Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформирование и кристаллизация

    Как следует из данных табл. 4, предел прочности при растяжении при 100 °С для ненаполненных резин, получаемых на основе некоторых каучуков регулярного строения, выше, чем для наполненных резин на основе некристаллизующихся каучуков. Это объясняется тем, что в условиях неравновесного деформирования происходит кристаллизация каучука. Образующиеся при этом физические узлы (кристаллиты) достаточно стабильны до 100°С и выше, что и вызывает увеличение прочности резин. [c.88]


    Из-за неровностей и трещин, имеющихся на гранях, ребрах и углах кристаллов, их поверхностная свободная энергия распределяется неравномерно. Присоединение молекул из раствора при росте кристаллов происходит прежде всего по углам и ребрам, на которых поверхностная энергия максимальна. При росте граней кристаллов исчезают те из них, которые имеют большую скорость роста, т. е. обладают повышенной энергией. В случае регенерации деформированных кристаллов по той же причине, прежде всего рост начинается с острых вершин и ребер поврежденных мест. При быстрой кристаллизации из растворов часто образуются иглы или дендриты, что объясняется быстрым ростом мест с наибольшей энергией. [c.107]

    В заключение следует напомнить, что эластомеры обладают более высокой прочностью, если они имеют многофазную микроструктуру [183, 184, 186, 188, 195]. Подобные результаты можно получить путем выбора подходящих наполнителей (черная сажа, песок), путем кристаллизации при деформировании или путем смешивания или сополимеризации с несовместимым полимером. Возможная роль ориентации цепи, ее нагружения и разрыва в этих случаях была рассмотрена в разд. 7.2, гл. 7. [c.313]

    Зона деформированного металла, определяющая возможный припуск на обработку охватывается зоной металла шва. В зоне припуска структура и свойства всего металла шва определяются первичной кристаллизацией, поэтому последующая механическая обработка после резания на ножницах лишена оснований. [c.114]

    II, однако реализация настоящего фазового контакта возможна только при атомной гладкости (контакт двух слюдяных пластинок) или требует пластического деформирования либо предварительного плавления или испарения и конденсации с последующей кристаллизацией. Очень редко контакт двух твердых тел геометрически столь же совершенен, как контакт двух флюидов. Только в случае I возможно прямое измерение поверхностного натяжения межфазной границы. В случае III это с некоторым приближением достижимо, если в определенной температурной области предел текучести сильно снижен [11. [c.7]

    Соответствующая диаграмма имеет вид, представленный на рис. 4. Теперь растянем расплав, значение энтальпии Нам существенно не изменится, а значение энтропии 5ам уменьшится, так как деформированным клубкам отвечает меньшее число состояний, чем недеформированным. Тогда кривая 1 заменится на кривую Г, а точка перехода сдвинется в область более вы- Соких температур. Такой эффект (кристаллизация каучуков при растяжении) хорошо известен. [c.24]


    Посвящена дифференциальной сканирующей калориметрии, используемой для физического и физикохимического изучения полимеров, технологического контроля и экспресс-анализа полимеров, технологического контроля и экспресс-анализа полимерных соединений и материалов на их основе. Приведены результаты применения метода для изучения молекулярного движения, релаксационных свойств, процессов плавления и кристаллизации полимеров, химических процессов в них, структуры и свойств облученных и деформированных полимеров и некоторых других характеристик материалов. [c.255]

    Причинами механохимической деструкции ПИ являются, с одной стороны, высокие напряжения, возникающие при кристаллизации в процессе деформирования, а с другой — резонансные явления в алкильных радикалах,. приводящие к ослаблению связи С—С в цепи главных валентностей. [c.77]

    На последующей стадии стекло нагревают с достаточно малой регулируемой скоростью так, чтобы рост кристаллов не сопровождался деформированием изделий. Верхний предел температуры 2 кристаллизации должен быть таким, чтобы достигнуть кристаллизации с максимальной скоростью, но без деформации материала. [c.357]

    У цветных металлов и высоколегированных сталей эффект обработки давлением особенно сильно сказывается на ослаблении звука. Перед обработкой давлением часто даже при небольших толщинах эти материалы являются непроницаемыми для звука, а уже после первого прохода при прокатке они становятся хорошо проницаемыми. Поэтому сильные помехи в таких веществах создают те участки готового изделия, где литая структура, ввиду недостаточной степени деформации, еще не полностью разрушена. Особое состояние кристаллизации, например аустенитная структура, само по себе значения не имеет важно только то, является ли эта структура литой или деформированной. Так, например, материал аустенитных труб является очень хорошо проницаемым, однако аустенитные свар- [c.136]

    Задержанная высокоэластическая деформация может сохраняться вследствие развития кристаллизации и благодаря тому, что при температуре 253 К новые конформации макромолекул фиксируются и самопроизвольное сокращение при этой температуре затрудняется. С повышением. температуры усадки увеличивается интенсивность протекания релаксационных процессов, приводящих к дезориентации полимерных цепей, а следовательно, и к усадке деформированных образцов. [c.202]

    Существенным является образование кристаллов и ориентация материала в процессе деформации. Поэтому факторы, препятствующие, например, кристаллизации при растяжении, отрицательно влияют на прочность. При быстрых деформациях кристаллизующихся каучуков, когда кристаллизация не успевает произойти в должной мере, наблюдали [368, с. 565] уменьшение работы разрыва. Если полимеры лишены способности к кристаллизации в процессе деформирования, то для их прочности особое значение приобретают факторы, влияющие на ориентацию. [c.210]

    Рассчитанные значения температурных скачков примерно согласуются со значениями, вычисленными по работе деформирования при условии, что никаких тепловых процессов, связанных с кристаллизацией полимера, не происходит. В действительности методом дифракции рентгеновских лучей было показано, что при холодной вытяжке волокон из полиэтилентерефталата происходит слабая кристаллизация полимера. [c.271]

    Как правило, цепи в кристаллитах, возникших при растяжении, ориентированы преимущественно вдоль оси растяжения. Такая ориентация особенно типична для процессов кристаллизации при очень больших деформациях. Морфология, возникающая при ориентационной кристаллизации, этим и отличается от обычной кристаллической текстуры, которая получается при постепенном охлаждении и характеризуется беспорядочным распределением ориентаций кристаллитов. При включении части деформированной цепи в кристаллит среднее напряжение, которое она испытывает на концах, уменьшается. Это заключение [c.170]

    Возможны также процессы, где не длина, а напряжение поддерживается постоянным. Рассмотрим систему (в кристаллическом состоянии), снова определяемую точкой А (рис. 51). Если теперь напряжение поддерживается постоянным, а температура повышается, процесс должен описываться горизонтальным участком, который ограничен соответствующей пунктирной кривой, представляющей границу полностью аморфного состояния. В данном случае при переходе будет наблюдаться четырехкратное изменение длины. Этот процесс обратим, так как поддерживается равновесное напряжение. При возвращении к начальной температуре переход от аморфного к кристаллическому состоянию будет сопровождаться спонтанным удлинением. Спонтанное увеличение длины при кристаллизации деформированных сеток натурального каучука, выдерживаемых при постоянной нагрузке, действительно наблюдалось [12]. [c.183]

    В области / умеренных и небольших уц (низкие напряжения) формование волокон и пленок из расплавов хорошо кристаллизующихся полимеров (ПЭ, ПЭВД, ПКА и т. д.) приводит к росту у них сферолитов, сплюснутых относительно направления растяжения [66]. Как правило, с увеличением Яф степень сплюснутости сферолитов увеличивается, а диаметр уменьшается. Поскольку на выходящий из фильеры расплав действует не только растягивающее поле, но и термоградиентное, одно время считали, что именно последнее обуславливает неодинаковую скорость роста сферолитов в разных направлениях (перепад температуры вдоль формуемого волокна или пленки обычно на несколько порядков больше, чем в поперечном направлении). Однако, было обнаружено, что в деформированном расплаве сшитого ПЭ и при отсутствии термоградиентного поля растут анизометрические сферолиты [66]. Термодинамический анализ кинетики кристаллизации расплава в условиях растягивающих напряжений показал, что влияние молекулярной ориентации на структурообразование в этом случае сводится к подавлению роста кристаллитов в направлении растяжения. [c.59]


    Механические свойства и закономерности деформации частично закристаллизованных полимеров определяются природой кристаллических областей, которая может обусловить преимущество механизма Гуковских деформаций. В этом случае закономерности деформации полимера приблизятся к соответствующим закономерностям твердых кристаллических тел (например, металлов). При Гуковских деформациях почти не изменяется положение элементов структуры если же изменение все-таки происходит, то этот процесс их перемещения протекает очень быстро. Поэтому релаксационные процессы в таких полимерах тоже протекают быстро и их влияние на основные закономерности деформации очень мало. Если процессы кристаллизации в полимерах протекают при их деформировании, что требует значительного времени для перестройки старой и формирования новой структуры, то релаксационные явления должны уже учитываться при изучении свойств таких полимеров. [c.90]

    Релаксационные овойства кристаллических и кристаллизующихся полимеров наглядно выявляются при рассмотрении особенностей изменения в них напряжения в течение времени. Присутствие кристаллической фазы в недеформированном образце приводит к уменьшению скорости протекания релаксации напряжения, если полимер деформирован до заданной величины деформации. Это связано с увеличением времени релаксации элементов структуры полимера. Кристаллиты ограничивают подвижность сегментов макромолекул, т. е. действуют как поперечные связи в сшитом эластичном полимере, и скорость релаксации снижается. При растяжении кристаллизующегося полимера до таких величин деформации, когда процессы кристаллизации ярко выражены, протекающая в деформированном эластомере кристаллизация способствует быстрому падению напряжения до нуля. Кристаллиты упрочняют эластоме р, модуль его возрастает и при сохранении постоянства деформации напряжение быстро падает. После освобождения образца от растягивающей деформации напряжение, возникшее за счет процессов кристаллизации, может привести к самопроизвольному удлинению образца. [c.124]

    Полиуретаны на основе кристаллизующихся полиэфиров имеют наибольшее сопротивление разрыву. Высокая механическая прочность их связана со способностью кристаллизоваться и ориентироваться при деформировании. Поэтому естественно, что при сопоставимой плотности энергии когезии прочность кристаллических (или потенциально способных кристаллизоваться при деформировании) полимеров всегда существенно выше, чем аморфных эластомеров. Однако попытки найти связь между температурой плавления кристаллических полиуретанов и такими свойствами, как сопротивление разрыву и раздиру оказались неудачными (табл. 4). Вероятно, объяснение этому факту следует искать в том, что на повышение прочности оказывает влияние только лишь кристаллизация, которая развивается непосредственно в процессе деформирования эластомера. Наглядной иллюстрацией сказанного является сравнение свойств полиуретанов на основе полидиэтилен- и полиэтиленадипинатов последние кристаллизуются уже при растяжении на 50%. [c.535]

    Оказывается, что расплавленные полимеры изотропны по отношению к процессу теплопроводности, поэтому значения коэффициентов теплопроводности, приведенные в табл. 1, применяются для всех направлений. Эксперименты на образцах из деформированных твердых полимеров [1] демонстрируют более высокие значения теплопроводности в направлении, параллельном деформации, по сравнению с теплопроводностью в направлении, перпендикулярпом деформации. Эти различия достаточно сильны в полимерах, способных к кристаллизации, где возможна разница на порядок величины в двух направлениях. Однако в стекловидных полимерах влияние ориентации на X [c.328]

Рис. 15.3. Кривые непрерывного охлаждения и изотермической кристаллизации ПЭВП при разных условиях деформирования расплава 5) Рис. 15.3. <a href="/info/501641">Кривые непрерывного</a> охлаждения и <a href="/info/144902">изотермической кристаллизации</a> ПЭВП при <a href="/info/1503358">разных условиях</a> деформирования расплава 5)
    Физико-химическая механика твердых тел и ДС, изучающая влияние внеш. сред иа закономерности дефор.миро-вания и разрушения твердых тел, образование дисперсных структур и нх мех. св-ва, механохим. эффекты и на этой основе разрабатывающая пути управления мех. св-вами материалов, облегчения их обработки, управления контактными явлениями при трении и износе. Облегчение деформирования, разрушения и измельчения твердых тел в материалов в присут. среды связано с проявлением эффекта Ребиндера-адсорбц. влияния среды на мех. св-ва в-ва. В основе изучения структурообразования в дисперсных системах лежат реологич. исследоваиия, в частности визкози-метрия, и непосредств. определения сил взаимод. между частицами при образовании коагуляционных и конденса-ционно-кристаллизац. структур. [c.434]

    Ниж. предел температурного диапазона высокоэластичности Р. обусловлен гл. обр. т-рой стеклования каучуков, а для кристаллизующихся каучуков зависит также от т-ры и скорости кристаллизации. Верх, температурный предел эксплуатации Р. связан с термич. стойкостью каучуков и поперечных хим. связей, образующихся при вулка1газащш. Ненаполненные Р. на основе некристаллизующихся каучуков имеют низкую прочность. Применение активных наполнителей (высокодисперсных саж, 8 02 и др.) позволяет на порядок повысить прочностные характеристики Р. и достичь уровня показателей Р. из кристаллизующихся каучуков. Твердость Р. определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность Р. рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом м.б. приближенно вычислены (при объемном наполнении менее 30%) теплофиз. характеристики Р. коэф. термич. расширения, уд. объемная теплоемкость, коэф. теплопроводности. Циклич. деформирование Р. сопровождается упругим гистерезисом, что обусловливает их хорошие амортизац. св-ва. Р. характеризуются также высокими фрикционными св-вами, износостойкостью, сопротивлением [c.225]

    Р. вязкоупругих полимеров рассматривает также явления, связанные с релаксационными и фазовьпуш переходами, вызванными процессом деформировашгя. К явлениям этого типа относится описанный выше переход жидкости в твердообразное состояние цри 8у 1. При рчснь больших скоростях деформирования может происходить стеклование полимера с последующим хрупким разрушением. Деформирование концентрир. р-ров полимеров влияет на их кристаллизацию, изменяя как равновесную т-ру фазового перехода, так и его кинетику, а также структуру (и, следовательно, св-ва) кристаллич. в-ва. [c.247]

    Для наполненных эластомеров проявляются реологич. эффекты, обусловленные внутр. структурой наполнителя. Так же, как и для текучих сред, в резинах наблюдаются тиксотропные явления, состоящие в том, что при повторных нагружениях деформац. кривые меняются и постепенно восстанавливаются исходные св-ва материала при отдыхе (эффект Маллинза). При периодич. деформациях нелинейность мех. поведения (зависимость модуля упругости от амплитуды деформации) возникает при крайне малых деформациях подобно тому, как это имеет место, напр., в дисперсных системах с низкомол. дисперсионной средой. Так же, как и для р-ров линейных полимеров, высокоскоростное деформирование резины может приводить к мех. стеклованию, а растяжение до высоких значений способствует кристаллизации. [c.248]

    О влиянии релаксационных явлений на прочность кристаллизующихся эластомеров свидетельствует немонотонная зависимость прочности от скоростн растяжения (рис. 5.43). На участке А происходит криста 1лизация полимера (образование фибриллярной структуры), при этом повышается степень ориентации молекул и в кристаллической части, и в аморфной. Трещины илн надрывы зарождаются в аморфной области и.ли иа границе кристалл — аморфная часть, и прочность определяется прочностью аморфных участков Поскольку при кристаллизации повышается степень их ориентации, а следовательно, и прочность, то можно считать, что кристаллизация приводит к упрочнению. В процессе деформирования на участке В макромолекулы не успевают принять необходимую для кристаллизации конформацию и кристаллизация замедляется, а на участке полимер не кристаллизуется и прочность определяется степенью ориентации макромолекул. [c.335]

    Пользуясь полученным соотношением, достаточно легко объяснить связь износостойкости материалов со способностью их к самонаклепуили наклепу различными методами поверхностного пластического деформирования (ППД) следующим образом. Если произведение 4 = onst или бкр onst характеризует способность материалов работать в условиях нормального износа, то величина р может быть представлена в виде двух слагаемых называемая "структурная" компонента деформации, реализованная при злектро-кристаллизации или в процессе получения и обработки материала -величина, характеризующая способность материала к наклепу или оамо-наклепу - так называемый резерв. [c.134]

    Рассмотрим аргументы, выдвинутые Маршаллом и Томпсоно м в обоснование своей точки зрения. Исходным моментом их теории были изотермические диаграммы нагрузка — деформация, построенные для полиэтилентерефталата на рис. 11.13. Далее предполагалось, что процесс растяжения с высокой скоростью осуществляется в адиабатических условиях. Зависимость нагрузки от деформации подсчитывалась для адиабатического растяжения, исходя из предположения, что вся работа деформирования, производимая приложенной силой, переходит в тепло, рассеиваясь в образце, т. е. эта работа не затрачивается ни на накопление упругой энергии, ни на фазовые переходы, связанные с кристаллизацией полимера при растяжении. Практически расчет выполнялся для каждых 10% удлинения путем подсчета повышения температуры, обусловленного тепловыделениями при такой деформации проверка правильности расчета состояла в вычислении полной работы деформирования и сравнении ее с затратами энергии на суммарное повышение температуры образца. [c.267]

    Однако если изложенное справедливо для аморфного полипропилена, то неожиданным оказывается появление деформируемости ниже Гс у образцов с хорошо выраженной кристаллической структурой, у которых, как известно [7], плотность выше по сравнению с соответствующими аморфными стеклообразными материалами. Поэтому для объяснения высокой деформируемости кристаллического полипропилена ниже Гс следует принять, что либо при температурах ниже Гс реализуется пластическая деформация кристаллов, либо кристаллизация гибкоцепных полимеров может способствовать проявлению вынужденной эластичности даже в области хрупкого состояния соответствующих стеклообразных материалов. Чтобы ответить на этот вопрос, пами был изучен характер обратимости таких деформаций. Оказалось, что если деформированный образец перенести из термостатируе-мой кюветы на воздух, т. е. в условия комнатной температуры, то деформация полностью самопроизвольно уничтожается, что свидетельствует о ее высоко эластической природе. [c.337]

    Авторы [72] предложили модель, по которой кристаллизация происходит в два этапа. На первом — образуются стержнеобразные зародыши из КВЦ (считают, что их кристаллизация, так же как и кристаллизация центральной нити в шиш-кебабах, индуцируется растягивающими усилиями). На втором этапе на этих зародышах происходит эпитаксиальный рост ламелей со сложенными цепями. Такой тип НМС был назван структурой со стержневыми зародышами ее наблюдали [72] при кристаллизации деформированных расплавов самых разных полимеров (найлонов, ПП, поли-4-метилпентена-1 и т. д.). [c.57]

    Вопрос о наличии КВЦ в полимерах, закристаллизованных из деформированных расплавов, является одним из самых принципиальных для ориентационной кристаллизации. Прямые наблюдения КВЦ в таких полимерах отсутствуют. Наличие высокотемпературного эндотермического пика в термограммах образцов представляется довольно убедительным аргументом в пользу существования КВЦ. Однако самое убедительное свидетельство наличия каркаса из КВЦ — неизменность модуля упругости и размеров образцов при нагревании почти до Гцл КВЦ [79]. В обычных ориентированных образцах модуль резко падает при нагреве до температур близких к Гпл КСЦ, причем сами образцы сокращаются в 20—30 раз — в зависимости от исходной вытяжки. По-видимому, полимеры, получающиеся в результате ориентационной кристаллизации в условиях значительного разворачивания макромолекул, можно рассматривать, как са-моармированные системы, в которых КВЦ играют роль жесткого наполнителя (см. рис. 1.15,г). Их присутствием объясняют высокие модуль упругости и прочность в аксиальном направлении, а также небольшое удлинение до разрыва. [c.61]

    Хотя металлы и представляют собой кристаллические тела с упорядоченным расположением в узлах решетки ион-атомов, решетка реального металла не соответствует идеальной решетке той или иной кристаллической системы. В ней всегда имеются искажения, связанные с условиями кристаллизации и наличием примесей. Реальный металл, кристализуясь из большого количества центров кристаллизации, получается поликристалличе-ским. Отдельные кристаллиты в процессе роста встречаются между собой, и их грани оказываются сильно деформированными и искаженными. Границы кристаллитов в физико-химическом отношении значительно отличаются от тела кристалла. Последнее объясняется следующ,им большинство примесей чаш,е всего выделяется по границам зерен. [c.85]


Смотреть страницы где упоминается термин Деформирование и кристаллизация: [c.317]    [c.318]    [c.314]    [c.315]    [c.110]    [c.208]    [c.58]    [c.549]    [c.356]    [c.276]    [c.276]    [c.333]    [c.23]    [c.233]    [c.187]    [c.222]    [c.352]    [c.77]   
Ориентационные явления в растворах и расплавах полимеров (1980) -- [ c.91 , c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Деформирование



© 2025 chem21.info Реклама на сайте