Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственные реакциях

    Процессы превращения электрической энергии в химическую называются электролизом. Электрохимический процесс состоит из двух разделенных пространственно реакций, каждая из которых протекает на определенном электроде и сопровождается направленными переходами электронов через границу раздела фаз на границе электродов с раствором (расплавом). Электрохимические реакции могут быть разделены измеримыми расстояниями, как это имеет место в аккумуляторах или в электрохимических ваннах, или проходить на микроучастках одного и того же материала, как это имеет место при протекании ряда коррозионных процессов. [c.9]


    Процессы превращения электрической энергии в химическую называются электролизом. Электрохимический процесс состоит из двух разделенных пространственно реакций, каждая из которых протекает на определенном электроде и сопровождается направленными переходами электронов через границу раздела фаз на границе электродов с раствором (расплавом). [c.7]

    Характерной особенностью суммарной электрохимической реакции является то, что она состоит из разделенных пространственно реакций, протекающих на электродах. Поэтому э.д.с. суммарной электрохимической реакции можно представить в виде разности электродных потенциалов, причем для сохранения положительного значения э.д.с. из значения более положительного электродного потенциала ф1 нужно вычитать значение более отрицательного электродного потенциала фг  [c.68]

    Рнс. 9.2 Пространственные реакции (а) и (Ь) используют различные значения параметра обратной связи, тогда как (с) является вариантом (Ь) с немонотонным порогом. [c.88]

    Так как реакция, вызывающая образование низкомолекулярных нитропарафинов, является не результативной, а конкурирующей, то она в значительной степени объясняется пространственными затруднениями. [c.299]

    Одна из основных особенностей электрохимической системы заключается в пространственном разделении участников протекающей в ней реакции. Поэтому общая токообразующая реакция распадается здесь па две частные реакции, каждая из которых совершается на отдельном электроде. В соответствии с этим э.д.с. электрохимической системы, как отра.жение изменения ее химической энергии в ходе суммарной реакции, также должна представлять собой сумму двух электродных потенциалов. Каждый из иих отвечает изменению химической энергии при протекании частной электродной реакции. Таким образом, [c.156]

    Совмещение катодных и анодных реакции типично для коррозии чистых металлов и амальгам их более или менее полное пространственное разделение — для коррозии технических металлов. Меньшая стойкость технических металлов по сравнению с чистыми, а также изменение характера коррозионных разрушений во многом связаны с деятельностью гальванических микроэлементов основной металл — включение. [c.498]

    Диффузия реагентов и продуктов реакции в порах катализатора — наиболее трудная для исследования стадия, так как здесь мы имеем дело с пространственно распределенным процессом. Рассмотрим только простейшие случаи, отсылая читателя к другим источникам для более подробного изучения вопроса (см. библиографию, стр. 147). [c.130]


    Если пространственно разделить процесс окисления восстановителя II процесс восстановления окислителя, можно получить электрический ток. В этом случае окислительно-восстановительные реакции осуществляются на электродах, а химическая энергия непосредственно превращается в электрическую. Теоретически для получения электрической энергии можно применить любую окислительно-восстановительную реакцию. [c.222]

    Для гетерогенных реакций действительны аналогичные отношения, только в качестве определяющего размера в них подставляется диаметр зерна катализатора вместо линейной скорости потока — пространственная скорость или ее обратная величина t. По уравнению (11-20, в) среднее время пребывания равно  [c.232]

    Заметим, что эта величина может быть либо положительной, либо отрицательной в зависимости от значения 0. Хотя в общем случае можно ожидать, что 0 будет равно 180°, т. е. энергия взаимодействия будет минимальной, однако зачастую пространственное строение реагирующих веществ не допускает протекания реакции при 0 = 180° и требует другой ориентации частиц. Для реакций замещения, таких, как вальденовское обращение, в которых заряженная группа атомов, несущая заряд, замещает электронейтральную группу в полярной молекуле, т. е. [c.458]

    Для гомогенных реакций задача установления механизма часто упрощается тем, что механизмы многих таких реакций одинаковы и их переходные состояния весьма сходны. В случае же превращений на гетерогенных катализаторах возникает новый специфический, очень трудно учитываемый фактор — образование и последующие превращения поверхностно-адсорбированного соединения. Действительно, главная трудность в интерпретации механизма гетерогенно-каталитической реакции заключается в том, что сама поверхность активно участвует в реакции и является, по существу, одним из реагентов. К тому же активная поверхность обычно неоднородна, содержит разные типы активных центров, а сложно построенные органические молекулы могут по-разному ориентироваться на одних и тех же типах активных центров. Задача усложняется еще и тем, что чрезвычайно трудно определить концентрацию активной поверхности в момент реакционного акта. Тем более важной становится информация о геометрии размещения поверхностных атомов катализатора, т. е. о типе кристаллической решетки, ее нарушениях, а также о пространственном расположении реагирующих и образующихся соединений на активных центрах. Сумма этих знаний может способствовать пониманию стереохимии поверхностно-адсорбированного комплекса, т. е. дать углубленные представления о механизме гетеро-генно-каталитической реакции. [c.10]

    Линстедом, Дерингом и др. [И] были развиты представления о каталитических пространственных затруднениях, которые возникают из-за геометрического несоответствия между поверхностью катализатора и молекулой субстрата, что затрудняет реакцию. Эти авторы показали экспериментально, что гидрирование производных цис-1,2,3,4,4а,9,10,10о-октагидрофенантрена I на платиновом катализаторе дает главным образом цис-син-цис-пергидрофенантрен II [c.11]

    При рассмотрении конкретных результатов каталитического гидрирования дизамещенных циклоалкенов следует учитывать особенности пространственного строения исходных и конечных продуктов. Такой подход в ряде случаев открывает новые возможности для выяснения механизма реакции. [c.21]

    В газовой фазе доля более напряженных конформаций, в том числе и некоторых г-конформаций для Сб-дегидроциклизации, тем меньше, чем выше их напряженность. Как уже указывалось (см. разд. 1.2), конформации одного вещества более или менее быстро переходят друг в друга, однако при постоянной температуре их соотношение не меняется. На поверхности катализатора из-за адсорбции молекулы могут оказаться временно зафиксированными в /"-конформации, т. е. при таком расположении главной углеводородной цепи, которое энергетически невыгодно, но зато пространственно наиболее благоприятно для образования переходного состояния. В то же время, чем более напряжена г-конформация, тем менее прочно ее фиксирование, короче продолжительность жизни на поверхности катализатора, а следовательно, меньше вероятность прореагировать. Соответственно, меньше будет предэкспоненциальный член уравнения Аррениуса. Если же при этом реакция идет ио нулевому порядку и энергии активации для Сб-дегидроциклизации разных углеводородов одинаковы, то между значениями энергии перехода от обычных к г-кон-формациям и выходами продуктов реакции должна быть антибатная зависимость. При сопоставлении таких энергий перехода, вычисленных А. Л. Либерманом из конформационных данных, с выходами циклопентанов при Сб-дегидроциклизации, найденными авторами книги экспериментально, действительно обнаружилась ожидаемая антибатная зависимость  [c.213]

    В таких соединениях НО-группа оказывается экранированной изобутильными радикалами, что создает пространственное затруднение для протекания реакции  [c.85]


    Переходя таким путем от времени к пространственной координате, мы как бы представляем реактор идеального вытеснения в виде непрерывной совокупности реакторов периодического действия кинетика реакций в каждом из этих реакторов описывается одним и тем же уравнением (1,11) при одинаковых начальных условиях значение же времени, которому отвечает состояние реакционных систем, непрерывно изменяется вдоль их цепочки. [c.18]

    Если окислительно-восстановительную реакцию осуществить так, чтобы процессы окисления и восстановления были пространственно разделены, и создать возможность перехода электронов от восстановителя к окислителю по проводнику (внешней цепи), то во внешней цепи возникнет направленное перемещение электронов —электрический ток. При этом энергия химической окислительно-восстановительной реакции превращается в электрическую энергию. Устройства, в которых происходит такое превращение, называются химическими источниками электрической энергии, или гальваническими элементами. [c.176]

    Якоб Гендрик Вант-Гофф (1852—1911)—выдающийся голландский физико-химик. Изучал законы течения химических реакций, химическое равновесие, свойства растворов. Высказал и развил идею о направленности валентных связей атома углерода, разработал основы ст ер е о х и м и и — учения о пространственном расположении атомов в молекуле. [c.226]

    В рассматриваемом примере обе полуреакции протекают в месте соприкосновения цинка с раствором, так что электроны непосредственно переходят от атомов цинка к нонам меди. Можно, однако, осуществить эту реакцию таким способом, что окислительная и восстановительная полуреакции окажутся пространственно разделенными, а электроны будут переходить от восстановителя к окислителю не непосредственно, а по проводнику электрического тока — по внещней цепи. Этот направленный поток электронов представляет собою электрический ток, Прн таком осуществлении окислительно-восстановительной реакции ее энергня будет превращена в электрическую энергию, которую можно использовать, включив во внешнюю цепь устройство, потребляющее электрическую энергию (например, электронагревательный прибор, электрическую лампу.и т. п.). [c.273]

    Окислительно-восстановительная реакция протекает в гальваническом элементе несмотря на то, что окислитель и восстановитель непосредственно друг с другом не соприкасаются. Для того чтобы понять, как это происходит, как возникает электродвижущая сила при пространственном разделении процессов окисления и восстановления, рассмотрим более детально явления, происходящие на границах раздела фаз в гальваническом элементе. [c.277]

    Таким образом, при неравномерной аэрации металла осуществляется пространственное разделение окислительно-восстановительной реакции восстановление кислорода протекает на более аэрируемых участках, а окисление металла — на менее аэрируемых участках поверхности. Локализация процесса окисления приводит к м е с т н ой коррозии — интенсивному разрушению металла на отдельных участках. Местная коррозия приводит к появлению на поверхности металла углублений ( язв ), которые со временем могут превращаться в сквозные отверстия. Иногда развитие язв трудно обнаружить, например, из-за остатков окалины на поверхности металла. Этот вид коррозии особенно опасен для обшивки судов, для промышленной химической аппаратуры и в ряде других случаев. [c.558]

    Полярные апротонные растворители (например, ДМСО, ДМФА) легко сольватируют катионы. Однако анионы сольватируются слабо, так как положительный конец диполя растворителя пространственно затруднен, и поэтому скорости реакции в таких растворителях высоки. Соли в них сильно диссоциированы. [c.18]

    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]

    В реакциях между частицами А и В, в которых лимитирующей стадией является диффузия, начальная скорость зависит от случайного пространственного распределения частиц А и молекулы В расходуются со скоростью, задаваемой уравпенпем (XV.2.9). Время релаксации этого процесса порядка i ab/h / ABi JTO для большинства систем составляет величину около 10 сек, а это хорошо согласуется со временем соударения. Существуют определенные системы [6], в которых моншо наблюдать эти эффекты. Более подробно опи освещены при рассмотрении вопроса о клеточном эффекте. [c.427]

    Если эти рассуждения справедливы и механизм реакции зависит от конкуренции двух эффектов — энергии торсионного напряжения и каталитических пространственных затруднений, тогда в случае 2,3-диметилциклогексена, у которого оба эффекта равноценны в обоих вариантах, должны получаться равные количества цис-и транс-изомеров. Это было подтверждено экспериментально [13]. [c.28]

    Однако в случае З-грег-бутил-2-метилциклогексена каталитические пространственные затруднения за счет объемистой грег-бутильной группы в аллильном положении играют значительно большую роль, чем торсионное угловое напряжение между метильной и грет-бутильной группами. В результате образование цис-формы при гидрировании этого соединения теоретически становится предпочтительнее, что согласуется с экспериментом. Это отличный пример конформационного подхода к объяснё нию механизма каталитической реакции. Было бы также интересно дать конформационное объяснение необычно низкому выходу ис-формы при гидрировании [c.28]

    СЯ [158] в определенной неравноценности двух связей а (С-1—С-5 и С-2—С-3) в начальный период адсорбции. Действительно, из-за цис-расположения СНз-групп при атомах С-1 и С-4 кольца связь С-1—С-5, по-видимому, аналогична связи а" в qw -1,3-диметилциклопентане. Вторая связь а (между атомами С-2 и С-3) расположена при неадсорбированнон в начальный момент реакции СНз-группе, находящейся в объеме над катализатором. То же самое относится и к обеим связям а" одна из них (С-4—С-5) аналогична связи а" у цис-1,3-диметилциклопентана, а вторая (С-3—С-4) сходна, по-видимому, со связью а в метилциклопентане. В стереоизомере VIII благодаря пространственной симметрии молекулы равноценны обе связи а, а также обе связи а". [c.147]

    Тес ретическое определение скорости цепного процесса сопряжено с известными трудностями. В цепном процессе элементарные реакции каждого звена цепи взаимосвязаны. Для определения скорости цепного процесса необходимо установить пространственно-временную связь между всеми элементарными реакциями, участвующими в процессе. В общем случае подобный подход приводит к системе труднорешаемых сложных дифференциальных уравнений, описывающих скорость изменения концентрации каждого продукта при цепном процессе. [c.25]

    К перспективным термостабильным соединениям относятся дитиофосфаты цинка, в которых алкильный радикал заменен остатками пространственно затрудненных фенолов [119]. арил-производные продукты реакции диалкилдитиофосфатов с соединениями бора [120, 121], аддукты дитиофосфорной кислоты с винилац татом [122]. Полагают целесообразным сочетание диалкилдитиофосфата цинка с его дитиокарбаматом, так как при этом обеспечивается высокая эффективность смеси присадок и достигается высокая термостабильность [10]. [c.94]

    С2Н5 -СН2-СН-СН2-СН2-СН-СН2—С2Н5 В двух углеводородах этой серии возникает пространственное затруднение, обусловленное разветвлением, и поэтому можно задержать реакцию гидрогенизации, катализируемую платиной, на стадии моноолефина СНз СНз СНз СНз [c.245]

    Чтобы лучше понять природу катализа, необходимо рассмотреть одну важную обш ую реакцию дикобальтоктакарбонила. Найдено [29], что дикобальтокарбонил в присутствии основания (представляющего по Льюису потенциальный донор электронов) с низкими пространственными уровнями претерпевает реакцию внутреннего окисления — восстановление или диспропорционирование. [c.291]

    Хлористый алюминий катализирует реакцию фосгена с ароматическими соединениями, однако не наблюдается обмена, так что, очевидно, не происходит ионизации [158]. При ацилировании толуола образуется только -изомер [246]. Отсутствие, о-изомера указывает на большие пространственные затруднения, сильно отличающиеся от наблюдаемых в случае 2,4,6-трибромбензоилхлорида их было бы трудно понять, если бы атакующей группой был свободный ион ацилония НСО" . Наконец, эти [c.456]

    В поисках более термоустойчивых соединений, чем диалкилдитиофосфаты цинка, но не уступающих им по эффективности действия, и равных по термоустойчнвости диарилдитиофосфатам цинка, но более эффективных антиокислительных присадок, за рубежом много внимания уделяют исследованию модифицированных дитиофосфатов цинка. К перспективным соединениям этого типа можно отнести дитиофосфаты цинка, в которых алкильный радикал заменен на пространственно затрудненные фенолы [28], арил-производные продуктов реакции эфиров дитиофосфорной кислоты с соединениями бора [29, 30], аддукты дифенилдитиофосфорной [c.161]

    Из результатов определения содержания золь-фракции и расчета доли эластически активного материала пространственной сетки резин на основе жидких каучуков эти параметры, как было показано в ряде работ [72—74], несравненно больше зависят от глубины реакции структурирования, чем у серных вулканизатов обычных каучуков. Гелеобразование при синтезе резин на основе жидких каучуков начинается лишь при глубине структурирования около 60%, а в обычных каучуках уже на начальной стадии процесса, когда сшивание прошло всего на несколько процентов. Вследствие этого даже относительно небольшие изменения глубины структурирования жидких каучуков могут привести к значительным колебаниям доли активного материала сетки в таких резинах. [c.443]

    Развиваются работы по получению привитых сополимеров с пространственной сеткой на основе жидких каучуков и олиго-эфиракрилатов [66, с. 16]. Реакции в таких композициях приводят одновременно к вулканизации, прививке и гомополимеризации При этом гомополимер, являясь, как правило, нежелательным побочным продуктом, в данном случае выполняет роль активного наполнителя. Из жидких олигодиенов и олигоэфиракрилатов без введения специальных наполнителей методом литья были получены резиновые изделия, дтличающиеся высокими прочностью, стойкостью к старению и другими ценными свойствами. [c.445]

    Проявление эффекта синергизма смесями ингибиторов на основе неозона Д и эфиров фосфористой кислоты имеет место только в том случае, когда эфир в своем составе имеет фрагменты фенола, который способен проявлять эффект синергизма с амином. Этот факт и совокупность других наблюдений позволяют считать, что существенную роль при проявлении эффекта синергизма эфирами фосфористой кислоты играют реакции (гидролиза, переэте-рификации, аминолиза), приводящие к появлению в системе компонента, способного давать синергические системы со вторичными аминами или пространственно-затрудненными фенолами. [c.627]

    Действие любого гальванического элемента основано на протекании в нем окнслителыю-восстановительной реакции. В простейшем случае гальванический элемент состоит из двух пластин илн стержней, изготовленных из различных металлов и погруженных в раствор электролита. Такая система делает возможным пространственное разделение окислительно-восстановительной реакции окисление протекает на одном металле, а восстановление — на другом. Таким образом, электроны передаются от восстановителя к окислителю по внешней цепи. [c.273]


Смотреть страницы где упоминается термин Пространственные реакциях: [c.496]    [c.498]    [c.225]    [c.12]    [c.12]    [c.202]    [c.9]    [c.302]    [c.332]    [c.89]    [c.42]    [c.158]   
Пространственные эффекты в органической химии (1960) -- [ c.70 , c.72 ]




ПОИСК







© 2025 chem21.info Реклама на сайте