Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода определение по теплопроводности

    Схематическое изображение всей рассматриваемой установки для определения теплопроводности растворов дано на рис. 1-10. Прибор, изображенный на рис. 1-9, опускается в водяной термостат 1, который поддерживает постоянство температуры нижней пластинки. Верхняя пластинка омывается нагретой водой из второго термостата 2 с помощью насоса 3. Вся установка поме- [c.55]


    Таким образом, проведенные опыты по определению теплопроводности воды и анализ результатов экспериментов, полученных при работе с толуолом, подтвердили, что регулярный режим охлаждения описанных бикалориметров при принятой методике проведения опытов может обеспечить достаточно высокую точность (2,0—3,0%) определения коэффициентов теплопроводности жидких тел. [c.70]

    В 1948 г. Г. Н. Данилова [54] при помощи метода шарового бикалориметра исследовала теплопроводность отечественных фрео-нов от комнатной температуры до —30°С. Опыты над эталонными жидкостями (этиловый спирт, толуол, бензол, вода) показали возможность применения данного метода для определения теплопроводности жидкостей. [c.18]

    Основные элементы прибора — хроматографическая колонка и прибор для определения теплопроводности газа с регистрирующим электронным потенциометром. Колонка представляет собой и-образную стеклянную трубку длиной 2—б м с внутренним диаметром 4—5 мм. Для поддержания требуемой температуры колонка вместе с камерами теплопроводности и трубкой, подводящей газ-носитель, помещена в металлическую муфту. Охлаждение и обогрев колонки, камер теплопроводности и подводящей трубки осуществляют при помощи воды, циркулирующей между стенками муфты. [c.145]

    Перемещение водных масс. Такие свойства воды, как теплопроводность, химическая диффузия и перенос частиц, зависят от скорости движения, направления и краевых условий перемешивания водных масс. Придав воде соответствующий импульс, можно заставить ее перемешиваться как в вертикальном, так и в горизонтальном направлениях. Однако если отсутствуют определенные ус то-вия, то водные массы останутся разделенными и смешивание будет проходить только в приграничных слоях. Примером разделения водных систем является наличие Гольфстрима у восточного побережья Северной Америки. [c.285]

    II. Определение радиального коэффициента теплопроводности Хг при одномерном потоке теплоты по радиусу аппарата [31]. При этом источник теплоты — электронагреватель — расположен в трубке по оси аппарата либо обогревается внешняя стенка аппарата (рис. IV. 4, а) внутренняя трубка охлаждается водой. Температуру газа на входе поддерживают равной температуре на выходе. В этом случае распределение температуры слоя по радиусу такое же, как для цилиндрической стенки, и коэффициент теплопроводности определяют по формуле [c.114]


    Из остальных методов следует указать на денсиметрию (определение плотности), применяемую в основном к воде, но в принципе применимую и к другим изотопным смесям, жидким и газообразным (газовые весы). Используются также определения показателя преломления (рефрактометрия), теплопроводности, а также спектральный анализ. [c.303]

    С целью автоматизации метода определения воды, сокращения его продолжительности и возможности анализа на потоке нефти разработан ряд приборов, позволяющих регистрировать влажность нефти по электропроводности, оптической плотности и теплопроводности хроматографическим и спектральным методами. [c.142]

    Традиционное деление элементов на металлы и неметаллы исторически возникло из-за того, что простые вещества, образованные атомами элементов-металлов, как правило, находятся в металлическом состоянии и проявляют металлические свойства (высокую электро-и теплопроводность, блеск и т. д.), а простые вещества, образованные атомами элементов-неметаллов, при нормальных условиях этими свойствами не обладают. Однако в других условиях свойства простых веществ могут быть совершенно иными. Например, типичный металл натрий в газообразном состоянии образует молекулы Na2 с ковалентной связью, подобно Н2, а пары натрия не реагируют с парами воды. Почти так же любое вещество при определенном давлении может быть переведено в металлическое состояние, в том числе простые вещества, образованные атомами элементов-неметаллов. [c.95]

    Вода обеспечивает всасывание и механическое передвижение питательных веществ, продуктов обмена в организме, является прекрасным растворителем. Вода, участвуя в процессах набухания, осмоса и др., создает определенную величину онкотического давления в крови и тканях. Высокие теплоемкость, теплопроводность и удельная теплота испарения воды способствуют поддержанию температуры у теплокровных животных. Являясь высокополярным соединением, вода вызывает диссоциацию электролитов, принимает непосредственное участие в гидролитическом распаде веществ, реакциях гидратации и во многих других физико-химических процессах. Образование в организме воды как конечного продукта обмена в результате процессов биологического окисления сопровождается выделением большого количества энергии — около 57 ккал на 1 моль воды, что равно тепловому эффекту сгорания водорода  [c.22]

    Для определения числовых значений коэффициентов А, В, С были проведены многочисленные тарировочные измерения теплопроводности хорошо изученных водорода и воды при температурах от 50 до 200° С. Во всех опытах как на хорош о изученных веществах, так и иа исследуемом, произведение критериев Ог Рг должно быть значительно меньше 1 ООО для избежания конвективного теплообмена. [c.71]

Рис. 9-2. Зависимость коэффициента теплопроводности растворов этилового спирта в воде от температуры и объемного состава, определенная автором. Рис. 9-2. Зависимость <a href="/info/1527670">коэффициента теплопроводности растворов этилового спирта</a> в воде от температуры и объемного состава, определенная автором.
    Значения коэффициентов теплопроводности газов приведены в табл. 2.1, 2.19 и 2.20, жидкостей — в табл. 2.2, 2.18, 2.22, жидких металлов — в табл. 2.21, воды вблизи критической и сверхкритической областей— на рис. 2.21, твердых тел—в табл. 2.3—2.6. Расчетный метод определения коэффициента теплопроводности бинарной смеси газов с известными X см. в п. 2.16.1 значения X полимеров — в [1], окислов—[2, 3], карбидов—[4], газов и жидкостей — [5—7], смесей и композиционных материалов—[7, 8], различных веществ при низких температурах — [9, 11], теплоизоляционных и огнеупорных материалов — в кн. 3, разд. 1. [c.116]

    Определение. В составе газовых смесей В. определяют методами хроматографии, масс-спектрометрии, каталитич. сжиганием с послед, определением кол-ва образовавшейся воды, по уменьшению объема и тепловому эффекту, измерением теплопроводности газовой смеси. [c.401]

    НИЯ а. При повышении температуры стекло размягчается, причем коэффициент а уменьшается и стойкость стекла к резким колебаниям температур увеличивается. Термостойкость особенно важна для стекла, из которого изготовляют посуду, используемую для кипячения. Термостойкость зависит не только от линейного расширения стекла, но также и от способа изготовления стекломассы, ее эластичности, теплопроводности и в значительной степени от толщины и однородности стенок сосуда. Оценку термостойкости производят по результатам практического испытания оно заключается в определении максимального перепада температур (°С) (быстрое погружение в холодную воду нагретого сосуда), который выдерживает стекло с сохранением целости сосуда. В табл. 1 приведены константы наиболее употребимых боросиликатных и других стекол. [c.8]


    В определенный момент времени Т у теплопередающей стенки слой льда имеет толщину бл(. Коэффициент теплопроводности слоя льда металлической стенки А. . Толщина стенки б ,. Коэффициент теплоотдачи от воды к по-от стенки к хладагенту — аг- [c.274]

    Одно из основных достоинств полимерных сорбентов на основе стирола и дивинилбензола состоит в быстром элюировании воды (между этаном и пропаном на порапаках Р, Q, полисорбе-1, хромосорбе 102) с хорошей формой ника, что позволяет определять примеси воды в разных системах [1,143]. Точность хроматографического метода определения воды на таких сорбентах не уступает методу Фишера и позволяет определять на хроматографе с детектором по теплопроводности 10 ррм воды [143]. При этом рекомендуют вводить пробу непосредственно в хроматографическую колонку. [c.129]

    Наиболее часто применяют детектор по теплопроводности и пламенно-ионизационный. Действие детектора по теплопроводности основано на изменении теплопроводности газа-носителя в присутствии других веществ. Он характеризуется большой универсальностью, так как чувствителен практически ко всем летучим органическим соединениям. Действие более чувствительного пламенно-ионизационного детектора основано на измерении тока насыщения ионизированной газовой смеси в зависимости от ее состава. Детектор чувствителен к органическим соединениям и нечувствителен к парам воды. Кроме этих двух детекторов, в газохроматографическом анализе лекарственных веществ, особенно если требуется повышенная чувствительность определения, можно использовать селективные детекторы, такие, как термоионный и электронозахватный. [c.108]

    Иная картина была получена нами при проверке этих данных в длительных опытах. Установлено, что в таких циклах выращивания спонтанная кристаллизация в растворах гидроксида натрия проявляется уже при скорости роста порядка 3,5 мм/сут. Одновременно предпринимались попытки изучения циркуляции раствора внутри автоклава путем измерения перепада температур между верхней и нижней частями сосуда в зависимости от степени заполнения и температуры. В результате установили, что для каждого заполнения при специфической температуре имеется определенный минимум А7, что связано с различиями коэффициента температурной зависимости удельных объемов воды в исследованном температурном интервале. Как установлено Р. Лодизом [17], перепад температур для пустого сосуда примерно в пять раз больше при каждой температуре, чем для наполненных водой сосудов при малых степенях заполнения. Этот результат показывает, что вода в надкритических условиях характеризуется высокой теплопроводностью. Скорости роста кристаллов не имеют скачкообразных изменений вблизи тех участков кривых, которые показывают минимумы. [c.37]

    Для определения теплопроводности растворов МЭА при различной температуре (рис. IV-13) может быть также использована номограмма , построенная по экспериментальным данным для 35° С. Авторы предположили, что при изменении температуры отношение теплопроводностей раствора МЭА и чистой воды остается постоянным. Ниже приведены коэффициенты теплопроводности 8 и 18%-ных растворов МЭА [в ккал1 м-ч-град)  [c.80]

    Теория теплопроводности твердых тел предполагает, что тепло передается главным образом поперечными акустическими фо-нонами Поэтому появился ряд работ, утверждающих, что теплопроводность гидратов близка по величине теплопроводности льда, однако экспериментальные измерения Дэвидсона, Кука, Столла и др. показали их различие. На рис 19 приведены результаты экспериментальных определений теплопроводности гидратов мета на и некоторых других газов, а также льда и воды при различных температурах и равновесных давлениях. Как видно из рисунка, теплопроводность гидратов близка по величине к теплопроводности воды и мало зависит от температуры, уменьшаясь со снижением температуры. Теплопроводность льда при =0°С в 4 раза [c.46]

    Интенсивность теплообмена в псевдоожиженном слое зависит от скорости ожижающего агента и его теплопроводности, размера и плотности твердых частиц, их теплофизических свойств, геометрических и конструктивных особенностей аппаратуры и ряда других факторов. Из-за множества независимых переменных и сложности их влияния на теплообмен предложенные эмпирические формулы для расчета коэффициентов теплоотдачи, как правило, справедливы лишь в областях, ограниченных условиями экспериментов, на которых они базируются. Эти формулы, разнообразные по структуре, количеству и качественному составу входящих в них переменных, можно разделить на две группы, из коих одна относится к определению /imax (а также Z7opt), а вторая — к расчету h на восходящей или нисходящей ветви кривой h — и. Ниже приводится сопоставление ряда предложенных формул для произвольно выбранной модельной системы стеклянные шарики [плотность pj = 2660 кг/м , насыпная плотность 1660 кг/м , теплоемкость s = 0,8 кДж/(кг -К) = = 0,19 ккад/(кг -°С)] — воздух (или вода) при 20 °С. [c.415]

    В качестве экспресс-метода предложено определять воду по взаимодействию ее паров с оксидом кальция и последующим измерением концентрации водорода по теплопроводности. Рязанским филиалом СКБ Московского научно-производственного объединения Нефтехимавто-матика разработан прибор для определения воды по этому методу. [c.142]

    Метод хроматографического анализа был описан при определении углеводородов. Вода может быть сепарирована из углеводородов в колонке, содержащей полиэтиленгликоль на полистироловой несущей подложке. Здесь используется датчик теплопроводности. Тарирование осуществляют путем впрыскивания определенного объема насыщенного водой углеводорода, как правило, нормального нонана (С9Н20), в котором содержание воды точно определено [c.93]

    Для определения содержания воды в нефтях Рязанским филиалом СКБ АНН предложен автоматизированный лабораторный прибор ЛНВН-1, в котором выделяющийся по реакции с гидридом кальция водород фиксируется пе по объему бюреткой, а детектором по теплопроводности. [c.101]

    К реакционной газовой хроматографии (в смысле определения Драверта и сотр.) должен быть отнесен также метод, разработанный Златкисом и сотр. (1958, 1960) для прямого определения алифатических аминокислот в водном растворе при применении двух реакторов (см. разд. 8.1.2). В нагреваемом до 140° реакторе I, заполненном нингидрином, сначала происходит окислительное разложение аминокислот до летучих альдегидов и двуокиси углерода. Продукты реакции разделяются в присоединенной последовательно колонке при комнатной температуре и переводятся в реактор II, заполненный никелем на кизельгуре. Это заполнение обеспечивает при 425° гидрогениза-ционное расщепление всех альдегидов до метана. Присоединяемая к реактору II короткая колонка с молекулярными ситами служит для абсорбции образующейся и захваченной из пробы воды. Отдельные аминокислоты затем определяются в виде пиков метана при помощи катарометра. Применением реактора II решается относительно простая задача газохроматографического анализа веществ, содержащих воду, тем более что метан в отличие от альдегидов легко высушить. Кроме того, превращение альдегидов в метан позволяет более просто количественно определять аминокислоты, так как специфическая для данных веществ теплопроводность остается всегда одинаковой и вследствие этого не нужно вводить поправочных коэффициентов в количественные результаты. Тот факт, что катарометр при обычной температуре может применяться для определения метана, положительно сказывается на чувствительности метода. [c.274]

    В результате дальнейшей работы была создана экспериментальная установка для определения абсолютного значения коэффициента теплопроводности жидкостей. Аппаратура позволяет определять теплопроводность при различных температурах, что, в частности, дало возможность В. П. Фронтасьеву [Л. 1-40] исследовать теплопроводность воды от 10 до 60° С. [c.60]

Рис. 9-1. Зависимость коэффициента теплопроводности растворов этилового спйрта в воде от температуры и весового состава, определенная Бейтсом. Рис. 9-1. Зависимость <a href="/info/1527670">коэффициента теплопроводности растворов этилового</a> спйрта в воде от температуры и весового состава, определенная Бейтсом.
    Исследование теплопроводности водных растворов этилового спирта проведено нами при атмосферном давлении для объемных концентраций 25, 38, 50, 65, 80, 94 и 98% этилового спирта. Смешение этилового спирта с водой производилось при +20° С. На рис. 9-2 нанесены наши экспериментальные значения теплопроводности растворов этилового спирта, значения теплопроводности 100% этилового спирта, определенные путем экстраполяции по данным для растворов от 25 до 987о состава (Л. 9-8], и теплопроводность воды по опытным данным Тимрота и Варгафтика [Л. 9-16]. [c.328]

    Экспериментальные значения теплоправодности, полученные Чернеевой, в подавляющем большинстве хорошо согласуются, в пределах 1—2%, с нашими данными. Лишь отдельные значения отличаются больше для концентрации 50 /о на -1-3,1%, для концентрации 80% до —9,97% и для концентрации 98% до +4,65%. В табл. 9-2 приведены величины отклонений значений коэффициента теплопроводности, определенных Бейтсом, от данных Тимрота и Варгафтика для воды и от наших данных для водных растворов этилового спирта и для 100-процентного этилового спирта. [c.328]

    Основные недостатки установки Бейтса заключались в следующем отсутствовал контроль за температурным полем в сечениях исследуемой жидкости, кроме центрального поток тепла измерялся только при помощи водяного калориметра, без сведения баланса по нагревателю отсутствовал компенсирующий нагреватель над основным нагревателем установки. Расстояние между спаями термопар не могло быть определено достаточно точно. Прн толщине спая до 0,8 мм (ориентировочно) его положение по высоте не могло быть определено с точностью, большей, чем 0,3—0,4 мм, что при среднем расстоянии между термопарами 6,35 мм могло приводить к ошибкам в определении перепада температур в слое до 12%. Сходимость значений теплопроводности воды по данным Бейтса со значениями Тимрота и Варгафтика (в пределах точности измерений) не могут служить критерием правильности значений теплопроводности веществ, имеющих значительно меньшие численные значения теплопроводности, чем у воды. Исходя из этого, есгь достаточные основания подвергнуть сомнению правильность значений коэффициента теплопроводности веществ и растворов, полученных Бейтсом на указанной установке, особенно когда значения теплопроводности значительно меньше значений теплопроводности воды. [c.333]

    Методика определения водорода [19] дает возможность подобрать для данного парогенератора водный режиме минимальной концентрацией водорода в питательной воде и паре. Большая роль в развитии пароводяной коррозии принадлежит высокому уровню локальных тепловых нагрузок. Было бы принципиальной ошибкой считать, что путем улучшения водно-химического режима котлов при высоком уровне теплового напряжения можно ликвидировать пароводяную коррозию. При нарушениях топочного режима, шлаковании, вялой циркуляции воды в барабанных котлах, пульсирующего потока в прямоточных котлах (особенно при высоких тепловых нагрузках) средствами химической обработки воды практически невозможно предупредить разрушения металла в результате пароводяной коррозии. При недостаточной скорости воды в парогенерирующих трубах, обусловленной рядом теплотехнических факторов и конструктивными особенностями котлов (малый угол наклона, горизонтальное расположение труб), ядерный режим кипения может переходить б менее благоприятный — пленочный . Последний вызывает перегрев металла и, как правило, пароводяную коррозию. Развитию ее сильно способствуют вносимые в котел с питательной водой оксиды железа и меди, которые, образуя отложения на поверхностях нагрева, ухудшают теплопередачу. Стимулирующее действие меди на развитие пароводяной коррозии заключается также в том, что она вместе с оксидами железа и другими загрязнениями, поступающими в котел, образует губчатые отложения с низкой теплопроводностью, которые сильно способствуют перегреву металла. Прямое следствие парегрева стали и протекания пароводяной коррозии — появление в паре котла молекулярного водорода. Вполне понятно, что по его содержанию можно оценивать лишь среднюю скорость пароводяной коррозии, локализацию же разрушений таким методом выявить трудно. [c.181]

    Номограммы для Определения теплоемкости, вязкости, теплопроводности, температуры кипения и плотности водных растворов карбамида, таблицы значений теплоты растворения карбамида в воде, поверхностного натяжеиия водных растворов карбамида, содержания карбамида в парах над его водными растворами — все этн сведения, необходимые для расчета процессов переработки водного раствора карбамида, имеются в источниках [111, 114]. Диаграмму фазовых равновесий в системе карбамид — вода см. в работе [c.263]

    Исследования факелов в воздухе и воде теневым методом в направлении, нормальном плоскости факела, ясно показали наличие больших концевых эффектов, т. е, образование горловины факела, и влияние отношения Ь/О. Шорр и Гебхарт [91] выяснили, что учет конечного размера проволочки и неавтомодельности течения вблизи проволочки путем определения эффективного фактического линейного источника не устраняет систематического расхождения теоретических результатов и экспериментальных данных. Аналогично эффект концевой теплопроводности оказался непригодным для объяснения заниженной по сравнению с теорией плоского течения температуры. [c.112]

    Для определения концентрации ОгО в воде используют денсиметрию (пикнометрич., поплавковый и капельный методы), катарометрию (по изменению теплопроводности), рефрактометрию, ИК спектроскопию, масс-спектрометрию и др. методы. [c.21]

    В качестве теплопередающей среды жидкости используют воду, если известно, что температура плавления исследуемого вещества ниже 100°С, или концентрированную серную кислоту, которая дает возможность определять температуру плавления до 250°С. При длительном пользовании серная кислота темнеет для обесцвечивания вносят в нее кристаллик селитры. Определени е температуры плавления в приборах с серной кислотой требует осторожности, так как в случае поломки прибора горячая серная кислота представляет опасность. Поэтому при работе с серной кислотой следует надевать защитные очки. Кроме воды и серной кислоты употребляют парафиновое масло (температура разложения 220°С). Однако парафиновое масло пр сравнению с серной кислотой менее теплопроводно, вследствие чего может быть неравномерное нагревание прибора. Лучше всего пользоваться силиконовым маслом. При работе с веществом, плавящимся выше 300°С, нельзя применять масло, так как оно довольно быстро [c.82]

    Для определения содержания воды применяются различные способы измерения теплопроводности анализируемых материалов. Наиболее часто методы, основанные на измерении теплопроводности, применяются для определения влажности газов, поскольку скорость распространения тепла в анализируемых пробах при прочих равных условиях зависит от содержания в них влаги. Данные об относительной теплопроводности (по отношению к воздуху) различных газов, обобщенные Дайнсом [26 ], приведены в табл. 4-1. [c.200]

    В течение многих лет методы измерения теплопроводности применялись для определения относительной влажности воздуха, хотя пределы их применимости в этом случае ограничивает наличие максимума на кривой зависимости теплопроводности от состава смесей воздуха с водяным паром. В частности, данный метод непригоден для определения содержания паров воды в воздухе в интервале концентраций 12—47% (об.) (точка росы 50 —80 °С). Однако при большей или меньшей концентрации паров воды метод применим. Максимумы на кривых зависимости теплопроводности от состава характерны и для других газовых смесей, компоненты которых имеют близкие значения этого параметра. Из рис. 4-1 видно, что в смеси с воздухом максимумы теплопроводности дают не только вода, но и аммиак. Графики, приведенные на рис. 4-1, построены Дайнсом [26] поданным, полученным с по- [c.200]


Смотреть страницы где упоминается термин Вода определение по теплопроводности: [c.332]    [c.331]    [c.167]    [c.121]    [c.121]    [c.278]    [c.87]    [c.224]    [c.473]   
Акваметрия (1952) -- [ c.13 ]




ПОИСК







© 2025 chem21.info Реклама на сайте