установление же числа вступивших в молекулу сульфо-групп методами процентного анализа гораздо дольше и сложнее. Аналогично можно найти и отношение железа к свинцу в органическом продукте, присоединившем неопределенное количество молекул воды. В этом случае амперометрическое титрование проводим также комплексоном, но каждой аликвотной части — по волне соответствующего металла железа при pH 2 и потенциале —0,04 в, а свинца — при pH 6 и потенциале —0,6 в. [c.163]


    Амперометрическое титрование палладия 1,2,3-бензотриазолом [117]. Метод рекомендуется для определения 0,2—6,0 мг палладия. Определению мешают осмий, рутений, никель, железо и золото, не мешают Pt(IV), Р1(П), Rh III), Ir(IV), Сг(1П), AI, Са, Mg, Со, S04 , NO3 . Применяемые электроды — капельной ртутный и насыш,енный каломельный. [c.141]

    Диметилдиоксим восстанавливается [23, 217, 254] на ртутном капельном катоде ( 7, = —1,4 в). Наиболее удобно титровать при потенциале —1,85 в, так как при этом и никель, и диметилдиоксим дают диффузионные токи, и поэтому получается У-образная кривая амперометрического титрования. Для титрования можно применять натриевую соль диметилдиоксима [254]. Относительная ошибка метода менее 1%. Наилучший фон — 0,Ш ацетат натрия, при котором никель определяют в присутствии трехкратных количеств железа (III), хрома (III), алюминия. Если содержание этих элементов более высокое, их лучше отделять. [c.94]

    Теодорович И. Л., Абрамов М. К, Амперометрическое титрование малых количеств железа (III) раствором однозаме-щенного фосфата натрия.— Докл. АН Узб. ССР, 1959, № 1, 29—31. Библиогр. [c.50]

    В. И. Дифференциальное амперометрическое титрование иридия, палладия, железа и меди раствором 8-меркаптохинолина.— Докл. АН СССР, 1963, 153, № 3, 622— [c.51]

    Амперометрическое титрование фторидов хлоридом железа (III). [c.55]

    Амперометрическое титрование фтора окисным железом. [c.62]

    Амперометрическое титрование плуто-HnH(VI) железом(П). [c.64]

    Амперометрическое титрование урана (IV) железом 1П). [c.65]

    Маскирование железа комплексоном III применяется при определении молибдена кинетическим методом [435—437] и методом амперометрического титрования [438]. Возможно и полярографическое определение молибдена в присутствии комплексона III, при этом вольфрам не мешает [439]. [c.303]

    Раствор купфероца следует хранить в томной склянке. Тогда он устойчив около двух педель. Титр его устанавливают по стандартному раствору соли медн или железа амперометрическим титрованием в услопнях, указанных и методике. [c.519]

    Plie. 168. Выбор потенциала индикаторного электрода для проведения амперометрического титрования на основании поляризационных кривых а — восстановление ионов свинца на ртутном электроде б — восстановление брома на платиновом электроде в — последовательное восстановление свинца и хрома г — редокс-реакция при титровании титана (III) железом (III) [c.236]

    Для определения алюминия в растворе был применен метод амперометрического титрования 0,01 и. раствором фторида калия в результате образовывался ион А1РГ- При этом получены следующие высоты волн железа, использованного в качестве индикатора  [c.183]

    Для определения рения используются алкалиметрическое титрование рениевой кислоты, окислительно-восстановительное и комплексоиетрическое титрования, а также титриметрические методы, основанные на образовании труднорастворимых соединений. При окислительно-восстаповительном титровании в качестве восстановителей используют иодиды, сульфат железа(П), хлорид олова(П), в качестве окислителей — перманганат и бихромат калия, сульфат церия(1У). Использование метода спектрофотометрического титрования перренат-иона раствором Зп(П) в присутствии комплексообразующих лигандов позволяет повысить чувствительность и избирательность определения рения. Методы потенциометрического и амперометрического титрования рассмотрены на стр. 146 и 148. [c.81]

    При амперометрическом титровании магния в качестве титран-тов используют растворы NaF, комплексона III, ферроцианидов, двухзамещенных фосфатов. Амперометрическое титрование можно проводить и без индикаторов, но их применение значительно расширяет возможности метода, особенно применительно к металлам, восстанавливающимся в сильно отрицательной области, к которым относится и магний. В качестве индикаторов предложено использовать соли железа и таллия. [c.107]

    Амперометрическое титрование можно проводить даже в том случае, если ни одно из веществ, участвующих в реакции, и ни один из продуктов реакции между ними не дает электродной реакции. В этом случае титрование возможно по так называемому индикаторному методу, предложенному Рингбомом и Вилькманом. Этот метод заключается в следующем если требуется определить ион, не дающий электродной реакции, при помощи иона, также не способного ни восстанавливаться, ни окисляться на электроде, то к исследуемому раствору добавляют небольшое количество такого вещества, которое было бы способно давать электродную реакцию и, кроме того, взаимодействовало бы с тем же реактивом, но лишь после того, как закончится реакция с определяемым ионом. Примером является разработанное Ю. И. Усатенко и Г. Е. Беклешо-вой . 3 определение алюминия, бериллия и циркония при помощи титрования раствором фторида калия в присутствии индикатора — трехвалентного железа. Алюминий, бериллий и цирконий образуют более прочные фториды, чем железо, и поэтому реагируют с фторид-ионом в первую очередь когда же они будут практически полностью связаны фторидом, последний начнет реагировать с железом (И1). При этом величина силы тока, обусловленная присутствием железа (П1), начнет уменьшаться, и кривая титрования будет иметь форму, изображенную на рис. 3. Четкость подобной кривой титрования определяется тем, в какой мере железо (П1) соединяется с фторидом в данной среде при реакции последнего с определяемым ионом. [c.18]

    Титрование тиосульфатом применяется как для определения самого иода, так и для других определений, основанных на реакции между иодидом и веществом, вытесняющим иодид из его соединений, в частности для определения меди, железа (III), мышьяка (V) и т. д. Эти методы описаны в соответствующих разделах. Следует подчеркнуть, что амперометрический метод определения свободного иода является более точным, чем обычный объемный метод с применением крахмала Ноульз и Лоуден провели специальное исследование, показавшее, что амперометрическое титрование иода тиосульфатом позволяет определять от 20 до 40 мкг иода в 50—200 мл раствора с большей точностью, чем другие методы электрометрического титрования. Следует иметь в виду, что Ноульз и Лоуден наблюдали довольно заметные (соизмеримые с определяемыми количествами иода) потери иода вследствие улетучивания во время титрования. Поэтому лучше добавлять избыток тиосульфата и титровать его обратно иодатом калия. [c.217]

    Рингбом и Вилькман авторь1 индикаторного метода в амперометрическом титровании, попытались титровать магний раствором фторида калия, применив в качестве индикатора железо [c.246]

    Таким образом, наилучщим реактивом для амперометрического титрования никеля (хотя и не идеальным) следует считать диметилглиоксим. Можно применять и другие соединения, содержащие оксимную группу, но, как показали исследования В. М. Пешковой и 3. А. Гaллaй , лучшие результаты дают диметилглиоксим и диоксим циклогександиона последний реактив образует с никелем еще менее растворимое соединение, чем диметилглиоксим, что позволяет определять никель в присутствии большцх количеств железа (П1), алюминия, хрома (HI), цинка. [c.271]

    Т. И. Удальцова также считает, что метод с двумя электродами особенно пригоден для определения урана при титровании урана (IV) растворами ванадата, церия (IV), железа (III) или урана (VI) раствором ферроцианида калия. Этот метод позволяет определять меньшие количества урана (до 1,5—2 мкг1мл) с большей точностью, чем обычное амперометрическое титрование и тем более потенциометрическое. В этой работе подчеркивается, что метод с двумя индикаторными электродами можно применять при определении урана в органических средах и, кроме того, при автоматизации аналитического контроля. [c.324]

    Процесс амперометрического титрования хрома и железа в хромитах и в хромомагнезитовых огнеупорных материалах протекает быстро и очень четко. Выбирая соответствующую величину навески и разбавления и применяя титрующие растворы различной концентрации, можно определять самые различные количества хрома (и железа), например от 0,05% до 15% СггОз в магнезитовых кирпичах, бывщих в работе, и от 35% до 55% СггОз в хромитах. [c.340]

    Уаддил и Горин [278] описали оксидиметрическое амперометрическое титрование феррицианидом цистеина или цистина, восстановленных амальгамой натрия. К 20 мл фосфатного буфера (pH 7) добавляют в качестве катализатора 2 мл 10 4 М раствора USO4. После освобождения от воздуха добавляют образец и раствор титруют 0,001—0,1 М. раствором феррицианида. В присутствии цианидов двух- и трехвалентного железа происходит линейное увеличение тока. Избыток феррицианида может накапливаться только после достижения конечной точки. Количества от 0,0015 до 1 мМ можно определять с точностью 1%. [c.395]

    В качестве примера наиболее щироко применяемых органических реагентов в амперометрическом титровании в первую очередь следует привести этилендиаминтетpayксуоную кислоту (ЭДТА), используемую чаще в виде натриевой соли. С их помощью успещно проводят амперометрические определения металлов I и II групп Периодической системы, а также висмута, железа, таллия, молибдена, кобальта, никеля, ванадия, урана и др. [c.138]

    За последние годы метод амперометрического титрования с двумя индикаторными электродами нашёл широкое практическое применение, например, для титрования аскорбиновой кислотой церия, железа, урана, кобальта, вольфрама [52], для определения тория при помощи комплексона [53], а также в анализе органических соединений (оксимов, дифенилдиметилпира-зона, гексилрезорцина, сульфодиазона) [54] и др. и имеет ряд преимуществ перед другими электрохимическими методами. Метод позволяет анализировать растворы, содержащие малые количества (10 —10 г л) вещества не требует сложной электроизмерительной аппаратуры непродолжителен во времени посторонние вещества не мешают проведению анализа, если [c.145]

    Ю. И. Усатенко и Г. Е. Беклещова [1197] предлагают амперометрическое титрование фторидом натрия, причем конечная точка определяется по исчезновению диффузионного тока ионов трехвалентного железа, специально добавляемых к раствору и реагирующих с фторидом (с образованием комплексного соединения) после окончания реакции фторида с бериллием. [c.451]

    Алимарин И. П., Терин С. И. Дифференциальное амперометрическое титрование железа и ванадия.— Завод, лабор., 1955, 21, № 7, 777—779. [c.42]

    Боговина Б. И., Новак В. П., Мальцев В. Ф. Амперометрическое титрование ионов двухвалентного железа в ок-салатных ваннах раствором сернокислого церия (IV).— Завод, лабор., 1963, 29, № 6, 654—655. Библиогр. 5 назв. [c.43]

    Жданов А. К,, Умарова М. М, Амперометрическое титрование трехвалентного железа комплексоиом III анодным способом на установке с танталовым вращающимся электродом.—г В кн. Некоторые вопросы хим. технол. и физ.-хим. анализа неорган. систем. Ташкент, Изд-во АН УзбССР, 1963, 155—162. Библиогр. 8 назв. РЖХим, 1964, 9Г93, [c.45]

    Железо (II) как индикаторный ион для амперометрических титрований с этилендинитрилотетрауксусной кислотой. Применение к определению тория. [c.57]

    Вольтамперометрическое поведение пар железо(П) — железо(1П), церий(1П) — церий(1У) в потеню[иометрических титрованиях при [постоянном токе и в амперометрических титрованиях с двумя индикаторными электродами. [c.69]


Библиография для Железо амперометрическое титрование: [c.66]    [c.182]   
Смотреть страницы где упоминается термин Железо амперометрическое титрование: [c.149]    [c.152]    [c.470]   
Полярографический анализ (1959) -- [ c.549 ]




ПОИСК





Смотрите так же термины и статьи:

Амперометрическое титровани

Амперометрическое титрование



© 2025 chem21.info Реклама на сайте