Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

восстановление олова в органических соединениях

    При действии восстановителей на растворы молибденовых соединений образуются так называемые синие окислы , или молибденовая синь , представляющие собой соединения, содержащие шести- и пятивалентный молибден. Обычно образуются рентгеноаморфные продукты, однако Глемзер получил и кристаллические осадки гидратированных окислов, которым он приписывает формулы М08015(0Н) 16, Мо40п(0Н)2 и М0204(0Н)2. Эти соединения, в противоположность аморфным, устойчивы в щелочах и в растворах аммиака [38]. Реакция образования молибденовой сини — весьма чувствительная реакция на молибден (значительно более чувствительная, чем аналогичная реакция на вольфрам), широко используется в различных вариантах как для определения самого молибдена, так и элементов, связанных с ним в комплексные соединения (например, фосфора в комплексной фосфорномолибденовой кислоте, германия в германомолибденовой кислоте и т. д.). Окислительно-восстановительный потенциал системы Мо /Мо равен +0,5 в, поэтому для восстановления можно применять растворы двухвалентного олова или трехвалентного титана ( о систем 8п +/3п2+ и Т1 +/Т1 + менее положительны) или различные менее электроположительные металлы — олово, висмут, свинец, кадмий, цинк и др., а также некоторые органические соединения, например глюкозу. [c.54]


    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]

    Восстановление органических соединений неорганическими веществами до яркоокрашенных продуктов редко применяется в колориметрии. Какотелин, нитросоединение бруцина, восстанавливается двухвалентным оловом и другими сильными восстановителями в растворимое вещество фиолетового цвета. Эта реакция используется для обнаружения олова, но не находит успешного применения для количественного определения. [c.182]

    К числу важнейших восстановителей относятся прежде всего различные металлы, такие, как алюминий, железо, цинк, кадмий, олово, применяемые в виде палочек, стружек, опилок или зернистого порошка. Степень их измельчения влияет на скорость реакции восстановления. Применяют также амальгамы натрия или других металлов, сплавы, например сплав Деварда, содержащий 45% А1, 5%2п и 50% Си. Сильным восстановителем является сероводород Н25, применяемый как в виде газа, так и в виде сероводородной воды. К числу восстановителей относятся также органические кислоты и их соли, спирты, альдегиды, кетоны, углеводы и многие другие органические соединения. Сернистая кислота и ее соли, мышьяковистая кислота и ее соли, соединения 5п(П), Т1(П1), Сг(П) и др. также являются сильными восстановителями. [c.162]

    Работы по катализу Сабатье начал с изучения реакций присоединения водорода к непредельным соединениям вскоре он распространил гидрогенизационный катализ на ароматические углеводороды, кислород- и азотсодержащие соединения. Известно, каким большим количеством методов восстановления располагала органическая химия до работ Сабатье и в то же время как ограничены были возможности этих методов. Восстановление амальгамой натрия, натрием и спиртом, цинком в кислой и щелочной средах, йодистым водородом и другими реагентами требовало соблюдения большого числа различных условий и все-таки, как правило, сопровождалось многими побочными реакциями. Реагентов, восстанавливающих только одну систему и не затрагивающих другие системы, не существовало. Техника проведения реакций была сложной. Процесс восстановления часто требовал затраты дефицитных реактивов (олово, хлористое олово, иод и др.). После исследований Сабатье возможности восстановления или гидрогенизации органических соединений стали неизмеримо шире. Реакции Сабатье отличались удивительной простотой. Методика выполнения экспериментов заключалась по существу в пропускании смеси паров органического вещества с водородом через трубку, содержащую мелко раздробленный металл в качестве катализатора. [c.27]


    В процессе развития аминокислотного анализа состав нингидринового реагента неоднократно подвергался изменениям, однако основные принципы, заложенные в первых работах Мура и Стайна [10, 33], остались неизменными. Основу буфера составляет концентрированный раствор ацетата натрия с pH 5,0, что является оптимальным для полноты реакции и измерения поглощения. Водный раствор метилцеллозольва обеспечивает хорошую растворимость как органических соединений, так и неорганических солей. Восстановленный нингидрин, необходимый для запуска реакции, получают под действием хлорида олова (И). Реагент готовят и хранят в отсутствие кислорода воздуха, например в атмосфере азота. [c.338]

    Осаждение мышьяка в элементном виде часто является удобным способом его отделения, особенно в случае его последующего тит-риметрпческого определения (см. гл. IV). Восстановление проводят обычно в кислой среде, обеспечивающей получение чистых осадков элементного мышьяка, ие загрязненных малорастворимыми гидроокисями металлов, образующимися в нейтральных и щелочных растворах. В качестве восстановителей наиболее часто используют гипофосфит натрия или кальция и хлорид олова(П). Соли хрома(П) предложено использовать для выделения мышьяка из органических соединений [450]. Однако при использовании солей хрома(П) вместе с Аз выделяется также 8Ь. Гипофосфит натрия (кальция) позволяет отделять мышьяк от сурьмы и большинства других металлов. Кроме мышьяка гипофосфит натрия и кальция восстанавливают до элементного состояния 8е, Те, Ag, Hg, Аи, Р1. [c.117]

    После окончания сжигания подачу кислорода прекращают, трубку с ситчатым концом отсоединяют, конец ополаскивают 0,05 п. раствором иода (0,2 мл), сливая раствор в поглотительную пробирку, и добавляют 0,3 мл 10%-ного раствора гидроксида натрия. Для связывания свободного иода и восстановления неорганической ртути в смесь вводят 1 мл этанольного раствора ДМК (0,1 мг/мл). Полное восстановление органических соединений ртути происходит в присутствии станнита натрия. Поэтому к реакционной смеси добавляют 0,5 мл раствора станнита натрия, полученного смешением 10%-ного раствора гидроксида натрия с 20%-ным раствором хлорида олова в хлороводородной кислоте (1 1) в соотношении 4 1. Затем пробирку присоединяют к абсорбционной кювете СФМ и измеряют аналитический сигнал методом холодного пара при продувке раствора воздухом. Предел обнаружения ртути составляет 0,5 нг в 3 мл раствора. В оптимальных условиях [c.236]

    В качестве протравы при крашении тканей для восстановления некоторых органических соединений для получения соединений олова в аналитической химии в медицине [c.205]

    Как и в случае анализа неорганических соединений, методы восстановления определяемых органических соединений применяют реже, чем методы титрования окислителями. Чаще всего в качестве титрантов пользуются соединениями титана (III). Примеры титрования органических соединений ионами Т1 1 описаны более чем в сорока научных работах. Известно более чем десять случаев применения в качестве титрантов соединений железа (II), ванадия (II), дитионита и тиосульфата. К числу других, реже применяемых реагентов, относятся соединения хрома (II) и олова (II), сульфид единственный органический реагент — аскорбиновая кислота, кроме того, используют газообразный водород и прямое электролитическое восстановление. [c.62]

    Известно, что некоторые катализаторы преимущественно пригодны для реакций введения водорода в органические соединения (гидрирование, восстановление) они же применяются и для реакций, протекающих с отщеплением водорода, например для превращения гидроароматических соединений в ароматические. Таковы металлы платиновой группы (платина, палладий), никель, кобальт, железо и медь. Меньшую роль играют другие металлы, например серебро, кадмий, олово. Палладий и платина особенно сильно ускоряют реакцию гидрирования, так что их можно с успехом применять для проведения процесса в жидкой фазе при обыкновенной температуре. [c.821]

    Металлы и неметаллы играют известную роль и в аналитической химии. Большая группа металлов — алюминий, железо, цинк, магний, олово, никель — применяются в качестве восстановителей. Натрий используют для определения хлора в органических веществах, при восстановлении и гидрировании многих органических соединений, для глубокой осушки органических жидкостей, для приготовления амальгам и т. д. Бром служит окислителем при аналитических определениях марганца, никеля, хрома, висмута, железа, цианидов, роданидов, мочевины, муравьиной кислоты. [c.20]

    Прямые реакции с иодом. Стандартный раствор иода, который является слабым окислителем, можно применять для титрования сильных восстановителей. Широкие возможности его применения можно проиллюстрировать кратким перечислением некоторых примеров титрование As в гидрокарбонатном растворе в присутствии крахмала в качестве индикатора определение олова после восстановления его до Sn свинцом, сурьмой, алюминием, никелем или железом определение таллия (III) после восстановления его до таллия (I) определение сульфидов либо прямым титрованием раствором иода, либо косвенным способом, основанным на добавлении избытка иода и последующем обратном титровании определение тиоацетамида титрованием иодом как основа микроопределения ионов тяжелых металлов определение сульфитов обратным титрованием раздельное определение гипофосфита и фосфита в одной пробе титрованием при двух различных значениях pH определение цианидов по количественной реакции с иодом в щелочной среде определение титрованием иодом ряда органических соединений [78], например, полифенолов, аскорбиновой кислоты, меркаптанов, мочевой кислоты, гидразинов, фенолов, дитиогликолевой кислоты, металлорганических меркаптидов, алкильных соединений алюминия и др. Йодные числа применяют в качестве меры нена-сыщенности жиров и масел. Подробное описание многих методов анализа с использованием иода можно найти в руководстве Кольтгофа и Белчера [1]. [c.399]


    Вещества, содержащие группу > С = О в молекуле,— наиболее изученный класс органических соединений. Многие исследователи занимались восстановлением альдегидов и кетонов на ртутном капельном электроде (полярографический метод), на твердых электродах из свинца, кадмия, олова, графита и др. Найдено, что направление реакции зависит прежде всего от pH среды, а затем от материала катода. Влияют также состав растворителя и некоторые другие факторы. [c.46]

    К этой группе можно отнести ртуть, свинец, кадмий, цинк, олово. Выделение водорода на этих металлах идет при очень отрицательных потенциалах, что делает возможным восстановление трудновосстанавливаемых органических [16] и неорганических соединений [23]. [c.11]

    Путем восстановления изатина амальгамой натрия был получен ди-оксиндол , а из последнего, при действии на него олова с соляной кислотой,— следующий продукт восстановления — оксиндол. Так как в оксин-доле обнаруживается наличие оксигруппы, было решено путем ее восстановления получить исходное соединение, которое лежит в основе оксиндола, а следовательно, и диоксиндола и изатина, и таким образом выяснить строение изатина. Этот исходный продукт — индол — должен был относиться к оксиндолу так, как бензол относится к фенолу. Для восстановления впервые был применен метод сухой перегонки с цинковой пылью , — метод, который в дальнейшем прочно укоренился в органической химии и дал возможность решить ряд новых задач .  [c.428]

    В настоящей работе проведено полярографическое исследование некоторых смешанных органических соединений олова, сурьмы, свинца и висмута с целью выяснения влияния различных органических радикалов и числа их в молекуле на потенциал полуволны и характер восстановления смешанных металлорганических соединений на ртутном капельном электроде. [c.210]

    В нашей лаборатории проводились исследования для определения влияния материала катода на электрохимическое восстановление органических соединений. В кислом и щелочном растворах испытывали следующие катоды кадмий, цинк, свинец, ртз ть, олово, висмут, медь, никель, кобальт и железо. Алюминий испытывали лищь в кислом растворе, а хром, вольфрам, молибден и [c.11]

    Для исследования влияния органического радикала на потенциал восстановления были измерены потенциалы в растворах различных органических соединений олова данные представлены в табл. 2. [c.212]

    Механизм восстановлення цинком в основном не отличается от механизма восстановления оловом Начальной стадией процесса, предшествующей собственно восстановлению, является адсорбция молекул органического соединения, а также кислоты нли основания иа поверхности металла, где онн активизируются. Адсорбции и активации могут, вероятно, подвергаться и ионы Н" ", что подтверждается многочисленными случаями увеля-чеиия скорости восстановления после разбавления кислоты водой [135]. Восстановлений Jilключaeт я в отщеплении от метачла и кислоты или основания поочередно илн одновременно двух электроиов и двух протонов и присоединении их к адсорбированной молекуле органического соединения Продукты реакцин адсорбнрмотся слабее и поэтому переходят в раствор Однако некоторые продукты реакцин остаются на поверхности металла довольно долго, вследствие чего его активность [c.139]

    Органические соединения других щелочных металлов реже используются в этих реакциях, хотя ацетилениды натрия являются удобными реагентами для синтеза алкинилзамещенных олова (схема 92) [96]. Значительное число работ было посвящено синтезу соединений олова по реакции Вюрца (схема 93) [97]. Реакция осложняется побочным восстановлением натрием хлорида олова(IV) до хлорида олова(II) и олова(0), что затрудняет использование метода в промышленном масштабе. Неудовлетворительные результаты были получены при взаимодействии галогенорганических соединений со сплавами олова с натрием или магнием [98]. В промышленности используют метод, основанный на реакции алкилзамещенных алюминия с хлоридом олова (IV). Хорошие выходы продуктов достигаются при проведении реакции в присутствии оснований Льюиса, связывающих в комплекс образующийся [c.179]

    Известно, что одни катализаторы преимущественно пригодны для введения водорода, например в органические соединения (г и д-рогенизация, восстановление) и они же нужны для отщепления водорода, например при переходе гидроароматических соединений в ароматические. Таковы металлы платиновой группы, никель, кобальт, железо, медь. Меньшую роль играют другие металлы, например серебро, кадмий, олово. Палладий и платина дают особенно выдающийся эффект в гидрогенизации, так как их препараты можно применять с успехом для обработки водородом в жидкой среде и при обыкновенной температуре. [c.480]

    В качестве добавки при восстановлении ароматических нитросоединений часто используют хлористое олово. После окисления оно регенерируется на катоде. Для ускорения процесса восстановления применялись добавки многих других вендеств. Выше упоминалось, в частности, о применении никелевых проволок в качестве катода для восстановления нитробензола до анилина в соляной кислоте 153]. Возможно, что это восстановление протекает успешно вследствие катализа. Выход N,N-димeтилбeнзилaмннa при восстановлении N.N-диметилбензамида на свинцовом катоде в серной кислоте сильно увеличивается при добавке к католиту небо и,ших количеств окислов мышьяка или сурьмы 173]. Примером применения органического соединения в качестве промотора может служить восстановление 2-нитро-/г-цимола до 2-амиио-5-окси--//-цимола, проводимое в концентрированной серной кислоте на катоде из, юнель-металла 174] ароматические или смешанные кетоны, например бензо-фенов или ацетофенон, увелич1шают выход продукта. [c.330]

    Кроме процесса получения хлора и гидроксида натрия ртутный катод применяется при восстановлении органических соединений. При поляризации ртути в растворах солей щелочных металлов в результате образования амальгам нулевая точка сдвигается в область потенциалов —1,7- —2,0 В [27]. Если учесть, что при этом на ртутном катоде устанавливается потенциал около —2,0 В, станет понятным, что восстановление органических соединений может идти в условиях максимальной их адсорбции. Это, как показывает опыт, приводит к образованию гндродимеров с высокими выходами. Высокие выходы димерных продуктов катодного восстановления установлеЩ) также на свинце, олове, цинке [16]. [c.12]

    Содержание нитратов определяют восстановлением их до нитритов, которые с сульфаниловой кислотой и альфанафтиламином образуют яркорозовую окраску. Определение фосфорной кислоты основано на взаимодействии ее с молибденовой кислотой с возникновением фосфорно-молибденовой гетерополикислоты. Эта кислота при восстановлении хлористым оловом дает соединение, окрашенное в синий цвет. Появлению окраски мешает избыток органических кислот в соке растений, разбавление его снижает концентрацию кислот и устраняет их влияние на окраску. [c.567]

    Для определения олова (II) пользуются нитропроизводными нафтиламинов. Уже указывалось, что нитрогруппа обычно гасит флуоресценцию органических соединений. В присутствии олова флуоресценция возникает в кислой среде в результате восстановления оловом (И) нитрогруппы до аминогруппы. [c.331]

    Восстановление органического соединения неорганическил веществом до сильно окрашенного продукта в, колориметрии при меняется редко. Какотелин, нитропроизводное бруцина, восста навливается оловом (II) и другими сильными восстановите лями образуя растворимое соединение фиолетового цвета. Эт реакцию применяют для открытия олова, но не используют ДЛ5 количественных целей. [c.132]

    Легко восстанавливаются а-хлоркетоны в соответствующие кетоны под действием гидридов органических соединений олова [152,153]. При восстановлении 4-хлорбутирофенона гидридом три-к-бутилолова главным продуктом является 2-фенилтетрагидрофуран. Автор [144] считает, что образование этого соединения обязано внутримолекулярной циклизации по схеме [c.518]

    Исследования восстановления некоторых смешанных металлорганических соединений на ртутном капельном электроде, проведенные Коста Р ], показывают, что различные органические радикалы, присутствующие в молекуле соединений, оказывают влияние на потенциалы восстановления этих соединений. Коста были изучены смешанные органические соединения ртути и олова типа RHgHal(F, С1, Вг. Л). Кз5пНа1(Р, С1, Вг, Л) Н С Н , С Н . [c.210]


Смотреть страницы где упоминается термин восстановление олова в органических соединениях: [c.132]    [c.200]    [c.557]    [c.174]    [c.378]    [c.156]    [c.259]    [c.493]    [c.121]    [c.218]    [c.195]    [c.493]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.785 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление олова

Органические восстановление



© 2025 chem21.info Реклама на сайте