Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород отравление катализаторов

    Высокая селективность цеолитов по отношению к таким соединениям серы, как сероводород и меркаптаны, используется для удаления последних из смесей многих веществ, в том числе и из смесей углеводородов. Из циркулирующего в установках риформинга водорода и из сырья, идущего на изомеризацию, сернистые соединения необходимо удалять, чтобы предотвратить отравление катализаторов, чувствительных к сере. При переработке природного газа из него методом селективной адсорбции удаляют воду, СО2 и соединения серы до остаточного уровня не выше [c.724]


    При работе на алюмоплатиновых катализаторах низкотемпературной изомеризации, в которых массовая доля хлора достигает 12%, присутствие воды в сырье приводит к необратимому отравлению катализатора из-за дезактивации активных центров. Рекомендуется ограничивать содержание воды в сырье процессов низкотемпературной изомеризации (1- 10) 10" % [19, с.82-100 103]. При гидроочистке сырья основное количество растворенной воды удаляется в отпарной колонне вместе с сероводородом, Остаточное количество воды и сернистых соединений удаляют с помощью молекулярных сит. Обычно используют два слоя цеолитов — NaA и NaX. На цеолите NaA происходит поглощение воды и остаточного H2S, но углеводороды не заполняют полости этого цеолита. Цеолиты NaX служат для очистки от сернистых соединений, главным образом меркаптанов. Соотношение загрузки цеолитов двух типов 1 1. [c.91]

    В условиях переработки сернистого сырья устранение отравления катализатора сероводородом приобретает большое значение. При работе с обычно приготовленными естественными катализаторами положительные результаты дает обработка катализатора небольшим количеством водяного пара после регенерации. На основании промышленного опыта установлено, что активность естественного катализатора удается поддерживать без значительного снижения путем  [c.52]

    Сернистые соединения в значительной степени ухудшают качество природного газа как сырья для различных технологических процессов, так и как технологического топлива. Они являются причиной повышенной коррозии аппаратуры, вызывают быстрое и необратимое отравление катализаторов, применяемых в процессах конверсии углеводородов. При сжигании газа, содержащего сернистые соединения, образуются высокотоксичные оксиды серы, которые, попадая в атмосферу с дымовыми газами, отрицательно воздействуют на окружающую среду. Вместе с тем, входящие в состав природного газа сернистые соединения являются сырьем для получения ценных продуктов. Из сероводорода, извлеченного из газов, получают элементную серу, этантиол и смесь природных меркаптанов (СПАЛ) используются для одорирования газов, этан- и бутантиолы применяются при производстве инсектицидов и моющих средств. Поэтому технологические схемы глубокой переработки природного и попутного газа, как правило, включают стадию очистки их от сернистых соединений. В зависимости от конкретных условий производства, [c.5]


    В газе, поступающем на катализатор, сера обычно присутствует в виде сероводорода, который послойно связывается катализатором. Содержащаяся в катализаторе окись цинка поглощает сероводород с образованием сульфида цинка. Происходит также хемосорбция сероводорода медью (для образования сульфида меди необходимо, чтобы в газе при температуре 220 °С присутствовало около 3 см м сероводорода [27], что значительно превышает содержание сероводорода в промышленном газе). Рей и др. [37] наблюдали значительное уменьшение медной поверхности катализатора при содержании в газе 6 см /м сероводорода. Отравление катализатора сероводородом при небольшом его содержании (0,1—1 см /м газа) — обратимый процесс. [c.376]

    Промышленные испытания предлагаемого метода показали, что при отравлении катализатора серой, восстановление его первоначальной активности наступает при прекращении образования сероводорода, т.е. при полной "отмывке" катализатора от серы. При глубоких отравлениях это происходит достаточно долго - от 10 до 20 суток. В это время применение способа восстановления происходит следующим образом  [c.49]

    Восстановление окиси углерода до метана под обыкновенным давлением с никелем на пемзе (молибден, окислы молибдена, сульфиды молибдена на силикагеле стабильны в отношении сернистых соединений) Сероводород, отравленный катализатор после 3 часов активируется приблизительно на начальной величины 260 [c.412]

    Миначев, Шуйкин, Рождественская, Кондратьев, Щукина [3, 4, 7] при изучении влияния различных групп сераорганических соединений на платиновый катализатор в реакции дегидрирования циклогексана установили, что характер отравления катализатора не зависит от природы сераорганических соединений и что действие этих соединений равноценно действию эквивалентного количества сероводорода отравление катализатора протекает по механизму блокировки активных центров. [c.116]

    Весьма чувствительны к отравлению сероводородом катализаторы низкотемпературной конверсии окиси углерода, содержащие окись цинка и окись меди. При попадании сероводорода на катализатор окись цинка постепенно по ходу газа дезактивируется. Чем выше концентрация H2S и объемная скорость, тем меньше срок службы катализатора. Так, при содержании серы в газе 0,2 мг/м и объемной скорости 3000 ч срок службы катализатора НТК-4 составляет два года [4]. Учитывая увеличение объема газа в процессе в 4—6 раз, концентрацию сернистых соединений в очищенном газе, поступающем [c.60]

    Отравление катализаторов, используемых для низкотемпературной конверсии окиси углерода, происходит в результате взаимодействия его с сероводородом по реакциям  [c.60]

    В нефтях содержатся некоторые количества связанного азота поэтому при термическом крекинге иногда образуются вредные азотистые соединения. Калифорнийская, венесуэльская и западнотехасская нефть, но-видимому, легче разлагаются в этом направлении, чем другие нефтИ Азотистые соединения в сырье, поступающем на каталитический крекинг, почти всегда превращаются в вещества, отравляющие катализаторы полимеризации. Отравление катализаторов полимеризации может иногда вызываться и такими основаниями, как едкий натр и диэтанол-амин, которые часто применяются для удаления сероводорода из сырья, направляемого на полимеризацию. Каталитические яды основного характера можно удалить из сырья, поступающего на полимеризацию, водной промывкой углеводородов. [c.239]

    Железохромовый катализатор малочувствителен к отравлению сернистыми соединениями, но содержащиеся в нем или поглощенные им сернистые соединения при взаимодействии с водородом образуют сероводород, который может вызвать отравление катализатора низкотемпературной конверсии. Поэтому при выводе установки на режим газ из реактора, загруженного железохромовым катализатором, обычно выводят из системы до тех пор, пока в нем содержится сероводород. [c.91]

    На стадии очистки от сернистых соединений основным является соблюдение температурного режима. В реакторе гидрогенизации температура на входе поддерживается 300—370 °С и на выходе 340—400 °С. Температура в реакторах поглощения сероводорода такн е поддерживается равной 340—400 °С. Снижение температуры на стадии очистки от сернистых соединений может вызвать увеличение содержания их в очищенном газе и отравление катализаторов на других стадиях процесса, а увеличение температуры может повлечь образование сажи. [c.186]

    Снижение отравляющего действия сернистых соединений на алюмоплатиновый катализатор может быть осуществлено путем очистки циркулирующего газа от сероводорода в процессе риформинга. В результате очистки циркулирующего газа от сероводорода скорость отравления катализатора уменьшается. На рис. 32 показаны данные риформинга при 40 ат фракции 85—180 °С восточных нефтей СССР, содержащей 0,14 вес. % серы. Без очистки циркулирующего газа выход ароматических углеводородов, а также октановое число бензина после 300 ч работы катализатора значительно снизились. При очистке циркулирующего газа от сероводорода активность катализатора сохранялась более длительное вре- [c.76]


    Отравление катализатора сероводородом в той или иной степени обратимо при улучшении гидроочпстки сырья и снижении концентрации серы в гидрогенизате сероводород десорбируется из катали.--аатора риформинга и активность его восстанавливается. Однако сера может вызвать и необратимую дезактивацию катализатора риформинга при длительной работе на сырье с содержанием серы, превышающем допустимое. [c.25]

    Прямая перегонка и деструктивные процессы переработки нефти сопровождаются образованием газа, в котором в зависимости от содержания и природы сернистых соединений в сырье присутствуют в различных концентрациях сероводород и другие соединения серы (табл. 5.1). При наличии сероводорода в газе создаются условия для коррозии металлов, снижается эффективность каталитических процессов из-за отравления катализаторов. Прежде чем направить заводские газы на разделение, их как правило, подвергают очистке. Проведение очистки всегда повышает стоимость газов, однако возросший во всем мире спрос на серу в корне изменил экономические показатели процессов очистки газа. К прибыли, получаемой от реализации очищенного газа, прибавилась стоимость извлекаемой из него серы. В Канаде, например, сера при различном содержании в газе. сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы [70]. [c.280]

    При химической переработке газов органические соединения серы являются такой же вредной примесью, что и сероводород, так как вызывают аналогичные отрицательные явления — отравление катализаторов, ухудшение качества продукции, коррозию трубопроводов и аппаратуры, загрязнение атмосферы. [c.301]

    Кроме сероводорода в газе могут присутствовать п другие сернистые компоненты (меркаптаны, сероокись углерода, сероуглерод), которые являются причиной коррозии оборудования, отравления катализаторов (в процессе синтеза). При сгорании они образуют диоксид серы. [c.231]

    Сероводород и другие серосодержащие соединения необратимо снижают активность катализатора. Степень отравления катализатора пропорциональна количеству серы, адсорбированной на его поверхности. На рис. 1У-8 показано влияние содержания серы в катализаторе на его активность при различной температуре. [c.358]

    Платиновый катализатор весьма чувствителен к действию различных примесей газообразных и твердых (пыли) веществ. Особенно вредным является углерод, образующийся при разложении нестойких в условиях синтеза углеводородов. Катализатор отравляется необратимо под влиянием этилена, пропилена и высших олефинов и особенно при наличии в газе 0,1% ацетилена. Присутствие в газе до 0,1% сероводорода приводит к обратимому отравлению катализатора. В отсутствие сероводорода в газе катализатор, ранее отравленный сероводородом, быстро восстанавливает свою активность. Содержание окисн углерода до 8—10% не оказывает влияния на действие катализатора, а присутствие водорода в некоторой степени благоприятно сказывается на работе катализатора, предотвращая отложение углерода на его поверхности Резкое снижение активности катализатора происходит при попадании на него л<елеза, меди, свинца, а также при содержании в газе ничтожных количеств (0,00001%) соединений фосфора и мышьяка. Поэтому исходные реагенты — метан, аммиак и воздух — тш.а- [c.482]

    Эти катализаторы, по-видимому, обладают весьма высокой активностью в реакциях удаления органических сернистых соединений, особенно сероуглерода и меркаптанов, из синтез-газа в присутствии сероводорода. Однако тиофен на этих катализаторах не разлагается, а при сравнительно высоком содержании вызывает отравление катализатора. Согласно литературным данным [25] при двух значениях температуры процесса 300 и 450° С и объемной скорости 2000 из 1 газа удается удалить 0,3—0,8 г органической серы (присутствующей в виде сероуглерода) и 3,4—6,8 г сероводорода и тем самым снизить содержание общей серы до менее 2,3 мг на 1 м . При этих условиях поглотительная емкость катализатора по отношению к сере достигает в зависимости от полноты регенерации б—14% от его веса. [c.329]

    Каталитическое восстаиовление. В промышленности большее распространение получило каталитическое восстаиовление молекулярным водородом в присутствии специальных катализаторов. Этот способ дает возможность получать чистые, не загрязненные химическими восстановителями продукты, легко выделяемые из реакционной смесн. Каталитические процессы восстановления протекают в большинстве случаев легко и однозначно, однако, иногда нх не удается осуществить из-за отравления катализатора. Вещества, замедляющие реакцию, например, сероводород, окись углерода, галогенопроизводные и др., являются каталитическими ядами. [c.241]

    Количество яда, достаточное для отравления катализаторов, как правило, чрезвычайно мало [90]. Так, потеря активности никелевым катализатором в реакциях гидрирования наступает в присутствии циановодорода в соотношении 1 20 ООО ООО, сероводорода — 1 3 ООО ООО, сулемы —1 2 ООО ООО [90]. Отравляемость катализатора увеличивается с уменьшением его удельной площади поверхности [51 ]. [c.88]

    Поведение других металлов различно. Платина и никель проявляют специфическое взаимодействие некоторых плоскостей своих кристаллов с серой, повышая тем самым как селективность, так и активность (см. разд. 6.2). Подтверждено [16], что это происходит вследствие как реконструкции поверхности катализатора, так и разницы в поверхностной энергии различных кристаллографических плоскостей металла, обладающих низкими индексами Миллера. Считают, что адсорбция небольших количеств НгЗ изменяет энергетический баланс поверхности и приводит к новому равновесному распределению плоскостей с различной каталитической активностью. Такое объяснение имеет важные последствия для тех типов реакций, на которые влияют отравление катализаторов сероводородом или реконструкция поверхности под его действием. Таким образом, этот вид отравления должен влиять в значительно большей степени на такие структурно-чувствительные реакции как гидрогенолиз и изомеризация, чем на такие структурно-нечувствительные реакции как гидрогенизация. [c.150]

    Когда синтез-газ содержит такие соединения серы, как H S или OS, в концентрациях ниже 200 ч1млн, они обычно не оказывают влияния на активность катализатора. Однако катализатор может адсорбировать соединения серы и медленно их отдавать. Этот эффект важен, если катализатор высокотемпературной конверсии СО работает вместе с низкотемпературным катализатором. Например, при восстановлении первичного и вторичного катализатора риформинга часто образуется HjS и поэтому во время этой операции конвертор НТК обычно отключается. Если через конвертор ВТК проходит газ, содержащий серу, то она будет накапливаться там и после подключения конвертора НТК и большая часть сероводорода, несомненно, перейдет в него. Если содержание серы в газе на входе в конвертор ВТК превышает 200 ч1млн, то сера будет накапливаться по другому механизму (см. стр. 125). Накопление серы в катализаторе ВТК играет важную роль в отравлении катализатора НТК, и в связи с этим невыгодно допускать прохождение серы через конвертор ВТК. В высокотемпературном катализаторе обычно содержится небольшое количество сульфатов вследствие того, что при его изготовлении образуются некоторые нерастворимые сульфаты. [c.123]

    Усовершенствование указанных процессов ожижения связано с необходимостью преодоления следующих затруднений 1) дезактивация катализатора вследствие отложения углерода, металлов и минеральных веществ 2) отравление катализатора соединениями азота и серы 3) дезактивация катализатора вследствие сульфидирования в среде, содержащей сероводород 4) ограничения эффективности контакта катализатора с продуктами ожижения и водородом, а также диффузионные ограничения 5) высокий расход водорода и уменьшение выхода жидких фракций вследствие недостаточной селективности крекинга 6) спекание катализатора и носителя, особенно в процессе регенерации 7) плохой тепло- и массоперенос вследствие неправильного распределения пор по радиусам 8) механическое разрушение катализатора при длительном использовании и регенерации. [c.224]

    Одновременно с участвующими в процессе компонентами (Нз, СО, СО2) в газе обычно присутствуют азот, аргон, метан, сероводород и другие соединения серы. Если азот, аргон и метан инертны при синтезе метанола и лишь приводят к нерациональному использованию сырья (увеличивается продувка в цикле синтеза), то наличие соединений серы вызывает необратимое отравление катализатора синтеза метанола. Обычно в природном газе содержится до 100 мг/м меркаптанов, сероводорода и сероорганических соединений суммарная же концентрация соединений серы в исходном газе не должна превышать 0,2 мг/м . Для удаления соединений серы газ подвергается двухступенчатой очистке [10]. [c.13]

    В серии опытов 5 применяли никелевый катализатор, который для глубокого отравления обрабатывали в течение 3 час. сероводородом при 800°. Степень превращения гексана в окись углерода над этим катализатором при 800° составляла только 28% против 65% при применении неотравленного катализатора. При температуре 1000° степень превращения над отравленным катализатором составила только 67%, а над неотравленным—80%. Эти результаты подтверждают, что при повышении температуры разница в активности между отравленным и неотравленным катализаторами становится меньше. Продувкой воздухом и водяным паром при температуре 850° можно восстановить активность отравленного серой никелевого катализатора. [c.474]

    Для предотвращения отравления катализатора сернистыми соединениями исходное сырье подвергали гидроочистке на алюмо-кобальт-молибденовом катализаторе при давлении 40 ат и температуре 360° С до содержания общей серы менее 0,007%. Гидрирование нефтяных фракций осуществляли на пилотной установке проточного типа при давлении 10—40 ат, температуре 200—350° С, объемной скорости подачи сырья 1—5 ч и циркуляции водорода 1000 л/л сырья [2]. Испытания проводили на обработанных сероводородом палладий-алюмосиликатном (1,5% Pd на алюмосиликате) и палладий-рениевом (по 1% Pd и Re на промышленной окиси алюминия) катализаторах. Перед работой катализаторы восстанавливали в токе водорода при давлении 20 ат и постепенном повышении температуры в течении 6 ч до 350° С. [c.155]

    Однако при переработке высокосернистого сырья катализаторы специально обрабатывают водяным паром, например природные алюмосиликатные катализаторы, содержащие железо, подвергают гидратации до и после регенерации или разбавляют пос1упающий в реактор поток сернистого сырья водяным паром для предотвращения отравления катализатора сероводородом [1]. [c.41]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    Было показано что предварительная адсорбция сероводорода на катализаторе тормозит превращение тиофена и особенно сильно — гидрирование бутенов. Однако обработка сероводородом не влияет на цис-транс-шоже т тщю, миграцию двойной связи и гидрирование бутадиена. При изучении зависимости активности катализаторов от времени их работы было найдено что активность непрерывно уменьшается вследствие отравления сероводородом. Алюмо— кобальтмолибденовый катализатор отравляется также тиофеном, метилтиофеном, пиридином и аммиаком Реакция гидрирования тормозилась этими добавками, а гидрогенолиз тиофена — аммиаком. [c.287]

    Железо-хромовый катализатор малочувствителен к отравлению сернистыми соединениями, но содержащаяся в нем шш поглощенная при взаимодействии с водородом сера образует сероводород, который может вызвать отравление катализатора низкотевшературной конверсии. [c.195]

    Присутствие сероводорода в циркулирующем газе приводит к коррозии аппаратов установки, особенно змеевиков печи. В результате требуется более частая регенерация катализатора. При регенерации катализатора, работавшего в присутствии сернистого сырья, получается серный ангидрид, который взаимодействует с активной окисью алюминия с образованием сульфата алюминия, В результате возникает необходимость в сложной и глубокой реге-нерации катализатора вне реактора или в полной его переработке (вплоть до извлечения платины). Поэтому регенерацию не следу ет проводить сразу же после отравления катализатора серой, сначала необходимо поработать на малосернистом сырье. [c.143]

    При предварительном сульфидировании катализатора сероводородом или СЗг расход серы должен быть достаточен для превращения N10 в N 282, МоОз в Мо82 и Оз в 82. Наряду с этим, в противоположность общепринятой точке зрения, оказалось, что предварительное сульфидирование способствует большему отравлению катализатора Авторы, проводившие это исследование в присутствии добавок, являющихся катализаторными ядами, в импульсном микрореакторе, соединенном с газовым хро%5атографом [159], утверждают, что сульфидированный катализатор более чувствителен к отравлению протопорфирином, чем свежий. Ими установлено, что все исследованные порфирины (диметиловый [c.257]

    Тиофен и его гомологи с обычными Ni-, Pt- или Pd-катализато-рами не могут быть ирогидрированы, так как являются активными контактными ядами. В присутствии же стойких к отравлению катализаторов, таких, как MoSj, тиофен гидрируется в тетрагидротиофен, но при этом значительно расщепляется на бутилмеркаптан, бутан и сероводород (Б. Л. Молдавский, 1934 г.)  [c.382]

    Очистка природного газа от серосодержащих соединений. Природный газ содержит примеси серосодержащих соединений, включающие меркаптаны (КЗН), тиофен (гетероциклическое соединение С4Н45), сероуглерод ( 82), сульфиды (К23), сероводород (Н23) и др. Кроме того, на стадии извлечения газ одорируют — добавляют этилмеркаптан, обладающий сильным запахом. Одорирование придает специфический запах природному газу (метан — газ без запаха), так как в целях безопасности утечка взрывоопасного газа должна ощущаться окружающими. Несмотря на то, что содержание серы не велико (в среднем составляет несколько десятков мг/м ), в целях избежания отравления катализаторов, используемых в производстве аммиака, ее содержание не должно превышать 0,5 мг/м . Технологическая схема сероочистки показана на рис. 6.38. [c.398]

    Авторы ироцесса 811ЬРАКС провели также эксперименты в новом типе реактора ири различных соотношениях Н,8 и СО, ири атмосферном давлении и мощностях, близких к иромыш-леппым. При мощности 8 кВт был проведен ряд экспериментов в смеси Н,8 и СО,, где была получена высокая степень разложения сероводорода (-99,8 %) ири мепьших энергозатратах (ниже 4 кВт-ч/м Н,8) [125]. Процесс 8иЬРАКС предлагается иромышлеииости для замены ироцесса Клауса в том случае, когда концентрация СО, в газе равна или более 60 % об., что ведет к отравлению катализатора Клауса. [c.462]

    Поскольку в ходе реакции катализаторы не претерновают превращения, теоретически срок их службы неограничен. Однако в практических условиях большинство катализаторов разрушается или постепенно дезактивируется при работе и поэтому их необходимо ГЕериодически регенерировать или заменять свежими. Разрушение катализатора вызывается физическими или химическими причинами. Физическое разрушение может быть вызвано механическим истиранием или перегревом п спеканием. Механическое истирание приводит к чрезмерному увеличению потерь вследствие уноса тонких фракций газовыми потоками и резкому увеличению пвдравлического сопротивления слоя спекание ведет к изменению структуры поверхности катализатора и быстрой потере активности. Химическое разрушение является в основном следствием химического взаимодействия между веществом катализатора и соединениями, содержащимися в сырьевом потоке, с образованием стойких продуктов реакции. Причиной химической дезактивации и разрушения может быть и накопление высокомолекулярных соединений, содержащихся в исходном газовом потоке или образующихся при процессе в результате побочных реакции. Обе эти причины ведут к уменьшению числа активных центров на поверхности катализатора и падению активности катализатора. Дезактивацию под действием примесей, содержащихся в газовом потоке, называют отравлением катализатора. Постепенная дезактивация катализатора вследствие накопления отложений на поверхности и вызываемая ею необходимость периодической регенерации весьма часто наблюдается при процессах, ведущих к образованию одного или нескольких нелетучих продуктов реакции. Например, превращение сероуглерода в сероводород процессом гидрирования сопровождается образованием элементарного углерода (кокса), который необходимо периодически удалять с поверхности катализатора. [c.316]

    При отравлении катализатора сернистыми соединениями рекомендуется регенерация, основанная на окислении отработанного катализатора азотно-воздушной смесью при 450—550 °С с последующим восстановлением водородом при 530—550 °С. Однако при окислении происходит лишь частичное удаление сернистых соединений, а часть их окисляется до сульфатов, которые не уда 1яются с поверхности катализатора. Поэтому в результате этой операции содержание сернистых соединений в контакте снижается от 0,4% до 0,15%. Восстановление сульфатов водородом до сероводорода приводит к полному удалению серы и полной регенерации катализатора. Во избежание попадания на катализатор оксидов кремния или солей кремниевой кислоты, содержащихся в минерализованной воде, спиртовоздушную смесь рекомендуется перегревать до 200 °С. [c.56]

    Газы, получаемые при термической переработке твердых топлив, почти всегда необходимо очищать от сернистых соединений, образующихся из серы, содержащейся в угле. Более 90% серы превращается в сероводород, а остальное — в органические сернистые соединения — сероуглерод Sj, серооксид углерода OS, тиофен 4H4S, меркаптаны H2n+iSH, тиоэфиры (СяНап+ОгЗ. Присутствие сернистых соединений в газе крайне нежелательно, так как они способствуют коррозии аппаратуры и трубопроводов, ухудшают качество получаемых продуктов и вызывают отравление катализаторов. Допускаемое содержание сернистых соединений в газах, используемых для синтезов, не должно превышать 2 мг/м . Следует отметить, что извлечь органические соединения серы из газа значительно сложнее, чем сероводород. [c.143]


Смотреть страницы где упоминается термин Сероводород отравление катализаторов: [c.79]    [c.218]    [c.96]    [c.377]    [c.248]   
Технология связанного азота (1966) -- [ c.31 , c.56 , c.174 , c.281 , c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Отравление катализаторов



© 2025 chem21.info Реклама на сайте