Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение температуры и давления жидкостей и газов

    Давление пара твердых и жидких тел. Уравнение Клаузиуса — Клапейрона. Равновесие чистого вещества со своим насыщенным паром — простейший тип гетерогенного равновесия с участием газовой фазы. Графически это равновесие изображается кривой зависимости давления насыщенного пара от температуры. Давлением насыщенного пара называется равновесное давление, которое создается при Т = onst некоторым количеством вещества в закрытом сосуде, не содержащем посторонних газов. Если при разных температурах измерять давление пара над жидким веществом, то результаты измерений дают кривую испарения, или кипения (рис. 38). Кривая снизу ограничена областью метастабильного состояния переохлажденной жидкости, а сверху — критической точкой. Все кривые испарения имеют общую форму, характеризующуюся выпуклостью к оси тем- [c.159]


    Вязкость газов и жидкостей. Ее изменение от внешних условий (температура, давление). Абсолютная и кинематическая -вязкость и единицы ее измерения. [c.54]

    Законы осмотического давления. Осмометрия. Осмос играет важную регулирующую роль в жизнедеятельности растительных и животных организмов. Клеточные соки имеют низкую концентрацию солей, поэтому вначале огромное число измерений осмотического давления относилось к разбавленным водным растворам неэлектролитов. В 1887 г., применив для обобщения результатов измерений термодинамику и молекулярно-кинетическую теорию, Вант-Гофф пришел к выводу, что между состоянием вещества в очень сильно разбавленном растворе и газовым состоянием того же вещества имеется формальное количественное сходство, несмотря на то что характер движения молекул растворенного вещества в жидкости отличается от движения молекул газа. В частности, Вант-Гофф показал, что 1) при постоянной температуре осмотическое давление прямо пропорционально концентрации или обратно пропорционально молярному объему растворенного вещества (аналогия с законом Бойля) 2) при данной концентрации осмотическое давление пропорционально абсолютной температуре (аналогия с законом Гей-Люссака) 3) при одинаковой температуре [c.203]

    Контрольно-измерительные приборы (КИП) применяются технологами для наблюдения за нормальным протеканием процессов обработки воды. Контроль и управление работой очистных сооружений осуществляют на основании показаний различных типов КИП, которыми оснащается технологический щит в помещении дежурного инженера. Эти приборы по принципу действия могут быть местными и дистанционными, показывающими или самопищущими и т. д. По контролируемым параметрам они подразделяются на приборы для измерения физических параметров среды (приборы количественного учета) и приборы для определения качественных показателей очистки воды и регулирования технологических процессов. К первым относятся приборы для контроля температуры, давления, расхода жидкостей и газов, измерения уровней жидкостей в резервуарах и сооружениях ко вторым — аппаратура для определения цветности, мутности, щелочности, pH воды, содержания в ней отдельных ингредиентов, отмеченных в нормах качества воды для хозяйственно-питьевого водоснабжения, а также приборы для контроля концентрации реагентов, дозы их в обрабатываемой воде, при- [c.174]


    Этот тип термометра основан на принципе измерения давления жидкости, газа или пара, заключенных в систему, состоящую из баллона, капиллярной трубки и мано.метрической пружины. При помощи такого манометрического термометра можно измерять температуры на расстоянии до 50 м. На рис. 68 изображен такой термо.метр. Гильза баллона 7, имеющая резьбу на цапке, ввинчивается в бобышку в месте, где должно производиться измерение температуры. С повышением температуры увеличивается давление в баллоне и по капилляру 2 передается на пружину, свободный конец которой, разворачиваясь. [c.146]

    Действие манометрических термометров основано на использовании зависимости давления жидкости, паров или газов, заполняющих термометр, от температуры. Принципиальная схема манометрического термометра приведена на рис. 13. Как видно из рисунка, термометр представляет собой замкнутую систему, состоящую из термобаллона (чувствительного элемента), манометрической геликоидальной или спиральной пружины и соединительного капилляра. Система заполнена жидкостью или газом и надежно герметизирована. В качестве рабочей жидкости в манометрических термометрах применяют ртуть для измерения температур от —30 до -40 до +400° С, метиловый спирт от —46 до [c.52]

    Манометрический термометр можно рассматривать как систему, состоящую условно из трех элементов термобаллона, капиллярной трубки и манометрической пружины. Вся система-может быть заполнена газом (азот, гелий), жидкостью (ртуть, ксилол, метанол) или паром (этилхлорид, ацетон, бензол, диэтиловый эфир). В зависимости от этого манометрические термометры называют газовыми, жидкостными или паровыми. Термобаллон выполняет роль чувствительного элемента. Он изготовлен в виде цилиндра из стали или латуни. При измерении температуры термобаллон помещают в исследуемую среду. Че г выше измеряемая температура, тем больше давление в термобаллоне. По капиллярной трубке давление передается манометрической пружине и деформирует ее. Поскольку манометрическая пружина является составной частью манометра, то суще-21—673 313- [c.313]

    В производстве полупродуктов больше всего применяются приборы для измерения температуры, давления, разрежения, удельного веса, веса материалов и расхода жидкости и газов. Ниже будет подробно описано устройство и действие этих приборов. [c.177]

    В общем случае, как было указано выще (стр. 334), нам неизвестен вид уравнений состояния различных фаз как многокомпонентных, так и однокомпонентных систем. Исключением являются лишь уравнение Клапейрона — Менделеева, применимое, когда компоненты газообразной фазы подчиняются законам идеальных газов, и ряд более или менее удачно подобранных, но довольно сложных уравнений, описывающих состояние реальных газов и реальных индивидуальных жидкостей. Поэтому единственной возможностью найти зависимость между значениями переменных, определяющих состояние системы, остается метод непосредственных измерений температуры, давления и концентраций или объемов компонентов равновесных систем. Полученные данные используются для построения диаграмм состояния, которые представляют собой графическое выражение исковых закономерностей. [c.337]

    Применяя рассмотренные понятия, можно произвольно выбирать температуру, давление и агрегатное состояние (газ, жидкость, твердое тело), при которых определяется объем веществ, загружаемых в реактор. При этом, конечно, значения объемной скорости и условного времени пребывания будут зависеть от выбранных условий измерения. Если указанные условия соответствуют фактическому состоянию исходных реагентов на входе в реактор, то [c.109]

    Методы измерения температуры и давления уже обсуждались, поэтому рассмотрим теперь вопросы измерения массы используемого газа и объема, который он занимает. Указанные измерения основываются на тех же принципах, что и измерения при низких давлениях, но число их вариантов невелико. Обычно массу измеряют двумя методами прямым взвешиванием или определяют объем газа при низком давлении. Последний метод равноценен определению числа молей при достаточно низком давлении. Его результаты часто выражают в системе относительных единиц, обычно называемых единицами Амага. При этом объем выражается через так называемый нормальный объем, т. е. объем, занимаемый газом при нормальных давлении и температуре (обычно 0° С и 1 атм). Этот объем газа не равен точно объему того же числа молей идеального газа и не совсем одинаков для различных газов. Более подробно единицы Амага обсуждаются ниже. Если плотность жидкости известна очень точно, как, например, для высших углеводородов алифатического ряда, то ее масса может быть определена из точных измерений объема. [c.95]

    Для измерения температуры и давления в измерительных линиях в конце выходного коллектора БИЛ или на специальной катушке (блоке датчиков) устанавливают преобразователи (датчики) температуры и давления, термометр и манометр. Здесь же при необходимости устанавливают индикатор для контроля наличия свободного газа в жидкости (ИФС). [c.35]


    ДИНАМИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТЕЙ И ГАЗОВ В ШИРОКОМ ДИАПАЗОНЕ ТЕМПЕРАТУР И ДАВЛЕНИЙ [c.42]

    Состав оперативных УУСН определяется владельцем. На оперативных УУСН могут отсутствовать некоторые преобразователи и датчики для автоматического измерения параметров и средства обработки информации. Сбор и обработка информации при этом осуществляются вручную. Однако состав УУСН должен в любом случае обеспечивать выполнение необходимого объема измерений и операций измерение объема жидкости, измерение температуры и давления жидкости на БИЛ, измерение содержания воды (на УУСН или в лаборатории), отбор объединенной пробы жидкости по ГОСТ 2517-85, определение содержания свободного газа в жидкости (при необходимости). [c.36]

    Общепринятым коэффициентом растворимости газа является коэффициент Бунзена — а. Буизеновский коэффициент растворимости газа в жидкости при данной температуре равен объему газа, измеренного при 0°С и давлении 1 атм. [c.16]

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]

    Нулевой закон лежит в основе измерения температуры с помощью термометров. Способов прямого измерения температуры нет. Поэтому измеряют те или иные свойства веществ, которые изменяются при нагревании или охлаждении (давление газа, электрическое сопротивление, объем жидкости и др.). [c.24]

    Книга представляет собой практическое пособие по технике исследований при высоких и сверхвысоких давлениях. В ней изложены вопросы подбора материалов и конструирования аппаратов, а также устройство деталей аппаратов высокого и сверхвысокого давления описаны методы создания и измерения высоких давлений и температур, методы перемешивания и циркуляции под давлением подробно описаны методы изучения фазовых равновесий, сжимаемости газов и жидкостей, поверхностного натяжения на границе между жидкостью и газом и двумя газовыми фазами, смачиваемости твердых тел в присутствии газовой фазы и др. Книга снабжена обширной библиографией по перечисленным разделам. [c.2]

    Для измерения давления жидкости и газа с температурой от —40 до 60° С применяют манометры общего назначения с одно-витковой трубчатой пружиной типа М-150, с классом точности не менее 2,5. На резервуарах сжиженного газа перед манометрами необходимо устанавливать трехходовые краны. [c.62]

    Электролизер ФВ-500 выполнен в виде агрегата, включающего всю вспомогательную аппаратуру для первичной обработки (охлаждения и промывки) газов, поддержания теплового, гидравлического и концентрационного режима работы электролизера. Непосредственно на аппарате или на специальном щитке устанавливают приборы для контроля основных показателей его работы амперметр и вольтметр для определения нагрузки и общего напряжения на электролизере термометры для измерения температур электролита, газов и охлаждающей воды в различных точках электролизера тягомеры, измеряющие давление газов указатели уровня жидкости в газосборниках и газовых каналах. [c.127]

    Нужно иметь в виду, что существенную ошибку может вызвать наличие примеси, значительно отличающейся по температуре кипения от основного вещества. Такие примеси обычно достаточно полно удаляются путем ректификации. Некоторые вещества могут загрязняться примесями вследствие контакта с воздухом. Таковы гигроскопичные вещества или соединения, могущие реагировать с кислородом воздуха или с содержащимся в нем углекислым газом. Еслп очистка вещества произведена тщательно и попадание в него загрязнений извне исключено, то исключен основной источник погрешности, так как само измерение температуры и давления, как правило, выполняется достаточно точно. В таких случаях при обработке и проверке данных о равновесии между жидкостью и паром можно не принимать во внимание погрешность в измерении давлений паров чистых компонентов. [c.86]

    Так, при выборе прибора измерения расхода жидкости или газа нужно знать максимальный и минимальный расходы их в единицу времени, температуру, давление, плотность, состав, вязкость при измерении давления — давление и температуру при измерении температуры — температуру и давление при измерении уровня — величину уровня, давление, температуру, плотность среды. [c.347]

    На точность гидрирования оказывают влияние три главных фактора температура, давление и поверхностное натяжение жидкости в электрометрической ячейке. При мертвом объеме 46,5 мл, когда в реакционный сосуд вводят 5 мл растворителя, изменение температуры во время гидрирования на 1 °С эквивалентно 0,16 мл газа. Окончательный результат может быть высоким или низким в зависимости от направления изменения температуры. Для сравнительно больших проб, требующих около 15 мл водорода, погрешность анализа, обусловленная изменением температуры, составит лишь 1%, для малых проб она может достигать 20%. Колебания температуры в опытах Миллера и Де Форда были невелики и ИМ И можно было пренебречь. Точность анализа оставалась высокой. В летнее время колебания комнатной температуры могут достигать в течение дня 10 °С, но во время измерения колебания должны быть малыми. В некоторых случаях приходится пользоваться специальными методами регулирования температуры. [c.328]

    В конце четвертой главы было указано, что если в жидкости растворено какое-либо вещество, то концентрация его у поверхности раздела жидкость — газ будет иной, нежели во всей жидкости. Аналогичное явление имеет место у поверхности раздела газов и твердых тел. Если ввести газ в сосуд с высокой степенью эвакуации, содержащий нелетучее твердое вещество, то при отсутствии химических взаимодействий и при постоянной температуре измеренное давление газа окажется меньше, чем вычисленное из уравнения состояния и известных размеров сосуда. Это говорит о том, что часть газовых молекул удерживается твердой поверхностью. Представим себе такую поверхность ВС (рис. 1) согласно [c.80]

    На опытных гидрогенизационных установках контролируют и регулируют давление, температуру, уровень жидкости в аппаратах и количество газа, циркулирующего в системе. Для контроля за давлением используют манометры. Различают манометры для измерения абсолютного давления, отсчитываемого от нуля (полного вакуума) манометры для измерения избыточного давления, когда абсолютное больше атмосферного дифманометры для измерения разности двух давлений, каждое из которых, как правило, отличается от атмосферного. Для измерения атмосферного давления применяют барометры, для измерения давления, близкого к нулю, - вакуумметры. [c.103]

    Измерение расхода газа-носителя с помощью мыльно-пленочного расходомера следует считать достаточно надежным методом, если вводится поправка на давление пара находящейся в расходомере жидкости и на температуру. Объемная скорость газа-носителя на выходе из колонки [c.21]

    На заводах, производящих азотные удобрения, применяют приборы для измерения расхода газов, жидкостей, пара, а также для измерения температуры, давления и разрежения в аппаратг х. Кроме того, применяются приборы, которые автоматически выполняют химические анализы, например определяют состав а-зов, концентрацию кислот, щелочей и пр. [c.226]

    Уравнения, описывающие различные газовые законы, представляют собой строгие математические выражения. Измерения объема, давления и температуры, более точные, чем проводились Бойлем и Гей-Люссаком, показывают, что газы лишь приближенно подчиняются этим уравнениям. Свойства газов значительно отклоняютск от так называемых идеальных свойств, когда газы находятся под высоким давлением или при температурах, близких к температурам кипения соответствующих жидкостей. Таким образом, газовые законы, вернее законы состояния идеального газа, достаточно точно описывают поведение реальных газов только при низких давлениях и при температурах, далеких от температуры кипения рассматриваемого вещества. В разд. 3-8 мы вновь обратимся к проблеме уточнения простого закона состояния идеального газа, с тем чтобы он мог правильнее учитывать свойства реальных, неидеальных газов. [c.132]

    Из скважины добывается 70,8 тыс. м /сут газа прп давленпи 240 кгс/см п температуре 45° С. Газ отпускается потребителю прп давлении 70 кгс/см . Имеется лабораторный анализ состава газа и жидкости, отобранных из сепаратора высокого давления, а также соотношение газ — жидкость (углеводороды) в этом сепараторе (объем жидкостп должен быть измерен при давлении сепарации). [c.69]

    Температуру внутри трубки измерить трудно, поэтому в случае однорядного расположения катализатора приходится удовлетвориться измерением температуры в конце слоя. Для этого термопару можно ввести снизу. Карман термопары может также служить как опора слоя катализатора. Температуру в рубашке, окружающей трубку с катализатором, можно поддерживать постоянной, регулируя давление инертного газа вверху обратного холодильника. Нисходящая труба (правая на рис. 2) заполнена жидкостью, а в рубашке реактора жидкость перемешивается поднимающимися пузырьками п ара. Пар частично образуется в исиарителе, но основное его количество получается при испарении жидкости, поглощающей тепло экзотермической реакции в рубашке. Смесь жидкости и пара поднимается вверх под действием разности пшотностей, обеспечивая циркуляцию. Перенос тепла в рубашке происходит в режиме кипения и поэтому очень интенсивен, а лимитирует его коэффициент теплопередачи пограничного слоя у внутренней поверхности трубки с катализатором. Скорость циркуляции в термосифоне может быть в 10—15 раз выше скорости испарения заполняющей его жидкости. Это исключает значительную разницу температур и поддерживает температуру рубашки постоянной. В данном случае допущение о постоянной температуре стенки трубки с ка-тал 1затором достаточно обоснованно. При включении нагревания термосифона температура его нижней части может быть на 20—30°С выше, и о начале циркуляции можно судить по исчезновению разности температур между низом и верхом рубашки. [c.68]

    Методы и приборы для измерения поверхностного натяжения жидкости. Метод наибольшего давления образования и отрыва газового пузырька. Метод основан на том, что поверхностное натяжение жидкости на границе с газом (воздухом),содержащим ее насыщенный пар, или с другой жидкостью прямо пропорционально наибольшему давлению, необходимому для выдавливания пузырька газа нз капиллярного кончика в жидкость, находящуюся при постоянных температуре и давлении (рис. 6, а). В сосуд 11 диаметром около 3 см с боковым ответвлением 6 наливают исследуемую жидкость. Сосуд закрывают пробкой 8. Б пробку вставляют стеклянную трубку 10, заканчивающуюся остро обрезанным концом с внутренним диаметром около " 0,1 мм. Капилляр ный конец должен только смачиваться меиис-ком жидкости, т. е. жидкость 13 в капилляре должна едва приподниматься вверх. Сосуд с жидкостью помещают в стеклянный термостат или в стеклянную рубашку 12 с ответвлением 14, через которую 15—20 мин до измерений и во время их пропускают воду с заданной температурой из термостата. Контролируется температура [c.26]

    Изобутилен образует водонерастворимые комплексы с солями ртути. Оксид ртути растворяют в минимальном количестве 70%-й азотной кислоты при нагревании затем жидкость растворяют до соответствующего объема и осторожно нейтрализуют NaOH (до помутнения раствора). Титр устанавливают сравнительным титрованием раствором роданида калия известной концентрации индикатор - соль Fe . Отмеренное при фиксированной температуре и давлении количество газа абсорбируют точно измеренным объемом реактива. Реакционную массу переносят в стакан, нагревают до 373,2 К, выделившийся осадок после охлаждения раствора до комнатной температуры отфильтровывают на стеклянном фильтре и промывают бидистиллированной водой до тех пор, пока из промывной воды не перестанет выделяться осадок от прибавления сульфита аммония. Оставшийся на фильтре осадок растворяют в 10 мл 70%-й HNO3, Hg окисляют небольшим количеством КМПО4 до Hg , избыток окислителя [c.31]

    Были описаны различные специальные типы низкотемпературных колонок. Кистяковский и соавторы [36] и Лукас и Диллом [35] сконструировали приборы, особо пригодные для разделения и очистки значительных количеств веществ, кипящих около 0°. Бут и сотрудники [17, 19, 57] разработали прибор для очистки, обратив особое внимание на приспособления, необходимые для измерения плотности и давления пара. Босчарт [58] рекомендует обратную-разгонку для определения углеводородов в образцах природного газа. Пределы рабочих температур этой колонки от - -200° до —170°. Компоненты собираются в виде жидкости в кубе, начиная с наиболее высококипящего. Аске-вольт и Эграсс [59] применили дополнительную колонку для выделения небольших количеств газообразных веществ из нефти. Колонка засыпалась лепешками едкого натра. Это позволяло удалять воду и сероводород, когда летучие части из образца перегонялись через дополнительную колонку в куб обычной низкотемпературной колонки. Подбильняк [60] описал прибор и способ работы, па которому образец приводят к равновесию в колонке при полном орошении, беря столь малое количество смеси, что в кубе практически не остается какого-либо вещества. Анализ был основан на измерении температуры вдоль колонки. [c.376]

    Общепромышленные ротаметры изготовляют в соответствии с ГОСТ 13045—67 для измерения расхода плавноменяющихся однородных потоков, чистых и слабо загрязненных жидкостей и газов с дисперсными включениями инородных частиц. Рабочее давление измеряемой среды не должно превышать 32 МПа, температура измеряемой среды для стеклянных ротаметров не должна быть больше 50 °С, а для остальных—150 °С. Стеклянные ротаметры нетрудно изготовить для измерений расходов агрессивных жидкостей и газов. [c.63]

    Из всех жидкостей лучшей является ртуть, так как она не смачивает стекла и ее сравнительно легко получить химически чистой. Пространство в капилляре термометра над термом етрической жидкостью заполняется инертным газом под давлением до нескольких атмосфер. Например, в термометрах, предназначенных для измерения температур до 600 °С, пространство заполняется газом под давлением до 20 атм. [c.147]

    Момент фазового перехода можно определить не только визуально, но и любыми методами, позволяющими установить зависимость изменения какого-либо свойства системы от изменения температуры, давления, объема и т. д. Например, введя в аппарат определенные количества л<идкссти и газа, начинают повышать давление в системе, не изменяя количеств веществ, т. е. уменьшают объем системы. Отмечая на графике зависимость какого-либо из свойств системы или фазы (объема, плотности, коэффициента преломления и др.) от давления, легко заметить, что эта зависимость будет представлять собой плавную кривую до тех пор, пока не изменится число равновесно существующих фаз. В этот момент на кривой давление—свойство появится перелом. Давление, соответствующее этому перелому при растворении газа в жидкости, будет давлением, при котором исчезает последний пузырек газа. Аналогичные результаты можно получить, если повышать давление, вводя в аппарат дополнительные точно измеренные количества жидкости или газа. Зная исходный состав газовой фазы, можно, повышая давление в системе, определить момент выделения первой капли жидкости, т. е. определить точку росы. [c.288]

    Во многих методиках исследования фазовых равновесий и объемных соотношений в качестве запираюш,ей и передающей давление жидкости применяют ртуть. Хотя ртуть и обладает некоторыми ценными свойствами, применение ее во многих случаях нежелательно. Ртуть опасна для здоровья, а при высоких температурах ее выброс из аппаратов высокого давления приводит к мгновенному испарению и отравлению атмосферы. Кроме того, ртуть растворяется в сжатых газах . Исследования показали, что растворимость ртути в бутане, сжатом до 400 ат, и при температурах от 200 до 300 °С больше рассчитанной по давлению насыщенного пара при.мерно в 4 раза. Это обстоятельство необходимо учитывать при проведении точных измерений в условиях высоких температур и средних давлений, когда концентрация ртути в газовой фазе может быть значительной. [c.368]

    Методы монотонного нагрева для исследования теплофизических свойств жидкостей и газов получили более глубокое развитие в работах автора настоящей монографии [133—140]. Им разработаны общие теоретические основы методов измерения коэффициента теплопроводности жидкостей и газов, а также изобарной теплоемкости жидкостей в режиме монотонного нагрева при высоких температурах и давлениях. Расчетные формулы получены с учетом температурной зависимости теплофизических свойств и переменной скорости нагрева в рамках нелинейной теории теплопроводности. На основе разработанных методов сконструирована экспериментальная аппаратура, позволивщая исследовать теплопроводность и изобарную теплоемкость различных классов жидкостей в широком диапазоне температур и давлений. [c.41]


Смотреть страницы где упоминается термин Измерение температуры и давления жидкостей и газов: [c.127]    [c.401]    [c.223]    [c.27]    [c.49]    [c.135]    [c.408]    [c.345]   
Смотреть главы в:

Слесарь-газовщик -> Измерение температуры и давления жидкостей и газов




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости

Давление жидкостей

Давление измерение

Динамические методы измерения теплофизических свойств жидкостей и газов в широком диапазоне температур и давлений

Температура газов

Температура измерение



© 2024 chem21.info Реклама на сайте