Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отравление медью

    Биб [8] исследовал интегральную теплоту адсорбции окиси углерода на катализаторе из меди, а также влияние случайного отравления (вызывающего понижение адсорбционной способности) на интегральные величины теплот адсорбции. Величины их для активной меди равны II 700, II 200 и 12 200 кал на моль, тогда как у отравленной меди интегральная теплота адсорбции заметно увеличилась до 15 300 кал на моль. [c.151]


    При получении закиси меди по описанному методу образуется продукт, содержащий 98—99% СигО. Однако этот метод обладает рядом существенных недостатков, к которым прежде всего нужно отнести опасность отравления медью. Вторым недостатком является большой расход сырья на изготовление 1 г закиси меди расходуются 3,8 г медного купороса, 1,75 т сернистокислого натрия и 1,5 т соды. [c.744]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    Отравление твердыми или жидкими веществами Вызвать рвоту, например выпив 1%-ный раствор сульфата меди(11) [c.221]

    Металлорганические соединения свинца, меди, мышьяка, попадающие с сырьем, гидрируются до металлов, которые, отлагаясь на поверхности катализатора, отравляют металлические центры, что приводит к подавлению реакций дегидрирования и гидрирования и к закоксовыванию катализатора. Отравление металлами необратимо, катализатор требует замены. [c.123]


    В присутствии в сырье никеля выход кокса в 4,5 раза больше-и количество бензина снижается в 7,9 раза больше, чем в присутствии такого же количества ванадия [215]. Потеря селективности при наличии на катализаторе никеля и меди в 10 раз больше, чем при наличии железа [202]. Коксообразование, вызываемое содержанием на катализаторе никеля, в 4 раза больше, чем в присутствии железа [204]. При изучении влияния различных металлов, на степень отравления катализатора большинство исследователей проводили опыты с относительно большими количествами металлов по сравнению с содержанием их на промышленном равновесном катализаторе. Поскольку в работе [216] были использованы данные по содержанию металлов в промышленном катализаторе, определенные зависимости отличны от всех остальных. Уравнение, предложенное автором этой работы для определения активности катализатора, имеет следующий вид  [c.155]

    Отравление обоих видов рассматривается в работе [45], где изучалось влияние различных концентраций никеля, ванадия, железа, меди, свинца и натрия на результаты крекинга и качество катализатора. Металлы наносили на катализатор пропиткой его водными растворами солей. Ванадий вводили в виде метаванадата аммония, а натрий — в виде ацетата. Остальные металлы вводили в виде нитратов. Чтобы избежать попадания в катализатор посторонних примесей растворы солей металлов приготовляли в двукратно дистиллированной воде, а все сосуды перед употреблением тщательно очищали, промывали и споласкивали также двукратно дистиллированной водой. Пропитанные образцы высушивали при 90 °С, а затем прокаливали в воздухе при 600 °С в течение 2 ч для разложения солей металлов до окислов и полного удаления летучих веществ. Выходы продуктов крекинга в стандартных условиях на полученных образцах катализатора приведены в табл. 48 [45]. Там же приводятся данные о кислотности, удельной поверхности и поровой характеристике этих образцов. [c.171]

    Элементы технологии, связанные с применением бифункциональных платиновых катализаторов. Как об этом сказано выше, гидроочистка — важнейшая стадия подготовки сырья для риформинга. При этом удаляют каталитические яды — металлы (свинец, медь, мышьяк и др.), серу и азотсодержащие соединения, вызывающие отравление платиновых катализаторов. Гидроочищенное сырье подвергают почти исчерпывающему обезвоживанию, чтобы предотвратить отщепление хлора от промотированного последним катализатора риформинга. [c.122]

    Первым катализатором синтеза метанола являлась окись цинка. Впоследствии ее стали активировать окисью хрома (8 масс. ч. на 1 масс. ч. Сг Оз). Окисные цинк-хромовые катализаторы получили промышленное применение. Целесообразно применение и других добавок, в частности окислов марганца, железа, меди. Основу других катализаторов синтеза метанола составляют окислы меди с добавками окисей хрома и цинка. Однако эти контакты более чувствительны к отравлениям и требуют тонкой очистки синтез-газа (см. т. I, гл. 7). [c.249]

    Катализаторы следующего состава (в вес. %) 2пО 70 СиО 5 СггОз 25 более активны и позволяют проводить процесс примерно при 300° С [228]. Если содержание окиси меди увеличить до 25—90 вес. %, температуру процесса можно снизить до 250° С (229—231]. Однако, несмотря на высокую активность катализаторов на основе окислов цинка, меди и хрома, практическое их использование ограничено значительной склонностью к отравлению сернистыми соединениями. [c.89]

    Весьма чувствительны к отравлению сероводородом катализаторы низкотемпературной конверсии окиси углерода, содержащие окись цинка и окись меди. При попадании сероводорода на катализатор окись цинка постепенно по ходу газа дезактивируется. Чем выше концентрация H2S и объемная скорость, тем меньше срок службы катализатора. Так, при содержании серы в газе 0,2 мг/м и объемной скорости 3000 ч срок службы катализатора НТК-4 составляет два года [4]. Учитывая увеличение объема газа в процессе в 4—6 раз, концентрацию сернистых соединений в очищенном газе, поступающем [c.60]

    Низкотемпературный катализатор очень чувствителен к правлению сернистыми соединениями и галогенами. Условия процесса термодинамически благоприятны для образования сульфидов цинка и меди, но, как показано в работе [53], механизм отравления связан в первую очередь с образованием сульфида цинка и вызванного этим укрупнением кристаллов меди. Аналогично и действие ионов хлора. Отравление распространяется послойно по ходу газа. В работе [4] отмечено резкое снижение активности катализатора при содержании [c.92]

    Соединения серы, так же как органические соединения, содержащие хлор, бром и иод, являются стс кими ядами они превращают медь в сульфиды или галогениды. Во многих органических фторсодержащих соединениях фтор достаточно прочно связан, и при гидрировании не переходит в катализатор /6/. Окись углерода в водороде д ствует как временный яд при проведении некоторых процессов гидрогенизации, причем эффект отравления исчезает при устранении окиси углерода. [c.236]


    В этом процессе гликоль окисляется в глиоксаль воздухом при 345°С я давлении 10 атм. Для ингибирования дальнейшего окисления проводят частичное отравление поверхности катализатора, вводя небольшие количества соединений галогенов (чаще всего дихлорэтилен). Катализатором является окись меди (3-8%), нанесенная из нитрата на инертную тугоплавкую окись алюминия /14/. [c.298]

    Растворимые соединения меди ядовиты, при попадании внутрь 0,2—0,5 г они вызывают боли в желудке и рвоту, при 1—2 г — тяжелые (иногда смертельные) отравления. Си и ее соединения раздражают глаза и кожу, часто вызывая аллергический дерматит. [c.319]

    Вследствие неровностей на поверхности твердых катализаторов свободная поверхностная энергия будет распределяться также неравномерно так, например, при погружении кристалла медного купороса в спиртовой раствор сероводорода наблюдается почернение в первую очередь углов и ребер кристалла за счет образования сульфида меди. Для отравления некоторых катализаторов специфическими ядами достаточно самых малых их количеств, гораздо меньших, чем требуется для покрытия всей поверхности катализатора мономолекулярным слоем яда. [c.104]

    Вследствие неровностей на поверхности твердых катализаторов свободная поверхностная энергия будет распределяться также неравномерно так, например, при погружении кристалла медного купороса в спиртовой раствор сероводорода наблюдается почернение в первую очередь углов и ребер кристалла за счет образования сульфида меди. Для отравления некоторых катализаторов специфическими ядами достаточно самых малых их количеств, гораздо меньших, чем требуется для покрытия всей поверхности катализатора мономолекулярным слоем яда. Это указывает на активность не всей поверхности катализатора, а ее отдельных участков, получивших название активных центров или пиков. Адсорбция веществ на этих центрах объясняется неуравновешенностью электростатического поля. Это легко представить, если воспользоваться схемой профиля катализатора, предложенной Тейлором (рис. 38). [c.126]

    О проведении ремонтных работ в пожаро- и взрывоопасных сооружениях, а также в сооружениях, где возможны отравления, руководитель работы обязан предварительно известить газоспасательную службу, пожарную охрану и меди цинскую службу предприятия. [c.337]

    Для промывания кожи при ожогах кислотами и щелочами, для промывания желудка при отравлении соединениями меди [c.437]

    Леман (Ar h. Hyg., 24, 23, 31 Mun h, med. Ws hr., 35, 36, 1891. Краткий учебник профессиональной гигиены, 200 — 201, 1926), отрицая возможность хронического отравления медью, берет под сомнение н случаи острого отравления медью, при переходе ее в пищу. В противоречии с этим стоят случаи отравления клюквенным вареньем, содержащим медь, бывшие объектами моих исследований так в одном случае отравилась семья из четырех человек. [c.159]

    Кубота и Иошикава [159], исследуя отравляющее действие тиофена на никелевый и медный катализаторы, показали, что около 1% тиофена отравляет никель при 300° в случае применения его при гидрогенизации бензола. Ими найдено, что быстрота, с которой отравляется никель, зависит от температуры, при которой он восстанавливается чем выше температура, тем быстрее происходит отравление. Медь не поддается действию тиофена. [c.402]

    Ряд примеров показывает, что отравление катализаторов нельзя свести непосредственно к уменьшению их адсорбционных свойств. В подтверждение этого можно привести такой пример СО отравляет медь при гидрировании этилена в таких количествах, которые заметно еще не уменьшают адсорбции реагирующих газов (П и з, 1923). Другой убедительный пример представляют наблюдения Пиза иСтюарта (1925) отравление меди парами ртути уменьшает адсорбцию этилена до 0,8 и адсорбцию водорода до 0,05. Это должно было бы согласно закону действия масс уменьшить скорость гидрирования этилена до 0,8-0,05 = 0,04. На самом деле скорость уменьшается до 0,005, т. е. в 8 раз больше, чем это было бы, если бы отравление зависело лишь от уменьшения адсорбции. [c.472]

    Металлы — мышьяк, свинец, медь, содержание которых поел гпдроочистки очень невелико, накапливаются на катализатор риформинга необратимо. Вступая во взаимодействие с платиной металлы нарушают гидрируюш,ую-дегидрирующую функцию ката лизатора. Накопление металлических примесей приводит к посте пенному старению катализатора. Быстрое отравление катализатор может пметь место при переходе на сырье вторичного происхождения при использовании бензинов, полученных из ловушечной нефти где концентрация металлических примесей вследствие случайны причин может оказаться весьма значительной. Катализатор, отра вленный металлами, весьма быстро закоксовывается и после регене рации не восстанавливает своей активности. [c.26]

    Конверсию СО проводят при избытке пара и в присутствии катализаторов. Катализаторы, применяемые в промышленности для конверсии окиси углерода, в зависимости от рабочей температуры условно разделяют на среднетемпературные (в пределах 350—550 С) и низкотемпературные (175—300°С). Основным компонентом среднете.мпературного железохромового катализатора 482 является окись железа, а низкотемпературных катализаторов— медь и ее соединения, окислы цинка, хрома, алюминия, магния и др. Активность катализатора воостапавливают газовой смесью, содержащей водород и окись углерода. Низкотемпературный катализатор на основе меди более чувствителен к отравлению сернистыми соединениями. Поэтому при работе с низкотемпературным катализатором газ, пар и конденсат должны быть более чистыми. [c.35]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]

    Скелетные катализаторы, пли катализаторы Ренея, получают сплавлением активного металла, например никеля, кобальта, меди, с алюминием нли магнием, а затем последние удаляют выщелачиванием. В результате этого получаются активные, чуть ли не атомарно-дисперсные металлы. Так называемый никель Ренея весьма активен, но недостаточно селективен, очень чувствителен к термической дезактивации и химическому отравлению. Однако это не препятствует его широкому применению при гидрировании жидких растительных масел в твердые пищевые жиры, когда крайне важна способность частиц никеля оседать из продуктов гидрирования. Другой привлекательной чертой скелетных катализаторов является возможность их активации при низких температурах в простых аппаратах без отдельной установки для восстановления и даже без самой стадии вос-сгановленпя. Таким образом исключаются операции восстановления и стабилизации катализатора, что упрощает технологию. [c.110]

    При исследовании снижения селективности у катализатора в процессе крекинга было установлено, что одной из причин старения катализатора является отравление металлами. Результаты лабораторных опытов показали [64], что железо, никель, ванадий и медь, содержащиеся в некоторых видах нефтяного сырья, адсорбируются и накапливаются на катализаторе. Даже ничтожные количества (0,007 7о) этих металлов ухудщают селективность катализаторов и снижают выход бензина. Селективность катализатора в работе [64] оценивается коксовым и газовым фактором — отноще-нием выхода кокса или газа на исследуемом катализаторе к выходу кокса или газа на исходном (стандартном) катализаторе при одной и той же степени превращения. Ухудшение селективности при содержании на катализаторе перечисленных выше металлов выражается в резком повышении коксового и газового фактора. [c.148]

    Другая точка зрения на механизм отравления катализатора высказывается в работе [239]. Ее авторы нашли, что зависимость степени превращения сырья от кислотности алюмосиликатного катализатора изображается прямой А (рис. 75), уравнение которой имеет вид степень превращения, вес. % =34 Xкислотность +11,2 (кислотность определяли по адсорбции нормального бутиламина, а изменяли ее водной либо кислотной обработкой катализатора). После нанесения на катализатор примесей металлов пропиткой его водными растворами солей опять определяли кислотность образцов и их активность (по методу Кат-А). Эта зависимость для образцов катализатора с содержанием окислов хрома, натрия, меди и цезия изображена на рис. 75 пунктирными линиями. Из рисунка видно, что при нанесении на катализатор металлов зависимость между кислотностью и степенью превращения, установленная для [c.172]

    Характер действия тех или иных ядов может быть различным. Так, например, свинец, ртуть, медь, вода и др. вызывают необрагимое отравление катализатора. Сернистые и азотистые соединения могут вызывать временное, обратимое отравление. Вместе с тем, при длительном воздействии сернистых соединений отравление зачастую бывает необратимым. Весьма сильный яд, вызывающий необратимое отравление, — мышьяк. Максимально допустимое содержание мышьяка в сырье составляет 10 % (масс.). [c.164]

    С появлением парового риформинга, осуществляемого на чувствительных к отравлению никелевых катализаторах, производство синтез-газа, почти свободного от ядов, становится все более экономически привлекательным. В результате этого увеличивается число каталитических веществ, пригодных для использования в производстве синтез-газа. В частности, появляется возможность использования потенциальных достоинств меди. Доводы в пользу меди, приведенные в гл. 1, делают понятным выбор ее в качестве катализатора реакции конверсии СО считается, что она обладает активностью и селективностью при значительно более низких температурах, чем обычные катализаторы на основе Рёд04. В литературе описана длительная история изучения каталитических свойств меди, но уже ранние исследователи наблюдали быстрое падение активности, обусловленное не только ее чувствительностью к ядам, но также и быстрым уменьшением поверхности. Композиции меди с окисью цинка использовались в течение многих лет в качестве катализаторов гидрирования и дегидрирования органических соединений, и эти катали- [c.132]

    Металлы. Активность никеля снижается многими металлами.В про-мшшенном сырье могут встретиться соединения свинид, меди и ванадия, отравление которыми необратимо и реагенты практически не должны содержать их. Концентрации свинца до Зррт могут быть допустимы в течение только нескольких суток. [c.45]

    Соединения мышьяка, меди, а также свинца вызывают необратимое отравление катализаторов. Следует подчеркнуть, что одним из компонентов катализатора риформинга является кислая окись алюминия. Кислотность А12О3 возрастает в присутствии ионов р и (или) С1 при общем содержании галоге-нидов 0,5-1%. Соединения азота основного характера вызывают частичную нейтрализацию кислотности и обратимое отравление центров изомеризации и крекинга. Содержание азота в сырье, поступающем в реактор, не должно превышать 0,6 10-4%. [c.93]

    Минимальная концентрация Си , требуемая для отравления морския организмов, соответствует скорости коррозии меди примерно 0,5 г/(м -сут) 145Ь]. — Примеч. авт, [c.93]

    Помощь при желудочных отравлениях. При желудочных отравлениях применяются следующие средства 1. Удаление яда из организма — путем искусственной рвоты, вызванной приемом внутрь 0,25—0,5 г сульфата меди, растворенной в полстакане теплой воды, или нескольких стаканов мыльной воды, или одной чайной ложки горчицы, растворенной в стакане теплой воды. [c.122]

    Кадмий применяют в процессах кадмирования аналогично тому как цинк — в процессах цинкования. Поскольку электродный потенциал кадмия положительнее электродного потенциала цинка, кадми-рованные поверхности железных (стальных) деталей более стойки по отношению к агрессивным средам. Такие детали используются в автомобилях, самолетах и др. В металлургических процессах кадмий используют для получения легкоплавких сплавов. К ним относится, например, сплав Вуда (т. пл. 70 С), состоящий из 50% В1 (т. пл. 27ГС), 25% РЬ (т. пл. 327 С), 12,5% Зп (т. пл. 232°С) и 12,5% СсЗ (т. пл. 321°С). Важной в технике является кадмиевая бронза ( 1% Сё), из которой делают телеграфные, телефонные, троллейбусные провода, поскольку кадмиевая бронза характеризуется большей прочностью и износостойкостью, чем медь. Кадмий используется в щелочных аккумуляторах. Чрезвычайно интересна способность Сс1 поглощать медленные нейтроны, благодаря чему он применяется в ядерных реакторах для регулирования скорости распада ядерного топлива. Соединения кадмия очень ядовиты и могут вызвать отравление организма. [c.309]

    Один из первых сплавов на основе бериллия, получивший практическое применение, — бериллиевая бронза. Это сплав с 1—3% меди, он внешне похож на настоящую бронзу, обладает замечательной упругостью, и из него можно изготовить практически вечные пружины (к сожалению, очень дорогие и из-за дефицита бериллия используемые только в исключительных случаях). Если бы не дефицитность и дороговизна бериллия, он мог бы применяться, кроме того, в качестве великолепного раскислителя различных металлов, сталей, сплавов. Этому способствуют сильные восстановительные свойства и тугоплавкость металла (т. пл.= 1284°С), легкая возгоняемость (/ 1000°С) образующегося при раскислении окисла ВеО. Теплота образования ВеО составляет 135 ккал/моль, что мало отличается от такой же величины Na и Ва, слишком химически активных для применения в качестве раскислителей (теплота образования Na20=146 ккал/моль, ВаО= = 140 ккал/моль). Так что препятствие для такого использования — дороговизна бериллия, а также его токсичность. Особенно опасны пары окисла бериллия. Вдыхание их вызывает боль в легких, в сердце, а затем, при больших дозах, наступает бериллоз — общее отравление организма, часто кончающееся летальным исходом. Так что работать с бериллием и его соединениями надо, принимая необходимые меры предосторожности. Впрочем, Вокелен, открывший бериллий, без. заметного вреда для своего здоровья пробовал его соединения на вкус [c.28]

    Другой источник загрязнения окружающей среды - промышленные и бытовые сточные воды. Многие п)юизводства трюбуют больших количеств воды для промывки, охлаждения и других целей. После использования вода сбрасывается в водоемы. Сточные воды могут содержать многие неорганические соединения, в том числе ионы таких металлов, как ртуть, цинк, кадмий, медь, никель, хром и др. Не менее опасно присутствие в сточных водах различных органических с<юдине-ний. Химические вещества, содержащиеся в воде, попадают в реки, озера и моря, проникают в грунтовые воды, выносятся на поля. В результате эти в[ едные вещесгьа появляются в питьевой воде и пище человека и животных, могут п эивости к отравлению и смерти, вызвать глубокие генетические изменеиия в организме. [c.6]


Смотреть страницы где упоминается термин Отравление медью: [c.322]    [c.100]    [c.339]    [c.493]    [c.40]    [c.160]    [c.13]    [c.218]    [c.34]    [c.121]    [c.44]    [c.77]    [c.40]   
Судебная химия (1959) -- [ c.339 ]




ПОИСК







© 2024 chem21.info Реклама на сайте