Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий, пятиокись ВаО окисление

    Такие исследования были проведены для установления механизма окисления этилена в окись этилена на серебре и пятиокиси ванадия и окисления пропилена в акролеин на закиси меди [59]. Сопоставление результатов окисления этилена на серебре и пятиокиси ванадия показывает, что в присутствии альдегидов образо-ваиие СО2 не ускоряется, и поэтому альдегиды не могут быть промежуточными продуктами полного окисления олефинов. Окись этилена образуется на серебре, а в продуктах окисления этилена на пятиокиси ванадия она не найдена. Формальдегид и ацетальдегид окисляются на этих катализаторах в продукты глубокого окисления, но со скоростью, не превышающей скорость окисления этилена, и поэтому следует принять, что не они являются причиной низкой селективности процесса. Избирательность определяется, следовательно, скоростью образования кислородсодержащих продуктов, а не превращения их в продукты полного окисления. Анализ данных по окислению пропилена на закиси меди показал, что процесс протекает по параллельно-последовательной схеме и в этом процессе ацетальдегид также не является источником продуктов глубокого окисления. С помощью кинетического изотопного метода было установлено, что на поверхности изученных катализаторов (серебро, окись-закись меди, пятиокись ванадия) наблюдается образование конденсированных систем (некоторые исследователи называют эти системы органическим остатком или продуктами уплотнения). [c.74]


    Успех в развитии каталитического окисления обязан появлению новых каталитических систем. Раньше исследовались и предлагались катализаторы, представляющие собой простые окислы пятиокись ванадия, закись-окись меди и др. Производительность этих систем (исключая пятиокись ванадия для окисления ароматических углеводородов) была невелика — например, при окисле- [c.9]

    Плавленая пятиокись ванадия — катализатор окисления нафталина — обладает следующими характеристиками, установленными методом диафрагм  [c.211]

    Исследована каталитическая активность и селективность катализаторов в реакции окисления метанола в формальдегид состава чистая пятиокись ванадия, пятиокись ванадия с добавками 0,1 0,5 1,0 и 1,5 ж ля сульфата калия, четырехокись ванадия. [c.235]

    Химическая схема процессов описана на стр. 189. Исследования [50] показали, что лучшим катализатором для парофазного окислительного аммонолиза является пятиокись ванадия, осажденная на окиси алюминия с добавлением сернокислого калия, оптимальная температура окисления 300— 320° С, оптимальная нагрузка р-пиколина на 1 л катализатора в 1 ч составляет 50 г температура испарения р-пиколина 35° С количество р-пиколина, испаряемого 1 л воздуха — 0,03—0,05 г. Метод может быть рекомендован к внедрению только по получении данных о взрывобезопасности при использовании смесей паров р-пиколина, аммиака и воздуха, а также о конструкции контактного реактора. Технологическая схема предусматривает три стадии [c.200]

    При введении любого из перечисленных в табл. 102 катализаторов окисление изобутилена протекает практически без периода индукции, причем образуются значительные количества кислородсодержащих соединений (основные продукты реакции — ацетон и муравьиная кислота). В небольщих количествах получаются соединения с двойной связью — акролеин, метакриловая кислота, алли-ловый и металлиловый спирты. Интересно отметить, что в газовой фазе при окислении бутиленов на этих катализаторах на одних (хромиты, манганиты, платина и др.) образуются только продукты глубокого окисления, а на других (пятиокись ванадия) — мягкого окисления, но непредельных спиртов никто из исследователей не обнаружил. [c.338]

    Для окисления нафталина во фталевый ангидрид используют катализатор из плавленой пятиокиси ванадия, получаемой в виде гранул неправильной формы. Пятиокись ванадия в виде порошка или кусков контакта расплавляют в графитовых тиглях в электропечах при 690 °С. [c.197]


    Первая стадия имеет целью перевод соединений ванадия, содержащихся в катализаторе, в пятиокись ванадия и концентрирование последней на поверхности гранул катализатора. Для этого катализатор обрабатывают горячим воздухом, в результате чего соединения ванадия окисляются до пятиокиси ванадия, которая обладает летучестью и при высоких температурах в основном сосредотачивается на доступной внешней поверхности гранул. Влияние температуры и длительности окисления воздухом на количество ванадия, отложившегося на внешней поверхности катализатора, показано на рис. 96 [373]. Как это видно, равновесие между содержанием ванадия на поверхности катализатора и в матрице устанавливается через 4 ч. Пятиокись ванадия можно удалить с поверхности катализатора промывкой его разбавленным водным раствором аммония или оставить и удалить в последующих стадиях вместе с другими металлами. [c.239]

    Катализаторы, используемые при окислении 302, весьма разнообразны. Открыты сотни веществ, ускоряющих реакцию окисления 302, но широкое применение в производстве нашли, лишь металлическая платина на инертных носителях, пятиокись ванадия, активированная КаО, на различных носителях и окись железа в виде колчеданного огарка. [c.140]

    Плавленая пятиокись ванадия является одним из лучших катализаторов окисления нафталина во фталевый ангидрид [2, 186— 188]. Катализатор производят в виде гранул неправильной формы желтого цвета с характерным металлическим блеском и следующими характеристиками  [c.165]

    Среди кислородсодержащих соединений наиболее коррозионно-агрессивны низкомолекулярные кислоты, перекиси и некоторые другие продукты окисления углеводородов. Коррозионная агрессивность тяжелых, в том числе и остаточных, топлив связана также с наличием зольных элементов, содержащих натрий и ванадий. Производные ванадия при сгорании превращаются в пятиокись ванадия и ванадаты металлов. Эти соединения при рабочих температурах в камерах сгорания находятся в полужидком состоянии [c.20]

    В качестве катализатора окисления нафталина во фталевый ангидрид применяют пятиокись ванадия в виде кусочков. Этот [c.432]

    Более совершенный метод окисления нафталина во фталевый ангидрид был разработан в 1918 г. При работе по этому методу пары нафталина в смеси с воздухом пропускают при 450 °С над катализатором, в качестве которого служит пятиокись ванадия [c.530]

    Фталевый ангидрид получают при окислении воздухом о-ксилола или нафталина. В первом случаев качестве катализатора применяют пятиокись ванадия при температуре 482—621 °С и времени контактирования 0,1—0,15 сек. Новые катализаторы для окисления нафталина содержат 10% УзОз, от 20 до 30% Ка504, остальное—кремнезем. Обычная установка с неподвижным слоем работает при температуре 340—375 °С и избыточном давлении 0,5 ат время контактирования 4,2 сек, объемная скорость 0,07 катализатора. Установка с кипящим слоем ра- [c.333]

    Для анализа продуктов парофазного окислительного аммонолиза хинолина разработан метод их газо-жидкостной хроматографии [131—133]. Некоторый интерес представляет каталитическое парофазное окисление хинолина кислородом воздуха. Имеются указания [134] на достижение выхода никотиновой кислоты, равного 75%, при окислении хинолина кислородом воздуха на смешанном катализаторе [5п(У0д)4 ЗпОг = 1 3] и при температуре 400° С. Другие исследователи [135] отмечают, что при применении этого катализатора вообще не удавалось получить никотиновую кислоту. Е. Жданович [130] указывает, что при окислении хинолина кислородом воздуха при температуре 420° С катализатор пятиокись ванадия непригоден ((сгорание хинолина). При смешанных катализаторах (УгО ЗпОг = 1 1,5) выход никотиновой кислоты достигал 20%. Однако при подаче воды в систему (0,42 кг на 1 кг катализатора) выход возрастал до 70—72%. Вторым важным фактором является концентрация кислорода. При увеличении подачи воздуха 1С 4 до 18 молей кислорода на 1 моль хинолина выход никотиновой кислоты возрастал с 26,8 до 72,4 %. Необходимо отметить, что парафазный каталитический процесс окисления хинолина кислородом воздуха без аммонолиза или с его применением имеет в будущем перспективу промышленного использования. Для этого метода не требуются агрессивные среды. Менее жесткие антикоррозийные требования предъявляются к аппаратуре, отсутствует угроза взрывов реакционной массы, процесс осуществляется непре- [c.196]

    Описан процесс удаления из дымовых газов сероводорода в скруббере, заполненном абсорбентом-катализатором, содержащим карбонат натрия, пятиокись ванадия и органические азотсодержащие соединения. Регенерацию абсорбционного раствора осуществляют путем окисления до При этом сероводород количественно переходит в элементную серу, которую выделяют фильтрованием или центрифугированием. После плавления получают серу с чистотой 99,8%. [c.250]


    Окисление метильной группы в ароматических углеводородах изучалось преимущественно применительно к получению беизальдегида из толуола. Американский исследователь Кре вер, оценивая каталитическую активность окислов металлов в этом процессе, выделяет, как наиболее энергичный, пятиокись ванадия, которая окисляет толуол часто с распадом ядра. Не указывая условий окисления, он утверждает, что толуол с УзОз дает бензальдегид, бензойную кислоту, малеиновую кислоту и продукты полного сгорания в количествах соотв. 1 2,47 1,45 1,35, между тем как окислы Мо, и, W, Та и Сг дают только бензальдегид с весьма малым количеством продуктов дальнейшего окисления. [c.506]

    Как катализатор окисления антрацена пятиокись ванадия по наблюдениям этих авторов требует некоторого. периода приспособления для проявления своей максимальной активности. Повышение температуры реакции за предел 425 обычно снижает выход антрахинона вследствие очевидно более далеко идущего окисления уже готового антрахинона, между тем свежий катализатор даже при 500 не дает полного окисления антрацена, и в продукте имеется неизмененный антрацен. После нескольких окислений катализатор прирабатывается , цвет его становится зеленовато-синим, и он начинает работать нормально. Сплавленный катализатор дает лучшие результаты, чем применяемый в виде порошка. Авторы склонны к допуш,ению химического участия катализатора в процессе окисления с временным переходом в низшие окислы ванадия и с последующим окислением вновь. Схема реакций на поверхности катализатора по ним такова  [c.513]

    Приготовление нятиокиси ванадия. Наиболее удобным и активным контактом для окисления нафталина является пятиокись ванадия. Этот катализатор применяется на носителе (окись алюминия, силикагель), и метод приготовления сводится к пропитыванию носителя раствором ванадата аммония с последующей сушкой катализатора при 110° и прокаливанием при 400—600°. В последнее время для некоторых окислительных реакций применяется плавленая пятиокись ванадия. Для приготов.ле-ния этого катализатора используется ванадат аммония, который разлагают при 400° до пятиокиси ванадия, затем температуру повышают до 600°, при которой пятиокись ванадия плавится. После охлаждения эту застывшую массу дробят на кусочки размером 2—3 мм- Пятиокись ванадия активируют в реакторах реакционной смесью (углеводород -)- кислород). Эта активация но данным некоторых исследователей [79, 80] связана с образованием на поверхности окисла ванадия состава 204,34. [c.24]

    Хармадарьян и Бродович [22], исследуя влияние носителя нэ каталитические свойства пятиокиси ванадия в окислении двуокиси серы воздухом, считали, что двуокись марганца лучший носитель, чем такие вещества, как асбест, инфузорная земля, стекло, фарфор и кварц,и отметили, что действие активаторов— сульфата меди, сульфата железа, хлорида бария и сульфата марганца—является функцией природы носителя. Они также указали, что метод покрьп ия и толщина слоя значительно влияют на эффективность катализатсра. Пятиокись ванадия, осажденная из коллоидного раствора соляной кислотой, имела большую каталитическую активность, чем приготовленная коагуляцией нагреванием. Зависимость активности от концентрации раствора обнаружена у катализатора, приготовленного из метаванадата аммония, нагретого до 440° для получения равномерного распределения. [c.124]

    Основным катализатором для газофазного окисления ароматических углеводородов является пятиокись ванадия. Газофазным окислением бензола или нафталина на этом катализаторе получают малеиновый и фталевый ангидриды. Побочными продуктами реакции являются соответствующие и-хиноны и алифатические кислоты, но главной побочной реакцией является полное окисление до двуокиси углерода и воды. Малеиновый и фталевый ангидриды образуются также при газофазном окислении метилбензола, ме-тилнафталинов, фенантрена и других углеводородов с конденсированными ядрами. [c.352]

    Нафталин подвергается в виде паров неполному окиадеиию воздухом при содействии катализатора (пятиокись ванадия). Продукты окисления направляются в конденсаторы, в которых фталевый ангидрид осаждается в кристаллическом состоянии. Выход его составляет около 75% от веса нафталина. Это окислительное превращение может быть выражено такой схемой  [c.223]

    Из сказанного выше следует, что между удельной каталитической активностью и величинами д существует прямая связь [54]. Так, в процессе окисления ЗОг каталитически активным соединением является пятиокись ванадия и платина. Однако значение величины энергии связи кислорода с Уг05 (<7в) превышает ту же величину для платины. Активность окисла ванадия может быть увеличена путем введения соединений, снижающих дв, к числу которых, по мнению Ройтера [54], можно отнести сульфаты щелочных металлов. [c.35]

    Энергетические факторы необходимо сочетать со структурными соответствиями молекул реагентов и катализаторов [55]. Так, например, в элементарной ячейке пятиокиси ванадия имеются такие расстояния между атомами кислорода, которые весьма близки к длине связи между атомами углерода в молекуле бензола и других ароматических веществ. Пятиокись ванадия — хорощий катализатор для процессов окисления толуола и нафталлна во фталевый ангидрид [17]. [c.36]

    Пятиокись ванадия в виде порошка или кусков контакта, уже бывших в работе, расплавляют в графитовых тиглях в электропечах при 690 °С. Расплав выливают на стальные противни (20 X X 10 X 2 см) слоем / -3 мм. Образовавшиеся при застывании расплава пластины дробят и рассеивают в валковой дробилке с классификатором. В промышленности используют гранулы размером 8—10 мм (1фупная фракция) и 5—8 мм (мелкая фракция). Преимуществом плавленой V2O5 по сравнению с другими известными катализаторами окисления нафталина является ее высокая производительность недостатком — относительно низкий выход фталевого ангидрида 72—73% (на 10—15% ниже выхода на промотированных ванадиевых катализаторах). [c.165]

    Если исходить иэ количества продукта, производимого в сутки, окисление двуокиси серы в серный ангидрид, безусловно, следует отнести к числу наиболее важных процессов каталитического окисления в газовой фазе. Еще в 1831 г., т.е. до того, как Берцеллиус ввел понятия катализатор и "катализ", Филлипс показал, что платина способна катализировать эту реакцию. Б 1898 г. Хазенбах и Клемм описали промьпи-ленный процесс с использованием в качестве катализатора окиси железа. В следующем году Майерс показал, что хоро-щим катализатором является и пятиокись ванадия. [c.275]

    Несмотря на то что обычно подложками считают носители для твердых катализаторов, жидкости также можно наносить. Катализатор окисления 80, в 80з - пятиокись ванадия - в условиях реакции используется в жидком виде. Возможно, целесообразнее наносить и адсорбировать разрабатываемый высокоактивный гомогенный катализатор, а не идти по пути дорогостоящего выделения их иэ продукта реакции для повторного использования или возвращения ценного компонента. Например, гомогенный катализатор, монохлор(карбонил)- мс-(трифенилфосфин)родий (IV), растворенный в бутилбензилфтала-те, исследовался в реакции гидроформипирования пропилена в [c.354]

    Катализаторы обладают избирательностью (селективностью) действия, т. е. каждый катализатор может преимущественно ускорять лишь некоторые реакции. Например, окись этилена можно получить из этилена только в присутствии Ag. Никель катализирует реакции гидрирования, но не окисления, а пятиокись ванадия, наоборот, хороший катализатор реакций окисления, но не гидрирования. Во многих случаях исходные вещества способны реагк-ювать в различных термодинамически допустимых направлениях, применяя селективно действующий катализатор, можно осуществить превращение только по одному какому-либо направлению. Так, например, перекись водорода может окислять тиосульфат в тетратионат в присутствии иона иода как катализатора, в присутствии же молибденовой кислоты образуется сульфат  [c.266]

    Например, для реакции синтеза аммиака в качестве катализатора применяют железо с добавками активаторов АЬОз и К2О в количестве 3—5%. При контактном окислении сернистого газа в серный ангидрид катализатором является пятиокись ванадия, активированная добавками щелочей. Каталитическая активность УаОн при введении щелочей повышается в сотни раз. [c.144]

    Наилучшим катализатором является пятиокись ванадия [117]. Для облегчения удаления из реактора тепла, выделяюш егося во время реакции окисления, нафталин смешивают 6 большим избытком воздуха (1 на 20— 30 г нафталина) и этим регулируют тепловой режим конвертора. Выход фталевого ангидрида, считая на нафталин, составляет 69—70%. Помимо окиси ванадия, используют и смешанный катализатор, содержащий 10% У Ов, 60—65% ЗЮа и 30—35% Н2304. [c.719]

    Для окисления анабазина кислородом воздуха была использована пятиокись ванадия, приготовленная из метавана-дата аммония . Активность катализатора была проверена на нафталине. [c.59]

    Первым наиболее известным фактом каталитического окисления углеводорода, имевшим самые серьезные производственно-технические последствия, было одновременное открытие Вол ем в Германии и Гиббсом и Конновером в Америке (в сентябре 1916 г.) возможности превращения нафталина в паровой фазе с воздухом во фталевый ангидрид при пропускании смеси паров через катализатор, содержащий пятиокись ванадия [c.504]

    А., м. как катализатор [П при окислении гидрохинона перхлоратом лучше, чем обычно используемая пятиокись ванадия (Биллмаи [c.69]

    Основным продуктом окисления указанных нефтепродуктов яв-ется фталевый ангидрид. Выход его 27—45 вес.%. В качестве бочного продукта образуется малеиновый ангидрид (выход 3— вес. %) Катализаторами служили плавленая пятиокись ванадия и сложный ванадий-калий-сульфатный катализатор, использо-вшиеся в стационарном и в псевдоожиженном слое. Производи-льность катализатора составляла 20 г/кг ч. Весовое соотношение здух сырье колебалось в широких пределах — от 18 1 до 280 1. аименьшее отношение воздух сырье, равное 18 1, оказалось до-аточным при окислении зеленого масла, остатка от ректификации гкого масла и фракции, перегоняющейся после ксилолов [c.29]

    В качестве катализаторов парофазного каталитического окисления нафталина во фталевый ангидрид изучались различные вещества, в том числе окислы многих металлов (УгОн, МоОз, MgO, АЬОз. ЗЮг, Т102, 2пО и др.). Однако наиболее избиаательным и достаточно активным катализатором оказалась тольто пятиокись ванадия УгОз. В настоящее время в промышленнос/и применяют либо пятиокись ванадия, либо сложные катализаторы, в состав которых в качестве основного активного компонента входит пятиокись или соли ванадия. [c.48]

    Для парофазного окисления о-ксилола во фталевый ангидрид используют катализаторы на основе пятиокиси ванадия В качестве носителя применяют кремнезем или окись алюминия Выход фталевого ангидрида до 80% был получен при использовании пятиокиси ванадия (12%) на носителе из прокаленного кремнезема, Исследовались также промотированная пятиокись ванадия, ванадий-молибденовые катализаторы, смешанные катализаторы, содержащие ванадатьИ , ванадий-калий-сульфатный катализатор и катализатор, полученный пропиткой пористого ко- [c.174]

    В скруббере происходит доокисдение нитрозных газов с образованием азотной кислоты, а также частичное доокисление промежуточных продуктов. Выходящая из скрубберов жидкость содержит около 20% HNO3, почти всю загруженную в реактор окисления рную кислоту, пятиокись ванадия и воду. Она подается в ем-кость, где производится корректировка окислительной смеси вве- дением расчетного количества азотной кислоты и пятиокиси вана- дня. Далее окислительная смесь возвращается в реактор окисления. Как видно из описания, процесс производства щавелевой, кислоты периодический. [c.29]

    Бутиролактон является одним из промежуточных продуктов промышленного производства пирролидона из ацетилена и формальдегида. Описан способ получения янтарной и малеиновой кислот окислением бутиролактона кислородом воздуха в паровой фазе в присутствии катализатора. Предварительно нагретый до 30 °С воздух подавали в нижнюю часть противоточной колонны, орошаемой бутиролактоном. Парогазовая смесь, содержащая 2 моль кислорода йа 1 моль бутиролактона, образовавшаяся за счет испарения бутиролактона горячим воздухом, подавалась в подогреватель, где нагревалась до 220—250 С. Далее парогазовая смесь поступала в трубчатый реактор, заполненный катализатором (пятиокись ванадия и окись меди, осаждев[ные на гранулированном алюминии), где в течение 15 мин конвертировалось до 95% бутиролактона. Полезная степень конверсии в янтарную и малеиновую кислоты, которые образуются в соотношении, равном 3 4 2, составляет 77%. Кислоты разделяли дистилляцией или кристаллизацией [41]. [c.56]

    Пятиокись ванадия обменивает свой кислород с кислородом газовой фазы при температуре выше 450°, а каталитическое окисление протекает в этой же температурной области. Ройтер, Стукановская и Великовская [204] сопоставили скорости изотопного обмена кислорода и каталитического окисления сернистого газа. Они установили, что ири 500° скорость обмена в 10 раз меньше, чем скорость окислительно-восстановительного катализа. Если каталитическое окисление SO г протекало бы но окислительно-восстановительному механизму, то [c.95]


Смотреть страницы где упоминается термин Ванадий, пятиокись ВаО окисление: [c.105]    [c.177]    [c.92]    [c.118]    [c.33]    [c.52]    [c.29]   
Гетерогенный катализ в органической химии (1962) -- [ c.2 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадила пятиокись

Ванадия пятиокись

Пятиокись



© 2024 chem21.info Реклама на сайте