Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катодное ингибирование

    Отсутствие ускоряющего влияния сероводорода при уменьшении КИСЛОТНОСТИ электролита объясняется тем, что анодное стимулирование возмещается в этом случае катодным ингибированием. Протекание данных процессов в среде влажного сероводорода может быть рассмотрено на примерах коррозии некоторых металлов. Коррозия железа в водном растворе сероводорода носит электрохимический характер. [c.120]


    Хорошо известно, что определения анодное или катодное ингибирование вытекают из данных опыта о преобладающем влиянии добавленного вещества на один из двух типов процессов, которые составляют явление коррозии [1, 2]. Однако, хотя этот термин и верен, он, несомненно, чрезвычайно формален, поскольку не позволяет установить более глубокое различие между эффектами, вызванными различными ингибиторами. [c.483]

    Катодное ингибирование (протекторная защита) в нейтральных средах осуществляется в результате использования порошков металлического цинка (цинковой пыли) и магниевых сплавов, в щелочной — порошков металлического свинца. Потенциал цинка в морской воде достигает —0,83 В, а свинца в щелочных средах —0,84В. Это позволяет применять их в качестве эффективных протекторов по стали и другим металлам, имеющим более положительные электродные потенциалы. Действие этих пигментов, однако, проявляется при высокой степени наполнения, когда достигается контакт между частицами, обеспечивающий хорошую электрическую проводимость пленок. Так, протекторные цинковые покрытия на основе полистирола, фенолоформальдегидных, эпоксидных и других пленкообразователей содержат до 95—96% (по массе) металлического порошка. [c.172]

    Ингибирование. Одним из наиболее простых, эффективных и во многих случаях экономически целесообразных методов борьбы с коррозией является ингибирование. Несомненным достоинством этого метода следует считать возможность его применения без изменения соответствующих технологических процессов и аппаратурного оформления иа уже существующих промышленных объектах. Большинство ингибиторов — органического происхождения, действие которых основано на адсорбции. Они образуют адсорбционные слои, действующие как фазовый, а в случае хемосорбции и как энергетический барьер. Механизм защитного действия частично зависит от способности ингибитора хемосорбироваться на поверхности металла. Ингибиторы разделяются на катодные, анодные косвенного действия [284—287]. [c.228]

    Результаты изучения влияния данных соединений на С . приведены на рис.2. При ингибировании среды рассматриваемыми соединениями пологие участки кривых зависимости Сдс - Е находятся в катодной обласги потенциалов. Это возможно при преимущественном торможении катодной реакции. [c.181]

    Адсорбция ряда органических веществ приводит к торможению электродного процесса, т. е. органическое вещество выступает в роли ингибитора. Ингибирование электродных процессов органическими веществами было количественно исследовано на стационарном и капельном ртутных электродах. Так, адсорбция органических кислот и катионов тетраалкиламмониев тормозит реакцию катодного выделения водорода на ртутном электроде (см. 50). Эффект ингибирования исчезает при потенциале десорбции органического вещества (см, рис. 137). [c.387]


    При этом остается неизменным катодный участок поляризационной кривой. При одновременном влиянии органического вещества на анодные и катодные процессы (ингибитор смешанного типа) эффект ингибирования оказывается наиболее сильным и ток саморастворения металла резко падает (рис. 198,а). Поэтому для защиты металлов от коррозии стараются найти именно такие вещества-ингибиторы или используют совместные добавки органических веществ разных типов. В зависимости от относительного торможения каждого из сопряжен- [c.388]

    Пассивирующие ингибиторы оказывают двоякое действие. С одной стороны, они уменьшают плотность тока пассивации, стимулируя образование пассивного слоя, а с другой стороны, при их восстановлении повышается плотность катодного частичного тока. Ингибиторы могут иметь оба или только одно из вышеназванных свойств. Пассивирующие ингибиторы относятся к так называемым опасным ингибиторам, поскольку при неполном ингибировании развивается сильная активная коррозия. При этом пассивированные катоды располагаются рядом с неингибированными анодами (см. раздел 2.2.4.2). [c.392]

    Особый интерес представляет поведение стали в кислотах, ингибированных ПБ-5 и смесью ингибиторов уротропин + И1А при добавке ионов Ее +. Катодная поляризационная кривая, полученная для обеих сред, имеет характерную 5-образную форму, анодный процесс существенно облегчается, стационарный потенциал резко сдвигается в сторону положительных значений (рис. 50, в), а зависимость коррозии стали от деформации резко уменьшается. Судя по поляризационным кривым, ток коррозии должен значительно возрастать (в недеформированном состоянии) при добавлении ионов Ее +. Действительно, коррозионные испытания, выполненные методом измерения потери массы (при 50° С), показали, что добавка ионов Ее + примерно на порядок увеличивает скорость коррозии в обеих средах, тогда как в неингибированной кислоте скорость коррозии возросла совсем незначительно. [c.149]

    Даже в очень низких концентрациях катодные ингибиторы вызывают некоторое ингибирование катодной реакции, что противодействует и анодной реакции. Поэтому в отличие от анодных [c.72]

    Оптимальное ингибирование достигается в том случае, когда концентрация пассивирующего вещества становится выше известной предельной величины. Ниже этой критической концентрации вещество ведет себя как активный деполяризатор, и скорость коррозии в некоторых местах увеличивается — наблюдается точечная коррозия. При очень низких концентрациях катодная поляризационная кривая пересекает анодную в активной зоне. Поэтому необходимо, чтобы в любой части ингибируемой системы концентрация ингибитора была выше критической. При ингибировании коррозии железа с помощью СгОГ, N02 или МоОГ критическая концентрация составляет 10- —10- моль/л. [c.56]

    В работе [60] высказана иная точка зрения на процесс ингибирования неорганическими окислителями. Авторы считают, что ингибирующее действие этих соединений связано не столько с их адсорбционным взаимодействием с металлом, сколько с влиянием продуктов электрохимического восстановления на кинетику электрохимических реакций. Иначе говоря, если скорость анодного растворения металла определяется активностью поверхностных ионов ОН , образующихся при восстановлении окислителей, то скорость коррозии металла и его потенциал зависят от отношения числа электронов, реализующихся в катодном акте, к числу образующихся при этом ионов ОН-. Это отношение названо авторами коэффициентом активации по его величине предлагается судить об эффективности ингибиторов. [c.129]

    Весьма эффективен метод ингибирования в сочетании с протекторной защитой цинком. Он основан на том, что катодная поляризация приводит к сильному подщелачиванию электролита и непрерывному отложению гидроксида цинка. Для того чтобы перевести сталь в активное состояние в воде, необходимо сместить [c.81]

    Из уравнения (16) следует, что в одном из наиболее простых частных случаев ингибирования коррозии влияние органических веществ на кинетику процесса может осуществляться через изменение констант скоростей, соответствующих частным реакциям, их стехиометрии, относительных площадей катодных и анодных участков, тафелевских коэффициентов наклона, доли активной поверхности, величины -потенциала. Довольно часто можно пренебречь изменением величин Ьк и Ьа , считать, что Ql = 2 = 1 и не зависит от присутствия ингибиторов и что г = гме. Тогда уравнение (16) упрощается до [c.137]

    Возможные механизмы ингибирования катодного процесса [c.27]

    Для этого потенциодинамическим методом получали кинетические параметры коррозии стали Е (потенциал электрода при протекании катодного тока к) и Т1н (перенапряжение по водороду) в неингибированной и ингибированной средах при различных pH. Исходя из теории замедленной электрохимической десорбции, экспериментальными критериями оценки механизма реакции катодного выделения водорода принимали величины производных ЭЕ /ЭрНи д Jдp i, которые характеризуют зависимость кинетических параметров катодного процесса от pH среды. [c.161]


    Значения критериев катодной реакции в КС, ингибированной индивидуальными соединениями [c.166]

    В табл. 27 приведены значения критериев катодной реакции выделения водорода на стали 20 в коррозионной среде NA E, ингибированной индивидуальными КСФ. [c.273]

    В табл. 44 представлены численные значения критериев оценки механизма реакции катодного выделения водорода на стали 20 в неингибированной и ингибированной разработанными реагентами среде NA E. [c.300]

    Известно [11. 12], что экспериментальными критериями, определяющими механизм катодного выделения водорода в неингибированных и ингибированных кислых коррозионных средах, являются величины производных йЕк- арН и olg i ./iTpH, которые характеризуют зависимость кинетических параметров реакции от pH среды. Основные особенности механизма выделения водорода подробно проанализированы в [13, 14, 15] и представлены в табл.1. Для теории замедленной электрохимической десорбции при достаточно высоких перенапряжениях значения кинетических параметров реакции не отличаются от та-ковых лля тсорнн замедленного разряда [2 . [c.181]

    Введение ингибиторов не меняет свойств кислоты. Ингибированная кислота действует и на оксиды и на соли, но теряет свою агрессивность по отношению к металлам. Происходит это вследствие того, что ингибиторы адсорбируются на поверхности металла, образуя тонкие пленки. При этом они выводят из строя коррозийные микропары, препятствуя катодному или анодному процессу или обоим вместе. [c.366]

    Для понимания механизма ингибиторного действия по отношению к кислотной коррозии нашел применение электрохимический метод, основанный на данных поляризационных измерений. Введение ингибитора в раствор может привести к задержке скорости катодного процесса разряда ионов водорода на поверхности металла. В случае введения другого ингибитора торможению подвергается анодная стадия ионизации.металла. Очень часто действие ингибитора одновременно направляется на обе стадии коррозионного процесса. Все эти изменения находят отражение на поляризационных кривых, наклон которых становится тем более крутым, чем выше эффективность действия ингибитора (рис. 142). Пунктиром на этом рисунке показаны кривые катодной и гиюдной поляризации в полулогарифмических координатах ля чистого иеингибированного раствора кислоты. Экстраполирован-пап точка пересечения начальных линейных отрезков этих кривых соответствует скорости саморастворения металла в таком растворе (на рис. 141 эт а величина обозначается г ). Ей соответствует стационарный потенциал коррозии Е . Сплошными линиями на рисунке показаны поляризационные кривые, относящиеся к ингибированному раствору. Абсцисса точки пересечения обеих кривых помтрежнему определяет скорость саморастворения металла с, но на этот раз в присутствии ингибитора в растворе. [c.260]

    Представляет, одпаг<о, особый интерес изучение воздействия ингибитора раздельно на катодную и анодную стадии коррозионного процесса. Для этой цели служит особый способ обработки экспериментальных поляризационных кривых. Снимают поляризационные кривые для чистой кислоты и для ингибированного раствора. На основании полученных данных наносят на график в координатах потенциал-логарифм силы тока обе пары поляризационных кривых для чистого и ингибированного растворов. Для последующего анализа имеет значение лишь та часть графика, которая непосредственно примыкает к стационарному потенциалу корродирующего металла. Задаваясь определенным смещением потенциала в сторону более положи-тельн1э1х значений, например, положив АЕ — 0,005 в, по графику определяют скорость анодного процесса, соответствующую потенциалу gT,-f0,005 в. [c.261]

    Аналогичным образом поступают, приняв АЕ = — 0,005 в для определения скорости катодного процесса, соответствующей в данном случае потенциалу — 0,005. Иными словами, находят значение скоростей парциалбных процессов анодного и катодного Направлений при определенном смещении потенциала от стационарного значения. Такие определения выполняются посредством обеих пар поляризационных кривых для чистого и ингибированного растворов, каждый раз отсчитывая смещение потенциала от уровня стационарного потенциала для данного раствора. В результате таких расчетов будем иметь для заданной величины две пары значений скорости парциальных электрохимических процессов — скорость анодного процесса ионизации металла в неингибированной кислоте, ia — скорость ионизации металла в ингибированной кислоте, — скорость катодного процесса разряда ионов водорода в неингибированной кислоте, к — скорость катодного процесса в ингибированной кислоте. [c.261]

    Для повышения качества осаждаемых покрытий и увеличения катодных плотностей тока в цинкатные электролиты предложено вводить различные органические добавки, в основном аминосоединения, например, благоприятное действие на качество покрытий оказывают моно-, ди- и триэтаноламины. Поскольку эти соединения способны образовывать комплексные соединения с цинком, их добавляют в достаточно больших количествах— 20—60 г/л. Электролиты подобного состава иногда называют цинкатноэтаноламиновыми. Из таких электролитов в присутствии блескообразователей можно получать блестящие осадки в интервале плотностей тока 0,1—0,5 кА/м. Установлено также, что при добавлении к электролиту полиэтиленполи-амина (ПЭПА) или полиэтиленимина (ПЭИ) в количестве 1—5 г/л значительно улучшается качество осадков и расширяются допустимые интервалы катодных плотностей тока. Действие добавок заключается в ингибировании процесса электроосаждения цинка при малых плотностях тока, вследствие чего потенциал повышается на 100—150 мВ. При этом до достижения предельного тока становится возможным выделение водорода, пузырьки которого перемешивают прикатодный слой, повышая предельный ток диффузии. [c.287]

    Существенное облегчение анодных и катодных процессов в области малых величин тока может быть связано с комплексообразующим взаимодействием ионов Ре + с молекулами ингибитора — облегчается их десорбция и ослабляется защита (разрыхление пленки ингибитора ПБ-5). При больших плотностях тока ингибитор ПБ-5 катионного тина прочнее соединяется с ка-тоднополяризуемой поверхностью и влияние ионов Ре " нейтрализуется. Облагораживание стационарного потенциала коррозии при введении в ингибированный электролит. ионов Ре + обусловлено как облегчением катодной реакции на начальном участке катодной кривой, так и сдвигом начального потенциала микрокатодов в сторону положительных значений (в направлении к равновесному потенциалу реакции восстановления трехвалентного железа). При э гом в случае смеси ингибиторов уротропин + -Н И1А деформация практически не оказывает влияния на стационарный потенциал. [c.151]

    Маричев В. А. О неоднозначном влиянии катодной поляризации иа скорость роста трещин при коррозиощюм растрескивании высокопрочных сталей в ингибированных растворах хлористого натрия// Физ.-хим. механика материалов. - 1975.-№ 4. - С. 7-12. [c.136]

    Для защиты металлов от атмосферной коррозии применяют защитные покрытия металлические [цинк, алюминий, кадмий, многослойные (Си—N1—Сг)], коисервациоиные смазки, лакокрасочные, фосфатные или комбинации этих покрытий. Перспективно применение атмосферостойкн.ч сталей, легированных катодной присадкой — медью. Все более широкое применение находят ингибиторы атмосферной коррозии, которые применяют для защиты изделий при хранении, трансиортировке в контейнерах или при упаковке в оберточную (ингибированную) бумагу. [c.26]

    Большая часть распространенных в промышленности ингибиторов сероводородной коррозии представляет собой органические азотсодержащие соединения, в частности амины и их производные. Механизм защитного действия, предложенный И. Л. Розенфельдом и являющийся в настоящее время общепринятым, заключается в следующем. Адсорбирующиеся на поверхности металла ионы Н8 образуют диполи, отрицательно заряженные концы которых обращены в сторону коррозионной среды и способствуют адсорбции ингибиторов катионного типа. При этом изменяется строение двойного электрического слоя на границах металл-коррозионная среда и возникает дополнительный положительный скачок электродного потенциала, приводящий к замедлению катодной реакции путем торможения перехода катионов металла из кристаллической решетки в коррозионную среду. Анодная реакция замедляется в результате блокирования образующихся на поверхности каталитических комплексов (РеН8)адс адсорбированными катионами ингибитора. Кроме того, в ингибированных сероводородсодержащих средах образуется [c.327]

    На рис. 8 в качестве примера представлены экспериментальные результаты полученные при ингибировании катодного процесса выделения водорода иа железе и никеле в 1 М НС1 пиридином и бутиРЛиолом [12, 49]. Видно, что при [c.35]

Рис. 8. Зависимости Igv— при ингибировании катодного процесса на железе в ШНС1 пиридином (/) и Ai— Igt при ингибировании катодного процесса на никеле в Ш H I бутиндиолом 2) Рис. 8. Зависимости Igv— при <a href="/info/1628125">ингибировании катодного процесса</a> на железе в ШНС1 пиридином (/) и Ai— Igt при <a href="/info/1628125">ингибировании катодного процесса</a> на никеле в Ш H I бутиндиолом 2)
    Изучение влияния КД, СД и КАС на кинетику электродных процессов в КС показало, что при 61= ЗEк/algiк=0,II8 (Ък - наклон тафелевого участка катодной кривой) значения ЭЕ /ЭрН (см. рис. 2) больше или примерно равны 1, а 31 1к ЭрН больше 0,5, что свидетельствует об изменении кинетики электродных процессов. Очевидно, что лимигируюшая стадия коррозионного процесса в ингибированной КС определяется замедленным разрядом протонов у поверхности металла. В результате снижается наводоро вание стали, поскольку рекомбинация и последующий отрыв молекул водорода протекают значительно быстрее разряда протонов. [c.161]

    Варьирование pH проводили дозированием НС1 в КС, имея в виду, что солянокислотная обработка сред используется с целью интенсификации добычи нефти. Значения критериев катодной реакции (см. табл. 5) определяли путем анализа тафелевых участков поляризационных кривых, снятых в модельной КС, в том числе ингибированной индивидуальными соединениями [c.166]


Смотреть страницы где упоминается термин Катодное ингибирование: [c.272]    [c.272]    [c.110]    [c.112]    [c.291]    [c.373]    [c.376]    [c.373]    [c.376]    [c.373]    [c.376]    [c.166]    [c.27]   
Химия и технология лакокрасочных покрытий Изд 2 (1989) -- [ c.163 , c.172 , c.173 ]

Химия и технология лакокрасочных покрытий (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ингибирование

Ток катодный



© 2024 chem21.info Реклама на сайте