Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пепсин гидролиз белков

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]


    Например, серин-протеаза гидролизует белок в том месте, где находится фрагмент серина. Пепсин - фермент, действующий в желудке и имеющий максимальную активность при pH 1.0, принадлежит к группе карбокси-протеазы. Ферменты этой группы гидролизуют амидные связи, в которых участвуют карбоксигруппы аспарагиновой кислоты. Трипсин преимущественно катализирует гидролиз пептидных связей, в которых карбоксигруппа входит в состав лизина или аргинина. Химотрипсин избирательно расщеп- [c.522]

    При воздействии пепсина на белок происходит разрыв (гидролиз) пептидной связи между аминогруппой ароматической аминокислоты и карбоксильной группой моноаминодикарбоновой кислоты (аспарагиновой, глютаминовой). Действует пепсин также и на некоторые иные пептидные связи [c.335]

    Метод составления пептидных карт, получивший образное название метод отпечатков пальцев , используется при определении сходства или различия гомологичных белков по первичной структуре. Белок инкубируют с каким-либо протеолитическим ферментом. Часто порции белка инкубируют как с пепсином, так и с трипсином. При этом вследствие гидролиза строго определенных пептидных связей образуется смесь коротких пептидов, легко разделяемых с помощью хроматографии в одном направлении и электрофореза-в другом, под углом 90° от первого (пептидная карта). [c.56]

    Переваривание белков представляет собой сложный процесс и совершается в несколько этапов. Начинается этот процесс в желудке под действием фермента пепсина. Дальнейший гидролиз пептидов происходит в тонком кишечнике протеазами поджелудочной железы трипсином, химотропсином, карбоксипептидазами. В переваривании пептидов участвуют также ферменты слизистой кишечника аминопептидаза и дипептидазы. Благодаря последовательному воздействию на белковую молекулу всех ферментов желудочно-кишечного тракта белок распадается на аминокислоты, которые всасываются в кровь. [c.160]

    Гемоглобин (и миоглобин) пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Последний расщепляется далее пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в желудочно-кишечном тракте, которые свойственны простым белкам. Простетическая группа гемоглобина (оксигемоглобина) — гем — окисляется в гематин. Гематин, так же как и хлорофилл, всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в внде различных продуктов, образующихся под влиянием бактерий кишечника. [c.364]


    Химический состав и строение белков. При кипячении с кислотами, щелочами, а также под действием ферментов белковые вещества распадаются на более простые соединения, образуя в конце концов смесь а-аминокислот. Такое расщепление белков получило название гидролиза белка. Гидролиз белков имеет большое биологическое значение и широко представлен в растительном и животном организмах. Попадая в желудок И кишечник животного и человека, белок расщепляется под действием ферментов пепсин желудочного сока, трипсин поджелудочной железы и эрепсин стенок кишок) на аминокислоты образовавшиеся аминокислоты в дальнейшем усваиваются животным организмом и под влиянием ферментов снова преобразуются в белки, свойственные данному организму. [c.340]

    В противоположность далеко идущему гидролизу окисленной рибонуклеазы при действии пепсина в определенных условиях на нативный белок гидролизуется только одна пептидная связь с отщеплением от С-концевого участка тетрапептида и образованием вещества, лишенного ферментной активности [8]. [c.210]

    Гидролиз пепсином, повидимому, весьма полезен при изучении структуры рибонуклеазы [352]. В результате гидролиза этот белок вполне воспроизводимо может быть превращен в 13—15 пептидов, средняя длина которых равна 8—9 аминокислотным остаткам. [c.180]

    Ферментов известно многие тысячи, а катализируют они тысячи тысяч реакций, идущих в живых клетках, - при дыхании, обмене веществ, размножении... Чрезвычайно важно, что работают ферменты очень быстро. Чтобы расщепить какой-либо белок или углевод (крахмал, целлюлозу) на составные части, их нужно кипятить с крепкими растворами кислот или щелочей несколько часов. Ферменты пищеварительных соков - пепсин, протеаза, амилаза гидролизуют эти вещества за несколько секунд при температуре 37 °С. [c.539]

    Пепсин катализирует гидролиз большинства известных белков. Исключением являются протамины, кератины волос и шерсти, белок губок — спонгин. Пепсин был выделен в кристаллическом виде Нортропом в 1930 г. [c.181]

    Б. Пепсин. Основная пищеварительная функция желудка заключается в том, что в нем начинается переваривание белка. Пепсин продуцируется главными клетками в виде неактивного зимогена, пепсиногена. Пепсиноген активируется в пепсин ионами Н+, которые отщепляют защитный полипептид, раскрывая активный пепсин, а также самим пепсином, вызывающим быструю активацию дополнительных молекул пепсиногена (аутокатализ). Пепсин преобразует денатурированный белок в протеозы и затем в пептоны—большие полипептидные производные. Он представляет собой эндопептидазу, поскольку осуществляет гидролиз пептидных связей в составе главной полипептидной структуры, а не N- или С-концевых последовательностей, что характерно для экзопептидаз. При этом фермент специфически атакует пептидные связи, образуемые с участием ароматических аминокислот (например, тирозина) или дикарбоновых аминокислот (например, глутамата). [c.287]

    Скорость гидролиза трипсином после 6 час очень невелика, и интенсивность нингидриновой окраски в конце процесса соответствует расщеплению двенадцати связей. Гндролиз химотрипсином протекает с постоянной скоростью в течение первых 20 час, завершаясь образованием 18 пептидов. Можно предполагать, что неспецифическое расщепление пептидных связей минимально, если скорость увеличения числа аминогрупп постоянна. При действии пепсина на белок при двух различных значениях отношения фермент/субстрат увеличение интенсгшности нингидриновой окраски теоретически соответствовало расщеплению 7 и 11 связей. В действительности приращение интенсивности окраски объясняется неполным гидролизом большего числа связей. [c.120]

    Как уже отмечалось, нуклеиновые кислоты очень перспективны для использования в качестве полимерных носителей биологически активных веществ с целью защиты последних от ферментативного гидролиза и облегчения их достави к органу- или клетке-мишени. Нами была исследована устойчивость комплексов ДНК с инсулином, пепсином и кортексином к гидролизу ДНКазой и трипсином. Оказалось, что эти ферменты не разрушают комплексы и не гидролизуют белок, связанный в комплекс. Это, безусловно, свидетельствует о перспективности применения комплексов ДНК с белками и пептидами для создания пероральных лекарственных форм препаратов, обладающих регуляторными функциями. [c.155]

    На следующем этапе исследования белок подвергают ферментативному гидролизу на пептиды, например под действием трипсина, химотрипсина и пепсина. Разделение пептидов осуществляют с помощью хроматографии и электрофореза на бумаге. Затем, пользуясь ДНФБ-методом, определяют аминокислотную последовательность, начиная с Ы-конца. [c.289]

    ФалджериДьюш [48] запатентовали сходный процесс того же типа для модифицирования гидролизатов белков сои, арахиса, хлопчатника, кукурузы, рапса и сезама. После термической денатурации белок в суспензии гидролизуется на 60—80 % при добавлении кислотных или основных эндопептидаз животного или растительного происхождения, таких, как пепсин, трипсин, химотрипсин, папаин, фицин, либо экзопептидаз микробиального происхождения. Затем происходит реакция с ангидридом янтарной кислоты при pH 7,0 и температуре ниже 15 °С в результате продукты гидролиза теряют запах и вкус даже в кислом растворе, и в таком виде они рекомендуются для приготовления напитков, таких, как лимонный и томатный сок, или газированных вод. [c.610]


    Для определения локализации дисульфидных связей белок подвергают частичному гидролизу на относительно малые фрагменты с помощью протеиназы низкой специфичности, такой как пепсин, в условиях, при которых протекает минимум обменных реакций. Пептиды разделяют и определяют их аминокисло гный состав для того, чтобы убедиться в том, что они гомогенны и содержат одну дисульфидную связь. Дисульфидная связь в каждом пептиде разрывается (см. разд. 23.3.3) и образуются два фрагмента. Если первичная структура белка известна, то достаточно аминокислотного анализа и частичного определения Л/-концевой последовательности в двух фрагментах для того, чтобы определить ту часть цепи (ей), из которой образовался каждый фрагмент. [c.280]

    Гемоглобин (и миоглобин) пищи, находящийся в ней в дена-, турированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Последний расщепляется далее пепсином и трипси- J ном с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в желудочно-кишечном тракте, которые свойственны простым белкам. Простетическая группа гемоглобина (оксигемоглобина) — гем — окисляется в гематин.,  [c.385]

    Расщепление белковых веществ при кипячении с кислотами, щелочами или под действием ферментов (энзимов) называют гидролизом. Биологическое значение его очень велико, он всегда происходит в живых организмах. В кишечнике животных (и человека) белок пищи гидролизуется при участии ферментов (пепсина, трипсина и эрепсина) на аминокислоты, усваиваемые организмом и преобразуемые в свойственные ему белки. Конечные продукты гидролиза белков — а-аминокислоты, но сначала получаются более сложные альбумозы и пептоны. Гидролиз белка изображают схемой белок -> альбумозы -> пептоны -> полипептиды -> дипептиды —> аминокислоты. [c.379]

    Под влиянием желудочного сока легко подвергается превращению белок молока казеиноген. Растворимый в молоке казеиноген ферментативно переходит в нерастворимый в присутствии ионов кальция казеин. Молоко при этом створаживается. Превращение казеиногена в казеин имеет существенное значение для переваривания его в желудке, особенно у детей и молодых млекопитающих животных, когда молоко является единственным продуктом их питания. Створоженное молоко задерживается в желудке и подвергается более длительному воздействию пепсина. В желудочном соке детей и молодых млекопитающих, например телят, содержится фермент химозин (реннин), катализирующий превращение казеиногена в казеин. Под влиянием химозина казеиноген в незначительной степени гидролизуется и образующийся при этом казеин в присутствии кальция дает нерастворимый в воде казеинат кальция. В жел.удочном соке взрослых животных, как это установлено И. П. Павловым, химозин отсутствует, и створаживание молока в желудке у них происходит под влиянием пепсина. На первом этапе воздействия пепсина на казеиноген из него получается казеин, который затем подвергается дальнейшему гидролитическому расщеплению. Следовательно, различие в действии химозина и пепсина на казеиноген заключается в том, что первый, т. е. химозин, вызывает незначительный по своему объему гидролиз казеиногена с образованием казенна и на этом его функция заканчивается, в то время как пепсин вызывает более глубокий гидролиз казеиногена, оканчивающийся на первом этапе образованием из него казеина. [c.335]

    Химический состав и строение белков. При кипячении с кислотами, щелочами, а также под действием ферментов белковые вещества распадаются на более простые соединения, образуя в конце концов смесь а-аминокислот. Такое расщепление белков получило название гидролиза белка. Гидролиз белков имеет большое биологическое значение и щироко представлен в растительном и животном организмах. Попадая в желудок и кишечник животного и человека, белок расщепляется под действием ферментов (пепсин желудочного сока, трипсин поджелудочной железы и эрепсин стенок кищок) на аминокислоты образо-вавщиеся аминокислоты в дальнейшем усваиваются животным организмом и под влиянием ферментов снова преобразуются в белки, свойственные данному организму. Гидролиз белков не идет сразу до аминокислот. Выделены промежуточные продукты гидролиза, более сложные, чем аминокислоты, но проще, чем белки, известные под названием альбумоз и пептонов. [c.338]

    Данных по аминокислотной последовательности каждой полипептидной цепи белка еще не достаточно для установления его первичной структуры. Необходимо определить число и местоположение дисульфидных мостиков, связывающих эти цепи в единое целое. Разрешение этой задачи требует очень мягких условий гидролиза, ибо воздействие таких реагентов, как концентрированная соляная кислота приводит к окислению цистина до цистеиновой кислоты и ряда других продуктов. Поэтому белок подвергают энзиматическому гидролизу в возможно более мягких условиях и в присутствии тиоловых ингибиторов (например, Ы-этилмалеинимида). Часто для этой цели используют пепсин и химотрипсин, и расщепление ведут при pH 1,9 и 8,0 соответственно. Полученную смесь пептидов подвергают разделению с помощью одного или нескольких перечисленных выше приемов, п фрагменты, содержащие дисульфидную связь, выделяют в чи- [c.86]

    В результате ферментативного воздействия, определяли последовательно после каждого отщепления Ы-концевого остатка по методу Эдмана (см. гл. 6). При изучении гемоглобина (Брауницер был удачно применен последовательный гидролиз белка разными про-теолитическими ферментами. В этом случае на белок действовали трипсином, а затем полученные пептиды гидролизовали пепсином, специфичность которого значительно повышали, ограничивая время реакции. Методические трудности, связанные с фракционированием сложных гидролизатов и определением полной структурной формулы белка, были преодолены в результате упорного труда нескольких групп ученых. Мы теперь знаем полную аминокислотную последовательность инсулина, глюкагона, рибонуклеазы, гемоглобина, белка вируса табачной мозаики, а также кортикотропина и других пептидных гормонов приближаются к завершению работы по установлению строения папаина, лизоцима, химотрипсиногена, трипсииогена, цитохрома с успешно продвигается изучение некоторых других белков. Изучение последовательности аминокислот проводилось на частичных кислотных гидролизатах или на гидролизатах, полученных при действии различных протеолитических ферментов. Чисто химические методы избирательного расщепления пептидных цепей не имели до сих пор значительного успеха, и эта область остается еще нерешенной задачей пептидно химии. [c.117]

    Важная особенность пептидил-пептидгидролаз состоит в выборочном (селективном) характере их действия на пептидные связи в белковой молекуле. Например, пепсин избирательно ускоряет гидролиз пептидных связей, образованных ароматическими или дикарбоновыми аминокислотами, трипсин — связей, образованных аргинином и лизином, химотрипсин — ароматическими аминокислотами. Индивидуальный белок под действием определенного фермента расщепляется на строго определенное количество пептидов. Избирательное действие этих ферментов объясняется тем, что радикал аминокислоты, по соседству с которой гидролизуется пептидная связь, служит для образования фермент-субстратного комплекса. [c.121]

    Длина пептидной цепочки в белках никем пе была определена, а выделенные из белка полипептиды состояли максимум из пяти остатков аминокислот. Синтетическим путем удалось довести д.чину полипептидной цепочки только до 19 остатков аминокислот, а молекулярный вес естественных белков, исчисляемый в то время десятками тысяч, требовал синтеза полипептида из сотен остатков аминокислот, что совершенпо выходило за пределы возможности эксперимента. С другой стороны, если бы белковая люлекула Илмела линейное строение из сотен остатков аминокислот, то эти цепочки должны были бы легко разрываться, на что не было экспериментальных указаний. После смерти Фишера факты, противоречащие его теории, накоплялись все в большем количестве. Было, например, установлено, что синтетические полипептиды ок га- и нонадекапептид более устойчивы к действию ряда химических реагентов, чем природные белки. Пепсин, легко разрушающий белок, на эти полипептиды не действовал. В продуктах гидролиза белков стали выявляться, кроме аминокислот и полипептидов, еще циклические образования не вторичного происхождения. Все это ставило под сомнение основную идею Фишера о длинном цепочечном строении белков и привело к необходимости пересмотра полипептидной теории во втором десятилетии XX в. [280]. [c.267]

    Протеазы распространены в животном и растительном мире существуют клеточные протеазы, осуществляющие соответствующие реакции внутри клеток. Особенно известен папаин, который выделяют нз плодов папайи. Но наиболее важны и наиболее изучены протеазы пищеварительного тракта животных и человека. Стенки желудка выделяют неактивный белок профермент) —пепсиноген. Под влиянием кислого желудочного сока и готового находящегося в желудочном соке пепсина от пепсиногена отщепляется полипептидная цепь, и он превращается в активный фермент пепсин, имеющий молекулярный вес 35 000 и давно уже полученный в кристаллическом виде. Пепсин при оптимальном pH 1,5—2,5 разрывает белки преимущественно по месту нахождения обеих ароматических аминокислот (тирозин и фенилаланин) у их аминного конца. При этом необходимо, чтобы аминокислота, соседняя с ароматической, имела такие зацепки для пепсина, как остатки СООН или 5Н, и не имела свободной КНг-группы. Этих условий оказывается, однако, достаточно для того, чтобы в желудке произошел гидролиз макромолекул белков на сравиительно небольшие пептидные цепи. Дальнейшее переваривание пищи в двенадцатиперстной кишке и далее в тонких кишках происходит в условиях уже щелочной среды. Двенадцатиперстную кишку снабжает ферментами поджелудочная железа, которая выделяет проферменты — трипсиноген, химотрипсииоген и профермент, соответствующий карбоксипептидазе. Эти проферменты (как и пепсиноген, см. выше) превращаются в двенадцатиперстной кишке в ферменты—трипсин, химотрипсин и карбоксипептидазу. [c.701]

    Денатурация белков — это разрушение третичной и частично вторичной структур путем разрыва дисульфидных и слабых нековалентных взаимодействий (водородных, ионных, гидрофобных), сопровождающееся потерей функции белка. Иными словами, денатурация — это потеря нативной структуры. При денатурации не разрываются пептидные связи, т.е. первичная структура сохраняется. Денатурацию белков вызывают любые агенты, действующие на нековалентные взаимодействия. При этом белок выпадает в осадок, если теряются основные факторы устойчивости — заряд и гидратная оболочка. Если после удаления денатурирующего агента восстанавливается нативная структура белковой молекулы, то это явление называется ренатурацией (ренативацией). В пищеварительном тракте денатурация пищевых белков соляной кислотой приводит к доступности пептидных связей для ферментативного гидролиза первичной структуры (пепсин в желудке трипсин, химотрипсин, карбоксипеп-тидазы в двенадцатиперстной кишке дипептидазы, трипептидазы и аминопептидазы в тонком кишечнике). [c.37]

    Ферментативное расщепление. Хорошие результаты дают протеолитические ферменты, в первую очередь трипсин и химотрипсин а также пепсин Известно, что трипсин разрушает белок преимущественно но пептидным связям, образованным карбоксильными группами аргинина и лизина химотрипсин гидролизует нентидные связи, в образовании которых участвуют карбоксильные группы ароматических аминокислот (фенилаланина, тирозина и триптофана). Снецифичностт. пепсина менее ясно выражена, хотя в принципе близка к химотрипсину (атака вблизи ароматических аминокислот). Другие ферменты, такие, как термолизин плесневая нротеаза папаин тоже находят применение при гидролизе белков. Ферментативный гидролиз проводят при 37—40° С в течение нескольких часов при оптимальном для данного фермента значении pH. Ниже показано действие протеолитических ферментов на полипептидную цепь восстановленного лизоцима белка яиц (Т — трипсин, X — химотрипсин, П — пепсин, СМС — карбоксиметилцистеин)  [c.79]

    Иногда гидролиз трипсином проводят при нейтральном или слабощелочном значении pH, однако при этом необходимо доказать, что не происходит дисульфидного обмена. Фрагменты человеческого иммуноглобулина IgG (полученные при расщеплении белка бромоцианом) инкубировали с трипсином (27о) при pH 7,2 в течение 4 ч [19]. При гидролизе в присутствии избытка [С " ] иодоацетамида показано, что белок не содержит нестабильных дисульфидных связей. В аналогичных условиях проводили триптический гидролиз фрагмента иммуноглобулина IgG (полученного при гидролизе белка пепсином), однако в отсутствие контроля за дисульфидным обменом [42]. Положение двух из четырех дисульфидных связей кардиотоксина яда кобры определено по строению цистинсодержащих пептидов, полученных при гидролизе белка трипсином при pH 7 в течение 24 ч [30]. Дополнительные сведения приводятся в разд. 3.5.1. [c.171]

    Очень важной особенностью протеиназ является выборочный (селективный) характер их действия на пептидные связи в белковой молекуле. Так, пепсин избирательно ускоряет гидролиз пептидных связей, образованных фен и лей трипсин—арг и лиз-, химотрипсин—ароматическими аминокислотами папаин—арг, лиз и фен и т. д. В результате индивидуальный белок под действием определенной пептидил-пептидогидролазы расщепляется всегда на строго ограниченное число пептидов. Это находит практическое использование при определении первичной структуры белков и имеет огромное значение для регуляции обмена веществ, так как многие продукты селективного гидролиза белков обладают высочайшей биологической активностью именно этим путем из проферментов возникают ферменты, из предшественников гормонов—гормоны и рилизинг-факторы и т. п. Причина избирательного действия пептидпептидогидролаз заключается в том, что радикал аминокислоты, по соседству с которой гидролизуется пептидная связь, служит для образования фермент-субстратного комплекса. [c.131]


Смотреть страницы где упоминается термин Пепсин гидролиз белков: [c.139]    [c.353]    [c.15]    [c.112]    [c.240]    [c.375]    [c.784]    [c.120]   
Белки Том 1 (1956) -- [ c.183 , c.185 ]




ПОИСК





Смотрите так же термины и статьи:

Пепсин



© 2025 chem21.info Реклама на сайте