Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептиды четвертичная структура

    Простые белки — это полипептиды с относительно большой молекулярной массой, характеризующиеся, в отличие от просто полипептидов, разными уровнями организации — первичной, вторичной, третичной, четвертичной Хотя между полипептидами и белками трудно провести четкую грань, но белки — это полипептиды, способные к проявлению вторичной, третичной, четвертичной структур [c.880]

    Обсуждение структуры белка облегчается тем, что мы можем рассматривать четыре различных структурных уровня первичный, вторичный, третичный и четвертичный. Первичной структурой называют последовательность аминокислот в полипептидной цепи, как, нанример, на рис. 40.1. Вторичная структура—это способ расположения полипептидной цепи в пространстве. Вторичная структура определяется поступательными и вращательны.ми движениями составляющих пептидной цепи и водородными связями между компонентами пептидной цепи. Полная структура полипептида предполагает трехмерную конформацию. Третичная структура — это и есть обозначение такой полной конформации, а также взаимодействий, которыми она обусловлена. Четвертичная структура обусловлена ассоциацией двух пли более полипептидных цепей. Исследования биохимии белков показывают, что именно таким образом построено большинство биологически важных белков. [c.372]


    Механизм гомотропного и гетеротропного взаимодействия в гемоглобине, по-видимому, зависит от трех типов конформационных переходов в белке небольших изменений третичной структуры каждой из полипептидной субъединиц, от малых изменений четвертичной структуры и больших изменений четвертичной структуры комплекса из четырех ассоциированных полипептидных субъединиц. Первый из этих переходов представляет собой последовательность изменений, охватывающих только небольшую область полипептида, и связывает процессы, в которых участвует железо, с равновесием между свободными и связанными аминокислотными остатками на определенном участке поверхности субъединицы. Этот тип переходов достаточен для объяснения гетеротропного взаимодействия в белках, состоящих только из одной полипептидной цепи. Однако в гемоглобине конформационные изменения второго типа приводят к образованию или разрыву солевых мостиков между субъединицами, что автоматически влечет за собой небольшие изменения четвертичной структуры. Нарастание этих небольших изменений в четвертичной структуре в конце концов приводит к К—Т-переходу. Таким образом, процессы, в которых участвует железо в каждой из субъединиц, косвенно связаны с переходами между К- и Т-формами всего белка. [c.182]

    Рентгеноструктурное изучение гемоглобина (выполненное английским ученым Максом Перутцем с сотрудниками) показало, что молекула этого белка представляет собой агрегат из четырех субъединиц, каждая из которых напоминает молекулу миоглобина и содержит одну полипептид-ную цепь. Такое сочетание двух или большего числа полипептидных цепей называют четвертичной структурой белка. [c.683]

    По современным представлениям, образование третичной и четвертичной структур белков выгодно в термодинамическом отношении неполярные, гидрофобные остатки не соприкасаются с водой, будучи скрыты в глубине свернутой молекулы полипептида или в местах контакта между субъединицами олигомерного белка (рис. 73). Важную роль в определении окончательной конфигурации и состояния агрегации молекул играют также водородные связи и ионные взаимодействия между полярными или заряженными остатками белковой молекулы. Поэтому, для того чтобы понять зависимость структуры белков от давления, нужно знать, как оно влияет на эти слабые связи и взаимодействия. [c.316]


    Для того чтобы дать объяснение особенностям мутантного /s-фенотипа на молекулярной основе, необходимо уточнить фундаментальный принцип молекулярной биологии, введенный в гл. IV и состоящий в том, что первичная структура белка полностью определяет вторичную, третичную и четвертичную структуры. Это уточнение заключается в том, что определенная вторичная, третичная и четвертичная структуры, образуемые полипептидной цепью с определенной первичной структурой, зависят от внешних условий, особенно от температуры. Так, функционально активная третичная и четвертичная структура каждого белка возникает в довольно строго ограниченном физиологическом интервале температур, а за пределами этого интервала белок переходит в нефункциональную, денатурированную форму. Первичная структура белков, кодируемая генами дикого типа, такова, что их функционально активные структуры высших порядков образуются в интервале температур от 25 до 42 "С. Однако изменение последовательности нуклеотидов в гене, несущем /s-мутацию, ведет к такому изменению первичной структуры полипептида, при котором мутантный белок, хотя и сохраняет способность образовывать функционально активные структуры высшего порядка при [c.284]

    Синтез в больших количествах специфических полипептидов позволил не только получить важные для клиники белки, но и исследовать их структуру и функции. Трехмерная структура и, следовательно, биологическая активность каждого белка зависят от его аминокислотной последовательности. Как показали химические исследования, модификация боковых групп отдельных аминокислот существенно влияет на способность белковой молекулы к образованию специфической вторичной, третичной или четвертичной структуры, а следовательно, на актив- [c.359]

    Вторичная, третичная и четвертичная структуры белков тесно связаны между собой и в конечном счете определяются первичной структурой одной или нескольких полипептидных цепей. Последствия такой взаимосвязи очень значительны информация, определяющая укладку белковой молекулы и переход ее в биологически активное состояние, закодирована в его аминокислотной последовательности. Подтверждением этого принципиального положения служит то, что химические модификации и мутационные изменения аминокислотной последовательности полипептидов сильно влияют на их ренатурацию и способность формировать вторичную, третичную и четвертичную структуры с полноценной биологической активностью. [c.63]

    Вся структурная организация белков (четвертичная, третичная, вторичная) может быть разрушена внешними воздействиями до первичной структуры полипептида - процесс денатурации. Денатурация белков происходит под действием экстремальных значений pH растворов, УФ-света, рентгеновских лучей, высоких давлений, повышенной температуры, физических воздействий (например, ультразвука). [c.273]

    Для проявления биологической активности некоторые белки до-лжньг сначала образовать макрокомплекс, состоящий из нескольких третичных структур белковых субъединиц, которые связаны вторичными валентными силами (ионное притяжение, водородные связи). Подобные способы пространственной организации нескольких полипептид-ных субъединиц - это четвертичная структура белка, которая определяет степень ассоциации третичных структур в биологически активном материале. Например, белком с четвертичной структурой является гемоглобин, который состоит из четырех субъединвд (клубков) миоглобина - двух молекул а-гемоглобина, каждая из которых содержит гем. [c.272]

    То, что сворачивание полипептида в белок происходит в процессе синтеза на рибосоме, т. е. ко-трансляционно, следует из целого ряда косвенных свидетельств. Одно из них— приобретение растущим пептидом на рибосоме активностей, присущих готовому белку со сформированной третичной структурой. Давно известный пример — синтез Р -галактозидазы ферментативная активность этого белка требует не только сворачивания полипептидной цепи в третичную структуру, но и объединения четырех субъединиц в четвертичную структуру оказалось, что растущая цепь до своего завершения, будучи присоединенной к рибосоме, уже способна ассоциировать со свободными субъединицами белка, и комплекс на рибосоме проявляет Р-галактозидазную активность. [c.273]

    Шесть уровней структурной организации белков. Согласно Линдерстрем — Лангу [176], можно выделить четыре уровня структурной организации белков первичный, вторичный, третичный и четвертичный. Эти термины означают соответственно аминокислот- ую последовательность, упорядоченное строение основной цепи полипептида, трехмерную структуру глобулярного белка и структуры белковых агрегатов. На основании имеющихся у нас теперь знаний мы можем добавить еще два уровня сверхвторичные структуры для обозначения энергетически предпочтительных агрегатов вторичной структуры и домены для обозначения тех частей, которые представляют собой достаточно обособленные глобулярные области. Схема структурной организации приведена на рис. 5.1. [c.82]


    Оба типа -рецепторов стимулируют аденилатциклазу. Они отличаются участками распознавания лиганда R. С совершенно иной ситуацией мы встречаемся в случае сс-адренэргических рецепторов. Здесь, напротив, ai регулирует в основном внутриклеточный уровень другого вторичного мессенджера — Са-+, тогда как 2 не только не активирует аденилат-циклазу, но, по-видимому, и ингибирует ее. В настоящее время считается, что сс2-рецепторы взаимодействуют с аденилатциклазой (С) через ингибиторный регуляторный белок (N, G). Имеются два различных типа таких регуляторных белков стимулирующие (Ns) и ингибирующие (Л /). Белки обоих типов были выделены и очищены (из печени, мозга и эритроцитов), была определена и их четвертичная структура. Они состоят из трех различных полипептидов, два из которых ( , "f) идентичны для обоих белков. N-Белки являются также центрами действия экзогенных факторов, таких, например, как F или бактериальные токсины холеры и коклюша (о структуре и функции токсина холеры см. гл. 2). Краткий обзор современных знаний о структуре и регуляции передачи сигнала через адреноцепторы представлен на рис. 9.14, а и б. Рис. 9.14,6 описывает также некоторые детали механизма последовательного взаимодействия R, N и С видно, что медиатор или гормон вначале активирует N путем взаимодействия с рецептором. Активация N основана на замене GDP на GTP. Активированный N взаимодействует затем с С. Такое взаимодействие носит временный характер, поскольку N инактивирует сам себя путем расщепления связанного GTP под действием присущей ему ОТРазной активности. Еще раз интересно отметить сходство этого процесса с взаимодействием родопсина, трансдуцина и фосфодиэстеразы, обнаруженным в зрительном процессе (гл. 1). Такое сходство — это нечто большее, чем просто аналогия. [c.277]

    Главная функция гемоглобина (основного компонента эритроцитов) состоит в переносе кислорода из легких к тканям (рГанизма (транспортная функция). Его четвертичная структура редставляет собой образование из четырех полипептидах цепей (субъединиц), каждая из которых содержит гем см. 10.1). [c.373]

    Здесь и далее мы испо.пьзуем термин первичная, вторичная, третичная и четвертичная структуры нуклеиновых кислот в следующем смысле. Первичная структура — последовательность пуклеозндпых звеньев, соединенных фосфо-диэфирной связью в непрерывную и неразветвленную полинуклеотидную цепь. Вторичная структура — в случае одноцепочечных, главным образом монотонных полинуклеотидов, — пространственное расположение нуклеозидных звеньев, обусловленное межплоскостным взаимодействием оснований. В случае двух комплементарных цепей вторичная структура представляет собой жесткую двойную спираль, стабилизованную как ме.жплоскостным взаимодействием соседних оснований в пределах одной цепи, так и водородными связями между противолежащими основаниями в параллельных цепях. Третичная структура образуется в результате реализации наряду с двухспиральными иных типов фиксированной укладки полинуклеотидных цепей. Четвертичная структура — пространственное расположение взаимодействующих макромолекул (обычно полинуклеотидов и полипептидов) в нуклеопротеидах — рибосомах, вирусах и т. д. [c.16]

    Константы равновесия гемоглобйнов и миоглобинов, изученных к настоящему времени, находятся в интервале Дlg/ (или Р1/2) 6, причем около 4,5 единицы этого интервала никак не связаны с изменениями природы аксиального лиганда, представляемого белком, и по крайней мере 2,4 единицы определяются изменениями четвертичной структуры гемоглобина. Изменение энтальпии при связывании кислорода варьирует еще в более широких пределах, от - -4 до —75 кДж/моль (от +1 ДО —18 ккал/моль), хотя для гемоглобинов с наиболее высокими значениями констант равновесия соответствующие термодинамические данные не получены (разд. 7.5). В настоящее время получено достаточно данных, чтобы в общих чертах описать механизм регулировки величины К, хотя ряд деталей остается неясным. Рентгеноструктурные и спектроскопические данные указывают на следующие эффекты смещение атома металла и лигандов в каждой из форм комплекса Ре или Ре Ог в результате несоответствия стереохимических свойств полипептида и металлокомплекса некоторые различия в положении металла и лигандов между различными белками изменения третичной структуры полипептидных цепей и четвертичной структуры гемоглобйнов [c.190]

    Однако сказанное выще не означает, что такие параметры, как Оо и /4 193+/4 225, которые наиболее чувствительны к различным неконформационным изменениям, не следует применять при анализе ДОВ. Выше было показано, что параметр Оо может дать ценную информацию о структуре растворов полипептидов [11, 23, 24, 25]. Можно надеяться, что с помощью именно этих параметров удастся получить некоторые сведения о третичной и четвертичной структуре биополимеров. [c.143]

    Фермент альдолаза (мол. вес. 150 000) при обработке кислотой (pH 2,9 или ниже) диссоциирует на три цепи с молекулярным весом 50 ООО каждая, имеющих идентичную первичную структуру. При возвращении pH раствора к нейтральным значениям три полипептидиые цепи ассоциируют, образуя нативную четвертичную структуру. Известно много других примеров ассоциации одинаковых полипептидных цепей. Крайним случаем такого рода является белок вируса табачной мозаики, образующийся при ассоциации 2000 идентичных единиц, причем молекулярный вес агрегата достигается 3-10 Некоторые белки состоят из цепей нескольких типов. Например, гемоглобин, белок крови, переносящий кислород, состоит из четырех цепей, по две каждого вида. [c.382]

    Денатурация является весьма характерным свойством белков и представляет собой сложное явление, в основе которого лежит изменение вторичной, третичной и четвертичной структур белковой молекулы. Известно, что синтетические и природные полипептиды не подвергаются денатурации. Полимерные углеводы и другие высокомолекулярные вещества также не обладают способностью к денатурации. Отсюда следует, что ни макромолекулярность, ни химический состав не являются достаточными для объяснения этого свойства белков. Все известные данные указывают, что денатурация белка представляет собой внутримолекулярную перегруппировку, не связанную с расщеплением пептидных связей, в результате которой утрачиваются уникальное пространственное расположение и форма полипептидных цепочек при этом теряется, как правило, специфическая биологическая активность данного белка. К денатурации не относятся ни процессы, связанные с гидролитическим (протеолитическим) расщеплением пептидных связей, ни многие другие обратимые и необратимые изменения белка, если они обусловлены реакциями отдельных группировок и не затрагивают белковую молекулу в целом (например, взаимодействие с многими ионами, включение некотсфых органических заместителей и др.). [c.183]

    Все это напоминает работу швейной машины. Молекула мРНК шаг ва шагом продвигается вдоль поверхности рибосомы, и в такт ей строится полипептидная цепь. Когда нить мРНК вся пропутешествовала через рибосому и дошла до конца, до последнего кодона, первичная структура полипептида оказывается сшитой . На этом сходство со швейной машиной кончается, так как нить мРНК вовсе не похожа на нитку, скрепляющую сшитые куски ткани (аминокислоты). Напротив, она очень недолговечна и довольно быстро разрушается. Полипептидная цепь, по всей вероятности, остается на рибосоме ( швейной машине ) до своего полного завершения, после чего отделяется и затем уже свертывается, приобретая характерную вторичную и третичную структуру, а в ряде случаев объединяется с другими полипептидными цепями, так что создается четвертичная структура. Лишь теперь можно считать, что ферментный белок готов. [c.70]

    В соответствии с классификацией, предложенной Линдерштрем-Лан-гом [41 ], структуру белков удобно подразделить на три типа первичная структура характеризует ковалентные связи и последовательность остатков аминокислот в полипептидных цепях, вторичная структура — складывание полипептидиых цепей в упорядоченные структурные элементы, такие, как а-спи-раль, и третичная структура — расположение друг относительно друга боковых групп цепи. (Эти определения в настоящее время распространяются и на другие биоколлоиды и синтетические полимеры.) Далее Бернал [42] предложил термин четвертичная структура для описания взаимного расположе- [c.102]

    Терминация полипептидной цепи. Необходимые факторы РК-1 воспринимает триплеты УАА и УАГ РК-2 воспринимает УАА и У ГА ГТФ. Терминирующие кодоны (бессмысленные, нонсенс-кодоны) не имеют для себя аминоацил-тРНК. Кодоны, поступив в А-участок, воспринимаются факторами РК-1 или РК-2, которые индуцируют пептидилэстеразную активность, вследствие чего отщепляется синтезировавшийся полипептид. Весь комплекс трансляции диссоциирует на составные части. В цитоплазме клеток прокариот с помощью фермента деформилазы происходит отщепление формильной группы от Л -концевого формилметионина синтезированного полипептида часто после завершения синтеза в цитоплазме клеток отщепляется УУ-концевой метионин от синтезированного полипептида (у прокариот и эукариот). На основе взаимодействия радикалов аминокислотных остатков полипептидной цепи спонтанно формируются вторичная, третичная, а у олигомерных белков и четвертичная структуры. [c.317]

    Существование внутригенной комплементации на самом деле не снижает основной ценности определения гена, данного Бензером. Ее легко объяснить, исходя из представления о четвертичной структуре белков. Как мы уже видели в гл. IV, многие белки осуществляют свою биологическую функцию лишь в том случае, если они находятся не в виде отдельной полипептидной цепи, а в составе четвертичной структуры, образованной из двух или большего числа полипептидных цепей. Так, мы уже упоминали, что Р-галактозидаза представляет собой агрегат, состоящий нз четырех идентичных полипептидных цепей. Рассмотрим теперь /5-мутацию в гене, определяющем белок, который проявляет свою ката-.литическую активность, лишь находясь в форме комплекса, построенного из четырех идентичных полипептидных цепей. В этом случае мутантный фенотип 1з, очевидно, возникает в результате появления в одном из участков мутантной полипептидной цепи неподходящей аминокислоты. Вследствие этого интервал температур, в котором агрегат, состоящий из четырех цепей, может принимать физиологически активную четвертичную структуру, оказывается суженным. Это значит, что, хотя при пермиссив-ной температуре 25 °С такой агрегат сохраняет свою активность, при 42 °С он денатурирует. Допустим теперь, что в одной и той же клетке присутствуют две копии гена, определяющего рассматриваемый белок, и, как в цис-транс-тесте, эти копии несут разные мутации. Тогда должны возникнуть гибридные агрегаты мутантного белка, из четырех полипептидов которого часть синтезирована под контролем одного, а часть — под контролем другого /5-мутантного гена. В этом случае существует возможность, что интервал температур, в котором гибридный мутантный агрегат образует функционально активную структуру, окажется шире интервала температур для образования функционально активных агрегатов, состоящих только из одного типа мутантных полипептидов. Это значит, что два разных замещения аминокислот в первичной структуре белка, вызванные двумя й-мутациями, могут привести к взаимной компенсации. В результате такой компенсации агрегат из мутантных полипептидов, так же как и белок дикого типа, сохраняет стабильность в широком интервале температур. [c.314]

    Сопрягающий фактор АТФазы (фактор Fi для митохондрий или Fi для хлоропластов) представляет собой полифункциональный белок, имеющий сложную четвертичную структуру. Он построен из трех типов крупных субъединиц (а, Р, у с молекулярной массой 30000-60000) и двух типов минорных субъединиц 8, s с молекулярной массой 11000-20000). Стехиометрия комплекса (азРзу8е- Разложение его на отдельные субъединицы ведет к потере ферментативной активности. Шляпка высотой 80 А и шириной 100 А (Walker J., 1994) грибовидного выроста Н+-АТФазы соответствует фактору F, частично погруженному в мембрану, а основание — гидрофобным белкам комплекса Fq, который включает три типа полипептидов (а, Ь, с) с молекулярными массами от 6500 до 30 ООО и обеспечивает связывание фактора Fi с мембраной и перенос протонов при работе фермента. На каждую пару а-р-субъединиц приходится по одному полипептиду а, по два белка и по 9-12 копий с-белка водорастворимого комплекса. Субъединицы а и р гомологичны, они уложены в белковые глобулы, которые образуют единый ансамбль, в котором а- и р-субъединицы расположены поочередно вокруг у-субъединицы, имеющей вид слегка изогнутого стержня длиной 90 А. Существуют кинетические и структурные доказательства наличия 3-х взаимодействующих гидролитических мест, по одному на каждой р-субъединице, отделенных друг от друга на 120 градусов, у-субъединица как бы выступает из глобулы Fi, играя роль связующего звена между мембранами Fi и водорастворимыми Fg фрагментами АТФазы. [c.222]

    Хотя в 1950-е годы еще не было известно пространственное строение на атомном уровне ни у одного белка, тем не менее в то время почти отсутствовало сомнение в том, что белковые молекулы построены из регулярных форм и главным образом из а-спиралей Полинга и Кори, обнаруженных в чистом виде у гомополипептидов. Именно на таком представлении о строении белков основана классификация белковых структур на первичную, вторичную и третичную, предложенная в 1952 г. К. Линдерстрем-Лангом [90]. Под первичной структурой понималась аминокислотная последовательность белка, т.е. его химическое строение, включая дисульфидные связи под вторичной структурой — полностью насыщенные пептидными водородными связями регулярные конформации белковой цепи как целого или ее отдельных участков. Набор взаимодействующих между собой регулярных конформаций а-спиралей, -структур и т.д. образует нативное пространственное строение белковой молекулы, названное Линдерстрем-Лангом третичной структурой. Таким образом, классификация Линдерстрем-Ланга, по существу, представляет собой формулировку принципа пространственной организации белков. Очевидно, разделение пространственной структуры белка на вторичную и третичную является условным и может иметь смысл только в том случае, если пространственное строение макромолекулы действительно представляет собой ансамбль сравнительно немногочисленных канонических форм полипептидов. В то время этот вопрос был далек от своего решения. Позднее иерархия структур Лин-дерстрем-Ланга пополнилась еще одной, четвертичной, структурой, характеризующей агрегацию белковых молекул или достаточно обособленных субъединиц. Примерами белков с четвертичной структурой могут служить гемоглобин, молекула которого состоит из четырех субъединиц, белок вируса табачной мозаики, представляющий собой систему из 200 одинаковых глобулярных молекул. [c.27]

    Явление, описанное выше на примере рибонуклеазы, кажется типичным для поведения глобулярных белков в целом. Вытянутые полипептид-ные цепи, но-видимому, наделены способностью при соответствующих условиях самопроизвольно принимать уникальную третичную структуру. В некоторых случаях в образовании активного белка принимают участие две или более полипептидных ценей, но даже и тогда денатурация, включающая в себя физическое разделение слагаемых цепей, в основном может быть обратима. Две различные полипептидпые цепи инсулина (рис. 45, б) соединены двумя дисульфидными связями, которые могут быть восстановлены с разделением цепей Аж В. При окислении раствора, содержащего смесь двух этих цепей, восстанавливается значительное количество активного гормона, идентичного с первоначальным белком [404]. Три субъединицы фермента альдолазы связаны лишь вторичными валентными связями. Эти субъединицы могут быть отделены друг от друга, развернуты в сильно вытянутую форму, а весь процесс может быть обратимым с сохранением активности фермента [405]. Образование третичной структуры в субъединицах, очевидно, приводит к появлению частиц с комплементарными поверхностями, что, таким образом, чрезвычайно благоприятствует их ассоциации в четвертичную структуру. [c.139]

    При анализе белков со сложной четвертичной структурой целесообразно разделять их на составляющие субъединицы или полипептиды. В случае иммуноглобулинов для диссоциации полипептидных цепей проводили избирательное восстановление межцепочечных дисульфидных связей [44, 46]. Для получения крупных, хорошо идентифицируемых фрагментов, пригодных для дальнейшего расщепления до коротких цистинсодержащих пептидов, нативные белки расщепляют бромоцианом или протеолитическими ферментами [19, 28, 42, 46, 47]. [c.168]

    Первичная структура белка, т. е. последовательность аминокислот в молекуле полипептида, определяет его вторичную и третичную структуры. Взаимодействие белковых молекул с другими белковыми и небелковыми органическими соединениями приводит к образованию четвертичной структуры белков и их встраиванию в те надмолекулярные комплексы, для кото ых эти белки п едназначены. Все эти этапы превращений [c.318]


Смотреть страницы где упоминается термин Полипептиды четвертичная структура: [c.222]    [c.239]    [c.96]    [c.198]    [c.44]    [c.192]    [c.194]    [c.418]    [c.33]    [c.426]    [c.105]    [c.105]    [c.481]    [c.99]    [c.316]    [c.334]   
Современная генетика Т.3 (1988) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептиды



© 2024 chem21.info Реклама на сайте