Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагель в распределительной хроматографии

    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]


    В качестве адсорбентов (поглотителей) применяют активную окись алюминия, силикагель, активные угли, а в последнее время стали применять богатый ассортимент ионитов как природных, (цеолиты), так и синтетических (ионообменные смолы). Кроме того, все шире начали применяться в определенных процессах и жидкие поглотители распределительная хроматография), которые вводят в соответствующий твердый носитель (например, в ионообменные смолы путем набухания их в жидком поглотителе). Иногда в состав поглотителей вводят вещества, образующие соединения с некоторыми из компонентов разделяемой системы это часто оказывается эффективным средством усиления разделяющей способности поглотителей. [c.373]

    Распределительная хроматография. В качестве сорбентов в распределительной хроматографии применяются силикагель, целлюлоза, шамотная мука и т. п., на которые нанесена жидкая стационарная фаза. В случае целлюлозы н силикагеля стационарной фазой является, как правило, адсорбированная вода. Процесс распределительной хроматографии принципиально не отличается от многократной экстракции. Элюенты и стационарные фазы должны как можно меньше растворяться друг в друге. [c.48]

    В распределительной хроматографии рекомендуются носители силикагель, кизельгур, окись алюминия для хроматографии и др. Силикагель называют кислым носителем, окись алюминия — основным , подразумевая под этим не измеренное значение pH, а свойства сорбента по отношению к сильной кислоте или основанию, удерживаемым в точке старта вместе с нейтральным растворителем. Чтобы увеличить активность сорбента, на него воздействуют режимом сушки (воздушно-сухие слои, более длительное время экспонированные на воздухе, активные слои), а также с помощью специальных добавок. [c.90]

    То же явление используют в распределительной хроматографии (А. Мартин, Г. Синдж, 1941 г.). В этом случае одна жидкая фаза наносится на зерна твердого вещества с большой поверхностью (целлюлоза, силикагель и др.), помещенные в колонну. Разделяемая смесь вносится в верхнюю часть колонны. После этого колонна промывается вторым растворителем. [c.151]

    Для выделения, очистки и анализа алкалоидов, антибиотиков, витаминов применяются ионообменные смолы (иониты), уголь, окись алюминия, силикагель, бентонит и другие сорбенты. Распределительная хроматография на бумаге, чаще всего нисходящая, применяется в анализе аминокислот, алкалоидов, сульфаниламидных препаратов, антибиотиков и других органических соединений, а также смесей катионов и анионов. [c.516]


    То же явление используют в распределительной хроматографии (А. Мартин, Г. Синдж, 1941 г.). В этом случае одна Жидкая фаза наносится на зерна твердого вещества с большой поверхностью (целлюлоза, силикагель и др.). помещенные в колонну. Разделяемая смесь вносится в верхнюю часть колонны. После этого колонна промывается вторым растворителем. Если коэффициенты распределения компонентов смеси различаются, то компоненты движутся по колонке с разными скоростями. Собирая выходящий раствор фракциями, можно при достаточной высоте колонны получить растворы, содержащие разделенные компоненты смеси. [c.144]

    Тонкослойная хроматография представляет собой разновидность распределительной хроматографии, осуществляемой на пластинках, покрытых тонким слоем носителя окись алюминия, кизельгур, силикагель и др.), который удерживает неподвижный растворитель. [c.29]

    Коэффициент распределения зависит от различных факторов природы вещества, природы растворителя, температуры и техники проведения эксперимента. Однако и такие носители, как бумага, крахмал, силикагель и др., считавшиеся ранее инертными, не являются абсолютно инертными, поэтому в распределительной хроматографии сочетаются такие процессы, как распределение, сорбция и ионный обмен. Теория распределительной хроматографии не учитывает эти побочные факторы, т. е. рассматривает идеальный случай распределения веществ [1, И]. [c.75]

    Хроматография веществ в тонких слоях (ХТС) является одним из видов распределительной хроматографии. Разделение проводят на пластинках, покрытых тонким слоем носителя (окись алюминия, кизельгур, силикагель и др.), удерживающего неподвижный растворитель. Нижний край пластинки с нанесенной на нее пробой опускают в подвижный растворитель. При движении растворителя происходит перераспределение веществ между двумя растворителями и перемещение их с различной скоростью, в результате чего вещества разделяются ца составные компоненты. [c.283]

    Силикагель. Обычный выпускаемый промышленностью силикагель получают осаждением его из жидкого стекла при действии минеральных кислот. Подбирая соответствующие условия, можно получить гель с различной структурой пор, функциональными группами и т. д., применяемый для различных целей. Гель активируют при 100—300 С. Набухший в воде гель применяют в распределительной хроматографии. Силикагель часто содержит примеси железа, алюминия, кальция, натрия. [c.350]

    Советскими учеными проделан ряд работ по распределительно-хроматографическому выделению урана на сили-кагельных колонках. В. К. Марков [127] отмечает, что при правильном снаряжении колонки силикагелем, смоченным не водой, а подкисленным раствором высаливателя, и применении соответствующего подвижного растворителя, можно получить полное количественное отделение урана от сопутствующих элементов. При этом расход экстрагента значительно снижается по сравнению с разделением на целлюлозных колонках. Он предложил методику отделения урана от сопутствующих элементов при анализе руд на силикагеле с помощью диэтилового эфира. В работах других исследователей [128, 129] показана возможность отделения урана от плутония и ряда продуктов деления также на колонках с силикагелем. Известно также успешное применение распределительной хроматографии на силикагеле для разделения редкоземельных элементов с растворами теноилтрифторацетона (ТТА) в бензоле в качестве элюента [102]. [c.175]

    Распределительная хроматография. Сорбенты-носители — различные гидрофильные (силикагель, целлюлоза и др.) или гидрофобные (тефлон, поливинилхлорид, полиэтилен и др.) порошкообразные вещества, способные удерживать на своей поверхности соответственно водную или органическую фазу разделение компонентов смеси обусловлено различием коэффициентов распределения их между двумя жидкими фазами, из которых одна (вода или органическая, несмешивающаяся с водой, жидкость) является неподвижной, удерживаемой частицами сорбента-носи-теля. [c.8]

    Хроматография в тонких слоях. Одним из недостатков хроматографии на бумаге является зависимость процесса разделения от структуры и свойств бумаги. Эти качества довольно трудно воспроизводимы. Для разделения веществ затрачивается много времени. Метод хроматографии в тонком слое (ХТС), предложенный советскими учеными Н. А. Измайловым и М. С. Шрайбер (17], по технике выполнения являющийся новым вариантом распределительной хроматографии, устраняет многие из этих затруднений. Применение самых разнообразных материалов делает метод поистине универсальным. Вместо волокон целлюлозы в распоряжении исследователя находятся порошки различных сорбентов окись алюминия, силикагель, ионообменные смолы, обеспечивающие высокую скорость фильтрации растворов [18]. [c.80]


    В распределительной хроматографии вещества распределяются между двумя жидкими фазами. Другими словами, распределение обусловливается стремлением к экстракционному равновесию (18.3). Подвижной фазой обычно служит органический растворитель. Чтобы водная фаза осталась неподвижной, ее в виде тонкой пленки наносят на твердый носитель, например на силикагель. [c.255]

    Наибольшее распространение получили методы, использующие в качестве носителя силикагель. Другие носители не нашли применения, видимо, из-за очень низких скоростей процесса. Теоретические основы этого метода и принципы расчета эффективности колонок разработаны Марковым и др. [156, стр. 106]. Имн же изучены возможности применения распределительной хроматографии для очистки плутония от урана и других сопутствующих примесей. Высокая экстрагируемость Pu(IV) и Pu(VI) из азотнокислых водных растворов кислород- и фосфорсодержащими органическими растворителями позволяет добиться отделения плутония от Fe, Сг, А1, Мп, щелочных, щелочноземельных и лантанидных элементов. Для разделения плутония и урана используется низкая экстрагируемость Pu(III) по сравнению с [c.372]

    В распределительной хроматографии одним из растворителей обычно служит вода. Она является неподвижным растворителем и находится в порах носителя, например крахмала или силикагеля. Разделение при помощи распределительной хроматографии выполняют следующим путем. Анализируемую смесь веществ, растворенную в воде, вводят в колонку и, после того как раствор впитается верхней частью носителя, промывают колонку подвижным растворителем (например, бутиловым спиртом или смесью растворителей). В процессе промывания происходит непрерывное перераспределение веществ смеси между двумя несмешивающимися жидкостями (вода — растворитель). Поскольку разные компоненты смеси имеют различные коэффициенты распределения, то и скорость передвижения отдельных компонентов тоже различна. Наибольшей скоростью движения обладает то вещество, которое имеет наибольший коэффициент распределения. При промывании колонки образуются отдельные зо1 ы чистых веществ. [c.478]

    Ограниченный рабочий диапазон pH и сорбционная активность остаточных силанольных групп сорбентов на основе силикагеля стимулировали разработку полимерных сорбентов для распределительной хроматографии, в которой устранены указанные недостатки. [c.100]

    Разделение компонентов смеси при распределительной хроматографии проводится с использованием двух несме-шивающихся жидкостей, в которых компонент смеси растворяется и распределяется между ними в соответствии с коэффициентом распределения Одна из фаз является неподвижной и находится в порах твердого носителя. А другая подвижная, продвигающая компоненты смеси по твердой фазе. Неподвижной фазой должно быть вещество более полярное, чем растворитель, применяемый в качестве подвижной фазы. Иначе при хроматографировании произойдет вытеснение им неподвижной фазы из пор носителя. Твердым носителем являются бумага и силикагель, а полярной неподвижной фазой является вода, сорбированная на бумаге или добавленная к силикагелю. [c.47]

    Силикагель находит очень широкое применение как для адсорбционной, так и для распределительной хроматографии [20а]. Для адсорбционной хроматографии силикагель употребляют в активированной форме, особенно для разделения углеводородов, которые связываются таким силикагелем достаточно прочно и с большой степенью селективности. Дезактивированный силикагель используют при хроматографировании полярных веществ, которые очень прочно адсорбируются окисью алюминия. Силикагель представляет собой инертный адсорбент, который сравнительно редко вызывает изменения адсорбированных веществ. [c.345]

    Первоначально в качестве носителя был использован силикагель [58, 591. Его основной недостаток — нежелательная адсорбция, вызывающая размазывание веществ по колонке и значительные потери. Аналогичное явление наблюдают иногда и при хроматографировании на бумаге. О путях преодоления этих недостатков будет сказано ниже. Теперь же рассмотрим случаи, когда адсорбция, наоборот, способствует разделению веществ. На столбике крахмала с закрепленной на нем водой при использовании бутанола в качестве подвижной фазы аланин хорошо отделяется от глицина. Судя по коэффициентам распределения этих веществ, рассматриваемый случай относится к категории распределительной хроматографии. Однако оказалось, что аланин также хорошо отделяется от глицина при промывании колонки не бутанолом, а водой (рис. 412, а) [16]. Аналогичное явление было обнаружено и в случае другой пары веществ — лейцина и фенилаланина (рис. 412, б) [16]. Даже замена воды 0,1 н. соляной кислотой не ухудшала разделения. Таким образом, в данном случае разделительная способность столбика крахмала в значительной степени обусловлена адсорбцией. [c.449]

    Порошкообразный силикагель для распределительной хроматографии приготовляют обработкой разбавленного жидкого стекла соляной кислотой. Можно пользоваться либо продажным препаратом, либо силикагелем, приготовленным в лаборатории. Активность каждой новой партии силикагеля следует проверять при помощи какого-нибудь окрашенного стандартного вещества. [c.464]

    Если силикагель предназначен для распределительной хроматографии органических кислот, процесс разделения которых контролируют по изменению окраски индикатора, то раствор последнего добавляют при приготовлении силикагеля прямо к разбавленному жидкому стеклу, чтобы весь раствор был слабо окрашен. [c.464]

    В последнее время вместо осаждения начали чаще применять хроматографическое разделение алкалоидов например, адсорбционную хроматографию на окиси алюминия из бензольг ых или хлороформных растворов, а также распределительную хроматографию на кизельгуре, силикагеле, порошкообразной целлюлозе или стеклянном порошке [c.1056]

    Обычно полярный растворитель (вода, спирт) фиксирован на твердом носителе — силикагеле, диатомите, целлюлозе, оксиде алюминия. Подвижной фазой в этом случае служат неполярные растворители — изооктан, бензол и др. Такие системы используют в нормально-фазовой распределительной хроматографии. [c.312]

    Распределительная хроматография на силикагеле [c.372]

    В качестве носителей в распределительной хроматографии могут быть использованы силикагель, крахмал, целлюлоза, фильтровальная бумага. Специфические требования к носителям сводятся к следующему [204]  [c.327]

    В жидкостной распределительной хроматографии используют два основных типа носителей пористые и поверхностнопористые. Пористые носители силикагель, диатомиты (хромосорб) и пористые стекла. Они имеют пористую структуру и большую площадь поверхности. Поверхностно-пористые носители состоят из частиц с непористой, непроницаемой сердцевиной и тонкой пористой оболочкой. При разделении на колонках с поверхностно-пористыми носителями даже при высоких скоростях подвижной фазы можно добиться высокой эффектипности колонки. Но эти носители дороги и имеют низкую емкость. [c.333]

    Из-за различия в величине К индивидуальные вещества перемещаются по 1вердой фазе с разной скоростью и благодаря этому отделяются друг от друга. В зависимости от природы твердого носителя и свойств жидкой неподвижной фазы, а также способа проведения эксперимента распределительная хроматография делится на колоночную, бумажную и топкослойиую. В колоночной и тонкослойной распределительной хроматографии может быть применен любой твердый носитель, который прочно удерживает неподвижную фазу, легко пропуская подвижную жидкую фазу, и не вызывает побочных явлений (каталитического воздействия на компоненты смеси и т. п.). В качестве таких нссителей чаще всего применяют силикагель, кизельгур, гипс, цеолиты, крахмал, целлюлозу, диатомит. [c.65]

    Распределительная хроматография основана на различной растворимости разделяемых веществ в заданном растворителе. Природа сил межмолекулярно-го взаимодействия та же, что и в адсорбционной хроматографии, но в первую очередь обусловлена ван-дер-ваальсовыми силами. Поскольку разделение протекает на границе двух несмещивающихся между собой фаз — неподвижной (жидкости) и подвижной (жидкости или газа), процесс разделения веществ определяется различием их коэффициентов распределения между обеими фазами. Одна из фаз, используемых в распределительной хроматографии, богаче ор-га [ическим растворителем, другая — водой. Водная фаза обычно закрепляется на твердых гидрофильных носителях, например силикагеле, диатомовой земле, крахмале, гидрофильных гелях, измельченной в порошок целлюлозе, фильтровальной бумаге. Органическая фаза обычно выполняет роль подвижной фазы. [c.221]

    Разделительные колонки. В газовой хроматографии применяют колонки двух типов спиральные и капиллярные. В спиральных колонках (из стекла или различных металлов) диаметром 2—6 мм и длиной 0,5—20 м находится стационарная фаза. В случае адсорбционной газовой хроматографии она состоит из адсорбента (табл. 7.3), в случае газовой распределительной хроматографии из возможно более инертного носителя с тонким слоем жидкой фазы. Около 80% всех применяемых в газовой хроматографии колонок составляют спиральные колонки. Они представляют собой наиболее простую и не требующую затрат на обслуживание форму. К материалу носителя для газовой распределительной хроматографии предъявляют определенные требования (разд. 7.3.2) применяемые в настоящее время носители представляют собой разновидности силикагелей (диафорит, хромосорб, целит) или изоляционные материалы (породит, стерхамол). Необходимо устранять активные центры в носителях, которые затрудняют распределение вследствие явлений адсорбции. При проведении анализа полярных веществ на хроматограмме наблюдается появление хвостов , что затрудняет проведение анализа (разд. 7.3.1.2, стр. 346). Дезактивацию проводят промыванием растворами кислот или щелочей, а также силанированием . Под силанированием пони- [c.364]

    В 1953 г. была сделана первая попытка использовать в качестве гидрофобного носителя ацетилцеллюлозу, удерживающую хлороформенный раствор дитизона [103]. На Такой колонке при pH 7 концентрируются и выделяются из морской воды свинец, цинк, кадмий, марганец (II), медь и кобальт. Однако ацетилцеллюлоза оказалась неудачным носителем, во многих растворах она легко разрушается. Вслед за этим появились результаты ряда исследований, завершившихся предложениями различных носителей для распределительной хроматографии с обращенной фазой. Так, в качестве носителя органической фазы был предложен силиконированный силикагель (обработанный в целях гидрофобизации диметилдихлорсиланом порошкообразный силикагель), а в качестве неподвижной фазы — трибутилфосфат (ТБФ) [104]. На таких колонках были разделены цирконий и ниобий, редкоземельные эле- [c.154]

    Наиболее удачным оказалось предложение применить в качестве носителя другой фторированный полимер — политетрафторэтилен (фторопласт-4, тефлон) [99]. Фторо-пласт-4 позволяет использовать практически любые органические растворители и любые водные растворы вследствие его исключительной химической стойкости. В этом его преимущество перед фторопластом-3, слипающимся в некоторых растворителях (хлороформ), и силиконированным силикагелем, который неустойчив в среде, содержащей фтористоводородную кислоту. Фторопласт-4 является одним из наиболее перспективных носителей для распределительной хроматографии с обращенной фазой. На нем был выполнен ряд разделений с использованием самых разнообразных растворителей ТБФ, диэтилового эфира, изоамилацетата, раствора теноилтрифторацетона (ТТА) в бензоле, алкилфосфорных кислот, TOA, циклогексанс-ла и др. [c.155]

    На колонках с силиконированным силикагелем С. Се-керский и Б. Котлинская [104] методом колоночной распределительной хроматографии разделили цирконий и ниобий, а потом редкоземельные элементы и кальций — скандий органической фазой в этих опытах является трибутилфосфат. [c.176]

    Среди методов разделения элементов в различных степенях окисления распределительная хроматография на колонках занимает далеко не последнее место [121]. На колонках с силиконированным силикагелем были разделены двух- и четырехвалентное олово, трех- и пятивалентный мышьяк, трех-, четырех- и шестивалентный плутоний неподвижной фазой в этих опытах по хроматографическому разделению служил трибутилфосфат. Трех- и четырехвалентный церий, а также двух- и трехвалентное железо были разделены на колонках с фторопластом-3 (Kel-F) с применением органических растворителей (в первом случае трибутилфталата, а во втором — триоктилфосфинок-сида). [c.177]

    Носители. В распределительной хроматографии должны использоваться такие носители, которые хорошо удерживают неподвил<ный растворитель и инертны к подвижному растворителю и хроматографируемым веществам. Идеальных носителей не существует. Более или менее удовлетворяют этим требованиям особо подготовленные силикагель, крахмал, тальк, целлюлоза и др. В бумажном варианте носителем является фильтровальная бумага. [c.89]

    Распределительная хроматография основывается на различии коэффициентов распределения компонентов разделяе-мой смеси между двумя несмешивающимися растворителями. Твердый носитель пропитывают одним из пары применяемых растворителей, называемым в этом случае неподвижным растворителем так, напрнмср, пропитывают водой силикагель илн используют сорбированную воду на бумаге. Исследуемую смесь растворяют во втором растворителе, называемом о-движным растворителем, н пропускают раствор через колонку, а в случае прпменения бумаги непрерывно смачивают ее раствором в условиях, исключающих возможность даже ча стичного испарения растворителя. [c.148]

    Основными привитыми фазами для нормально-фазной распределительной хроматографии в настоящее время являются нитрильная и аминная. Каждая из них прививается с использованием соответствующего силана (диметиламинопропилхлор или диметилцианпропилхлорсилана). Нитрильная и аминная привитые фазы могут быть поэтому использованы в двух вариантах для нормально-фазной (с неполярными элюентами) и обращенно-фазной (с полярными элюентами) распределительной ВЭЖХ. В качестве нормально-фазных сорбентов они работают, подобно силикагелю или оксиду алюминия, с теми же элюотропными рядами [c.21]

    Установление природы моносахаридов. Для установления природы моносахаридов, входящих в дисахарид, последний подвергается кислотному или ферментатив1НОму гидролизу. В полученной таким образом смеси моносахаридов последние идентифицируются одним из описанных выше методов. Чаще всего первоначальная оценка проводится с помощью бумажной хроматографии, которая очень подробно разработана для моносйхаридов. После этого смесь моносахаридов подвергают разделению методом препаративной распределительной хроматографии на носителе, в качестве которого чаще всего применяются целлюлоза, силикагель, уголь или их комбинации. Разделенные моносахариды идентифицируют в виде одного из кристаллических производных. [c.138]

    Ионофоретический метод разделения аминокислот также базируется на их амфотерности. При различных pH раствора аминокислоты движутся к катоду или аноду, в соответствии с их изоэлектрическими точками и электрофоретической подвижностью Так при pH, близком к б, кислые аминокислоты направляются к аноду, основные к катоду, а нейтральные остаются неподвижными. Ионофорез также можно проводить в растворе или на твердом носителе. Первый метод позволяет раздел5ггь аминокислоты только на сравнительно крупные фракции — кислую, основную и нейтральную. Второй метод, так же как и распределительная хроматография на бумаге, дает возможность разделять любые аминокислоты. В качестве твердого носителя применялись силикагель, крахмал и бумага. Из них самым простым оказался ионо- [c.481]

    Для полноты укажем, что процессы распределения веществ между двумя жидкими фазами при многократном повторении лежат в основе еще одного важного метода хроматографии— распределительной хроматографии. В распределительной колоночной хроматографии, внешне не отличающейся от адсорбционной, один из растворителей пропитывает материал (силикагель, крахмал, целлюлозу), наполняющий колонку, причем этот материал является лишь носителем одного растворителя. Исследуемая смесь наносится вверху колонки. Второй растворитель протекает через колонку и в процессе течения происходит многократное распределение разделяемой смеси вещества между двумя растворителями и, в результате — полное разделение компонентов. В качестве носителя неподвижной фазы может быть взята фильтровальная бумага. Развитая на этой основе хроматография на бумаге (Мартин, Синг) получила исключительное значение для целей анализа. Наконец, многократрюе использование (до 250—1000 раз) распределения между двумя жидкими фазами, без применения носителя, также широко распространено в виде метода противоточного распределения (Крэйг). [c.129]

    Для отделения марганца методом распределительной хроматографии с обращенной фазой используют в качестве носителей целлюлозу [882, 1275, 1276], силикагель [1241, 1365], тефлон [1245], кизельгур [1439], политрифтормонохлорэтилен [1472]. Экстрагентами служат диэтилдитиокарбаминат цинка в СНС1з [605], триизооктиламин [750, 1245], трибутилфосфат [750], Ликс-64 (техническая смесь оксимов) [886], б ас-ди-2-этилгексилфосфорная кислота [206]. Этим методом разделяют Мп(П) и Ге(1И) [1241, 1365, 1439, 1472], Мп(П), Оа(Ш) и Аз(1П) [750]. [c.150]

    Жидкостная распределительная хроматография используется для разделения как органических, так и неорганических веществ. Она основана на разнице в растворимости компонентов анализируемо смеси в двух жидких фазах - подвижной и неподвижной - и является аналогом газожидкостной хроматографии. Возможны две системь фаз неподвижная водная фаза (силикагель с нанесенным на него слоем воды) - подвижная орга1Шческая фаза органическая неподвижная фаза (гранулированные полимеры - полистирол, тефлон и дру  [c.84]


Смотреть страницы где упоминается термин Силикагель в распределительной хроматографии: [c.155]    [c.92]    [c.9]    [c.60]    [c.217]    [c.7]   
Жидкостная хроматография при высоких давлениях (1980) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Распределительная. хроматографи

Распределительный щит

Силикагель

Силикагель для хроматографи

Силикагель для хроматографии

Хроматография распределительная



© 2024 chem21.info Реклама на сайте