Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия природных соединений

    Этот метод давно зарекомендовал себя как наилучший при исследовании с помощью ИК-спектроскопии природных высокомолекулярных органических соединений. Было отмечено, что во всех других методах получению правильных результатов мешают такие факторы, как рассеяние света, межмолекулярное взаимодействие и смеш ение частот вследствие различий в диэлектрической проницаемости или поляризуемости окружаюп ей среды. Многие из этих факторов имеют место и при изучении асфальтенов и, по всей видимости, могут даже оказаться полезными при сравнительном сопоставлении спектров, полученных последовательно методами твердая пленка — паста — прессованные пластинки — разбавленные растворы. Это направление можно считать важным в методическом отношении еще и по той причине, что, по-видимому, в [c.210]


    Развитие инструментальных методов - газо-жидкостной хроматографии и ЯМР-спектроскопии - позволило создать принципиально новый подход к определению энантиомерной чистоты, не требующий оптически активного эталона сравнения. Именно этим методам, их основам и конкретным применениям посвящена главная часть настоящей книги. Она знакомит читателей с использованием современных физико-химических методов для определения пространственного строения органических молекул, и более точно ее можно было бы назвать "Методы определения энантиомерной и диастереомерной чистоты". Впервые в одном издании обстоятельно изложены все современные методы, применяемые для этой цели, что делает эту книгу интересной и полезной не только для тех, кто работает с оптически активными соединениями, получает их выделением из природных соединений, расщеплением рацематов или асимметрическим синтезом, но и для тех, кто не имеет дела с оптической изомерией,, а работает со смесями диастереомеров. А это относится практически к любому химику-органику. [c.6]

    Хотя явление оптической активности известно давно [1], первыми спектральными методами, которые стали широко использоваться в органической химии, явились ультрафиолетовая и инфракрасная спектроскопия. Дисперсия оптического вращения и феноменологически родственный оптический круговой дихроизм только недавно привлекли внимание химиков и биохимиков и нашли широкое применение для решения аналитических, структурных и стереохимических проблем. Дисперсия оптического вращения (ДОВ) и круговой дихроизм (КД) — новые, очень важные физические методы, поскольку они помогают разобраться в широких аспектах, с которыми связаны многие области знания. Применение этих методов в современной науке очень велико и охватывает структурные и стереохимические проблемы в органической хилши (например, в химии природных соединений), конформационные проблемы в биохимии (спиральность белковых цепей), пространственные аспекты в неорганической химии и химии металлоорганических соединений (например, строение лигандов), а также такие фундаментальные проблемы, как обнаружение оптической активности в космическом пространстве (например, исследование метеоритов и т. д.). Эти оптические методы находятся в настоящее время в стадии развития, и исследование эффекта Коттона почти каждого прежде не изученного хромофора является важным вкладом в развитие стереохимии. Однако исследования в области ДОВ и КД встречают некоторые затруднения, из которых важно упомянуть два следующих. Первое — это технические трудности. В настоящее время возможны измерения в области 180—700 ммк, однако многие хромофоры поглощают ниже 180 ммк. Вторая, более существенная трудность даже когда с помощью имеющихся приборов удается исследовать оптически активный хромофор, иногда нелегко сделать структурные и стереохимические выводы из-за отсутствия теоретических обоснований (например, эффект Коттона, вызываемый п л -переходом в а,р-ненасыщенных кетонах). Отсюда вытекает настоятельная необходимость более [c.101]


    После 1940 г. произошел качественный скачок в разработке новых методов разделения, пригодных для разделения даже микроколичеств близких по строению веществ. Стало возможным, например, выделение минорных компонентов из экстрактов природного происхождения с помощью различных видов хроматографии, в частности, ионообменной хроматографии и гель-фильтрации. Со все возрастающей интенсивностью увеличивается число известных структур природных соединений, что обусловлено развитием спектроскопических методов исследования (УФ- и ИК-спектроскопии, спектроскопии ЯМР и масс-спектрометрии), а также рентгеноструктурного анализа. [c.342]

    Стригущий В. П. Особенности ЭПР-спектроскопии природных высокомолекулярных соединений.— Химия твердого топлива, 1981, № 5, с. 21—27. [c.196]

    Интенсивное применение в течение последних двух десятилетий физических методов, в частности спектроскопии в ультрафиолетовой и инфракрасной областях, а позднее ЯМР-спектроскопии, способствовало большому прогрессу и, возможно, даже произвело революцию в области установления структуры органических молекул, особенно молекул природных соединений. В противоположность указанным выше методам масс-спектрометрии уделяли очень мало внимания как в химии природных соединений, так и в органической химии в целом, несмотря на то что за последние десять лет начали выпускаться масс-спектро-метры очень высокого качества. Такое положение создалось, вероятно, частично потому, что масс-спектрометры благодаря высокой точности и хорошей воспроизводимости масс-спектров являются превосходными точными приборами для количественного анализа и их широкое ирименение для этих целей не стимулировало поисков новых областей применения метода. Большинство химиков-органиков до сих пор еш е рассматривает масс-спектрометрию как метод количественного анализа газообразных или низкокипящих углеводородов, определения стабильных изотопов в газообразных продуктах деградации и, конечно, как метод определения молекулярных весов. [c.300]

    Флуоресцентная спектроскопия (см. обзор Уэста [385] в IX томе настоящей серии монографий) может оказаться полезной при структурных исследованиях, хотя в области природных соединений она до сих нор мало применялась. [c.454]

    Вместе с тем спектроскопия ЯМР нашла свое призвание в некоторых ранее малоосвоенных областях, таких, как биохимия и природные соединения, ионы, промежуточные комплексы, а также оказалась весьма полезной при изучении металлоорганических, фосфороорганических и других соединений. Внедрение спектров ЯМР в эти области уже привело к получению уникальных результатов. [c.8]

    Одна из наиболее важных областей применения спектроскопии ЯМР — исследование природных соединений и биополимеров. Исследование молекулярной структуры этих весьма сложных систем с помощью спектроскопии ПМР оказалось далеко не исчерпывающим. [c.198]

    Рассмотрим ряд примеров, заимствованных из текущей литературы, которые иллюстрируют различные направления применения спектроскопии ЯМР при установлении структуры природных соединений. [c.264]

    К счастью, именно при решении вопросов строения соединений такого типа масс-спектрометрия оказалась наиболее многообещающим методом. Поэтому вместо обзора применения других видов спектроскопии к природным соединениям сосредоточим здесь внимание на масс-спектрометрии, которая до сих пор лишь вскользь упоминалась в гл. 2.  [c.538]

    ИК-спектроскопия имеет важное значение в изучении структуры природных соединений. Поскольку природные ацетиленовые соединения в большинстве своем имеют сравнительно простое линейное строение, их ИК-спектры относительно просты. Однако при правильной интерпретации полосы поглощения полиацетиленовых соединений в ИК-области могут служить надежным доказательством наличия в их молекуле обычных функциональных [c.29]

    При исследовании природного соединения клеродина первоначально чисто химическими способами было установлено лишь наличие в молекуле двух ацетатных групп, эпоксидного мостика", дигидрофуранового остатка. Робертсон на основе рентгенографических данных исправил формулу соединения, показав, что его состав не СгхНзоОв, а С24Н37О7. Методами ИК-спектроскопии и спектроскопии ядерного магнитного резонанса (ЯМР) был затем изучен характер функциональных групп молекулы. В результате кле-родину была приписана следующая структурная формула [c.21]

    Можно выделить три этапа в становлении и развитии спектроскопии ЯМР Первым этапом можно считать период от первых публикаций до появления первых промышленных спектрометров с Фурье-преобразованием (1957—1968 годы). Вторым этапом можно считать время, когда исследователи измерили спектры практически всех важных классов органических молекул (1969—1972 годы). С 1973 года, когда спектроскопия ЯМР нашла признание и в некоторых малоосвоенных методом ЯМР областях (таких, как биохимия и природные соединения, при исследовании ионов, радикалов и промежуточных комплексов, а также при изучении полимеров, ме-таллорганических, фосфорорганических и других соединений), начался третий этап ее развития, характеризующийся крупными достижениями. [c.137]


    Во всех природных соединениях железа в нем содержится 2,2% изотопа Ре Это дает возможность изучать НЬ и МЬ методом спектроскопии Мёссбауэра (см. [10]). Образец подвергается действию пучка монохроматических улучей, испускаемых радиоактивным Ре (получаемым из Со ). Если сообщить [c.423]

    Использование спектроскопии для идентификации функциональных групп на основании положения максимумов поглощения, как в инфракрасной области, в ультрафиолетовой области применяется редко по двум причинам. Во-первых, наиболее важные функциональные группы поглощают слабо или вообще не поглощают, а во-вторых, спектры большинства молекул сравнительно просты. Обычно они имеют только один или два максимума вместо 10 или 20, как это характерно для ИК-спектров. Поэтому неизбежно, что многие типы функциональных групп поглощают в одной и той же области. Тем не менее изучение ультрафиолетовых спектров в ряде случаев позволяет опытному исследователю выявить ранее не обнаруженные функциональные группы обычно это ароматические и гетероциклические кольца, прису1С гВующие в природных соединениях неизвестной структуры. Типичным примером может служить обнаружение с помощью ультрафиолетовых спектров нитрофенильных групп в хлоромицетине. Однако в общем, прежде чем использовать ультрафиолетовые спектры, необходимо иметь некоторые сведения о возможных функциональных группах. Конечно, часто можно однозначно сделать заключение об отсутствии функциональных групп, поглощающих в ультрафиолетовой области. [c.483]

    Наиболее важной областью применения спектроскопии лшх—V/ л -яяется исследование с ее помощью сложных природных соединений и биополимеров (использование спектроскопии ПМР в этих случаях чаще всего оказьшается мало информативным). Так, например, для моносахаридов удается полностью отнести сигналы для а- и Э-форм. Для холестерина, содержащего 27 неэквивалентных атомов углерода, удалось получить полностью разрешенный спектр с отнесением всех сигналов. [c.131]

    Спектроскопия ЯМР С оказалась весьма перспективной для изучения мест внедрения биосинтетической метки. При использовании для этих целей радиоактивного изотопа С необходимо перед анализом проводить химическую деструкцию, далеко не всегда однозначно идущую. В случае использования изотопа С просто сравниваются спектры природного соединения и соединения, биогенетически обогащенного добавкой изотопсодержащего низкомолекулярного компонента ( СОд, СНдССЮН, СНд СООН и т. п.). Место внедрения изотопа С после этого ясно видно по возросшей интенсивности соответствующего сигнала в спектре. [c.131]

    Тонкослойная хроматография (ТСХ) —один из наиболее эффективных, простых и универсальных методов разделения микроколичеств многокомпонентных смесей неорганических и органических соединений. Этот метод нащел щнрокое применение в биохимии, в анализе природных соединений, фармакологии. В органической геохимии ТСХ используют при исследовании липидов, стероидов, для разделения сернистых соединений нефти [46], ароматических УВ, фенолов и т. д. [4, 88]. Хроматография в тонком слое предполагает не только фракционирование сложных смесей на классы соединений, но и разделение внутри одного класса на индивидуальные компоненты. При исследовании сложных смесей применение ТСХ особенно эффективно в сочетании с ГЖХ и физическими методами ИК-, УФ-спектроскопией и масс-спектрометрией. Хроматография в тонком слое представляет собой метод, при котором раствор разделяемых веществ пропускается через тонкоиз-мельченный активированный сорбент, нанесенный на одну сторону стеклянной пластинки, в определенном направлении на определен-цое расстояние. Поскольку анализируемые компоненты, содержащиеся в жидкой фазе, по-разному удерживаются сорбентом, при движении растворителя происходит разделение (рис. 44). [c.114]

    Введение галоида, особенно брома, в а-положение к кетогруппе в природном соединении может оказаться весьма полезным. Обычно по данным ИК-спектроскопии можно определить ориентацию брома (см., однако [3456]), а зная ее, можно изучить поведение галоида в условиях отщепления по механизму Е2, что даст некоторые сведения о пространственном окружении карбонильной группы. Однако на практике этот подход к определению стереохимии природных продуктов критически не применялся. Следует, вероятно, упомянуть, что хорошо известная затрудненность дегидробромирования 4р-бромкопростанонов ХС разных типов может быть объяснена неблагоприятным г ис-расположением отщепляющихся групп [48]. В тех случаях, когда транс-диакси-альная ориентация возможна, как, например, для Ир-бром-12-кето-З-ацетоксихоланата X I, отщепление легко протекает в го- [c.549]

    Наиболее полное описание колебаний различных групп приведено в книге Беллами [11] и в главе, написанной Джонсом и Сэндорфи в книге [85] специальные разделы данной области рассмотрены в обзорах других авторов [12, 21, 27, 31, 35, 59, 76, 80, 98]. Число статей, содержащих данные по инфракрасным спектрам, весьма велико, и здесь невозможно рассмотреть все аспекты темы. В этой главе внимание сконцентрировано почти исключительно на выполненных в последнее время работах по изучению молекулярной структуры некоторых типов природных соединений. Читателю, только начинающему заниматься инфракрасной спектроскопией, будет полезно наряду с этой главой прочесть соответствующие разделы монографии Беллами [И], а также главу Джонса и Сэндорфи в книге [85]. [c.159]

    В обзоре подобного размера не только невозможно осветить все разделы данной темы, но даже трудно упомянуть о всех применениях метода инфракрасной спектроскопии, о которых время от времени сообщается в работах по исследованию природных соединений. Приведенный материал можно рассматривать только как дополнение к гораздо более полным обзорам Беллами [11J и Джонса и Сэндорфи [85]. [c.200]

    Внедрение новых методов исследования, особенно газовой хроматографии с использованием высокоэффективных капиллярных колонок и программирования температуры, методы хромато-масс-спектроскопии, синтез большого числа индивидуальных углеводородов — все это позволило решать такие проблемы химии насыщенных углеводородов, выполнение которых было невозможно еще лет 10—12 назад. Успехи в анализе сложных углеводород ных смесей нашли свое отражение в исследованиях состава и строения углеводородов нефти. Именно в эти годы в работах отечественных и зарубежных ученых была показана сложность и своеобразность строения нефтяных углеводородов, а также была найдена связь между нефтяными углеводородами и важнейшими природными соединениями (изопреноиды, стераны, тритерпаны и т. д.). Особенно большие успехи были достигнуты в изучении алифатических углеводородов нефтей. [c.3]

    Идентификация олефиновых связей в органических молекулах представляет собой одну из самых плодотворных областей применения ЯМР-спектроскопии к структурным проблемам. Ранними примерами применения метода ЯМР к решению такого рода проблем в химии природных соединений являются работы Даубена и Ханса [44], посвященные изучению реакций с участием ф-сан-тонина, а также работы Робертса [19] и Эттлингера [53] по исследованию структуры кислоты Фейста. Спектры ЯМР дают информацию относительно всех типов олефиновых связей выводы делают на основании характеристических частот олефиновых протонов или по данным резонансного поглощения соседних протонов, в частности, протонов метильных групп (см. выше). В то время как инфракрасная спектроскопия способна дать достаточно надежную информацию только в отношении экзоциклических и л ис-дизамещенных олефиновых связей, пользуясь методом ЯМР, можно получить сведения о числе олефиновых протонов, о типе двойной связи, а во многих случаях также о геометрической конфигурации групп, расположенных вокруг двойной связи. Поскольку двойная углерод-углеродная связь дезэкрани-рует соседние протоны, эти протоны дают сигналы в области 4,5—8,0 м. д., хорошо отличимые от сигналов обычных, рассмотренных ранее типов водородных группировок. [c.239]

    Физическими методами исследования органического вещества, особенно новейшими — ЭПР-, ЯМР-, ИК-, электронной и масс-спектроскопией — пронизана вся книга, и обычно рассмотрение определенного класса веществ начинается со знакомства читателя с энергетическими и спектральным свойствами изучаемого класса. В книге этим методам посвящена гл. 2. Конечно, большое внимание автор уделяет механизмам реакций, этому знамению времени в химии, но, к счастью, делает это настолько тактично, что вещество, его многообразная индивидуальность, не только не исчезает и не расплывается, но ярко запечатлевается. В первых 26 главах, составляющих почти три четверти книги, систематически излагается материал органической химии и методы органической (и физикоорганической) химии. Начиная с гл. 27, посвященной гетероциклам, и далее этот материал приводится по необходимости выборочно. Вместе с тем эта последняя четверть книги, включающая такие ярко написанные и содержащие совсем новый материал главы, как Красители, цветная фотография и фотохимия (гл. 28), Полимеры (гл. 29), Химия природных соединений (гл. 30), может быть, слишком лаконична. [c.6]

    В предыдущих разделах были рассмотрены оптические свойства некоторых ароматических алкалоидов. Этот класс природных соединений проявляет очень различные спектральные свойства, так что УФ-спектроскопия уже давно получила признание как метод установления структуры природных алкалоидов 140]. Если переход в ультрафиолетовой области для ароматических алкалоидов является оптически активным, то иногда можно сделать важные выводы о стереохимии этих соединений, как было показано выше на примере индоленинов. Ниже будут рассмотрены аналогичные примеры, иллюстрирующие, какое большое значение имеют и будут иметь методы ДОВ и КД в химии природных соединений (например, алкалоидов), поскольку эти методы часто дают информацию, обычно недоступную при исследовании другими методами. [c.139]

    Главная задача спектроскопии ЯМР — определение структуры чистых органических соединений. Метод особенно важен для изучения конфигурации основной цепи, изомерии и пространственной геометрии молекулы. Последнее из указанных применений связано с присутствием в органических молекулах магнитно-анизотропных групп, пространственное расположение которых сильно влияет на вид спектра. К таким группам относятся ароматические и трехчленные кольца, карбонильные группы, ацетиленовые инитрильные группы. Возможность сравнительно простого определения пространственного строения определила широкое применение ЯМР-спектроскопии для исследования природных соединений. ЯМР-спектроскопия неоценима при определении цис-транс-шгои жа относительно двойной связи, изомерии производных бензола, состава смеси кето-енолов и других таутомеров. Основные ограничения метода определяются сложностью интерпретации спектра при наличии большого числа магнитных ядер, а также возможностью подбора подходящего растворителя (не поглощающего в области резонанса исследуемого вещества). Первое ограничение в значительной степени преодолевается совершенствованием техники математического анализа спектров и применением специальных методов. К последним относятся двойной ядерный магнитный резонанс, изотопное замещение, использование приборов с более высокой напряженностью магнитного поля, исследование резонанса на ядрах при природном содержании и др. (гл. IV). Второе же ограничение устраняется использованием набора растворителей, в том числе изотопнозамещенных (главным образом, дейтерированных) соединений. [c.47]

    Д. Р. Дайер, Приложения абсорбционной спектроскопии органических соединений, Изд. Химия , 1970. Обзорная монография, посвященная возможностям применения ультрафиолетовой, инфракрасной спектроскопии и спектров ядерного магнитного резонанса в органической химии. В главе, касающейся электронной спектроскопии, рассмотрены основные закономерности спектров соединений, содержащих простые и сопряженные хромофорные группы и ароматические системы, встречающиеся в природных соединениях. Приведены упражнения по спектраль-но-структурным корреляциям. [c.96]


Библиография для Спектроскопия природных соединений: [c.147]    [c.147]   
Смотреть страницы где упоминается термин Спектроскопия природных соединений: [c.700]    [c.40]    [c.79]    [c.201]    [c.445]    [c.139]    [c.76]    [c.40]    [c.445]    [c.26]    [c.24]    [c.239]    [c.5]    [c.24]    [c.264]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия соединений



© 2024 chem21.info Реклама на сайте